气田集输站场火灾泄压放空限流孔板计算解析

气田集输站场火灾泄压放空限流孔板计算解析
气田集输站场火灾泄压放空限流孔板计算解析

万方数据

万方数据

万方数据

CP36C1限流孔板计算

附录C 限流孔板计算 限流孔板计算见《限流孔板计算表》,计算说明如下: 1 输入数据 介质相态:根据介质情况填写相应字母。 G—气体 L—气体 G/L—气体/液体 正常流量:根据物料和热量平衡数据表填写。 孔板前流体正常温度:根据物料和热量平衡数据表填写孔板前流体正常温度。 计算临界限流压力的公式选择说明:根据流体情况填写相应数字。 1—饱和蒸汽 2—过热蒸汽及多原子气体 3—空气及双原子气体 孔板流量系数:由本附录“限流孔板C-Re-d /D关系图”查取。 孔板作用:根据孔板作用填写相应数字:1-降压作用 2-限流作用 孔数:根据情况填写相应数字:1-单孔 2-多孔 板数:根据情况填写相应数字: 1-单板 2-多板 2 计算数据 孔板前压力 孔板前压力(P 1 )根据管道压力降计算结果填写。 2.2 孔板后压力 a. 气体、蒸汽:根据管道压力降计算得出的孔板后压力(P 2 )、计算的临界限流压力(Pc),取两者中的较大值。推荐的临界限流压力值计算如下: 饱和蒸汽:Pc= 过热蒸汽及多原子气体:Pc= 空气及双原子气体:Pc= b.液体:根据压力降计算结果填写。 2.3 孔板压差 孔板压差为ΔP= P 1-P 2 ,式中: ΔP—通过孔板的压降,MPa P 1 —孔板前压力,MPa(A) P 2 —孔板后压力,MPa(A)

2.4 计算孔径 a. 气体、蒸汽单板孔板 ]1)())[(1)(( 1078.43122 126120k k P P P P k k ZT M P C W d k +--????= 式中: W —流体流量,kg/h C —孔板流量系数 d 0—孔板孔径,m D —管道内径,m P 1—孔板前压力,MPa (A ) P 2—孔板后压力,MPa (A ) M —分子量 Z —压缩系数。 T —孔板前流体温度,K k —绝热指数,k=Cp/Cv Cp —流体定压热容,kJ/(kg ·K) Cv —流体定容热容,kJ/(kg ·K) b. 液体单板孔板 1000 /1045.1286 20γ??? ?= P C Q d 式中: Q —液体流量,m 3/h ΔP —通过孔板的压降,MPa γ—液体密度,kg/m 3 c.气-液两相流孔板 分别按气、液流量用各自公式计算气相和液相孔板孔径,然后按下式计算两相流孔板孔径: 2 2V L d d d += 式中: d —两相流孔板孔径,m d L —液相孔板孔径,m d V —气相孔板孔径,m

限流孔板计算表编制说明

限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T 20570.15—95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。 4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。 4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 由系统专业根据Re和d。/D值查附图(附图1)填写。

4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取 4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。 4.14板数 见5.2中说明。 4.15孔板允许压差 见5.2中说明。 4.16孔板前绝压 见5.2中说明。 4.17孔板后绝压 见5.2中说明。 4.18开孔数 见5.1中说明。 4.19计算孔径 见5.3中说明。 4.20选用孔径 由系统专业按计算的孔径圆整后填写。 5限流孔板的计算 5.1限流孔板孔数的计算 5.1.1管道公称直径小于或等于150m时,通常采用单孔孔板;大于150m时,采用多孔板。

孔板流量计计算公式

孔板流量计计算公式 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式孔板流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1) 其中:C 流出系数; ε可膨胀系数 Α节流件开孔截面积,M^2 ΔP 节流装置输出的差压,Pa; β直径比 ρ1 被测流体在I-I处的密度,kg/m3; Qv 体积流量,m3/h 按照补偿要求,需要加入温度和压力的补偿,根据计算书,计算思路是以50度下的工艺参数为基准,计算出任意温度任意压力下的流量。其实重要是密度的转换。计算公式如下: Q = 0. *d^2*ε*@sqr(ΔP/ρ) Nm3/h 0C101.325kPa 也即是画面要求显示的0度标准大气压下的体积流量。 在根据密度公式: ρ= P*T50/(P50*T)* ρ50 其中:ρ、P、T表示任意温度、压力下的值 ρ50、P50、T50表示50度表压为0.04MPa下的工艺基准点 结合这两个公式即可在程序中完成编制。 二.程序分析 1.瞬时量 温度量:必须转换成绝对摄氏温度;即+273.15 压力量:必须转换成绝对压力进行计算。即表压+大气压力 补偿计算根据计算公式,数据保存在PLC的寄存器内。同时在画面上做监视。 2.累积量 采用2秒中一个扫描上升沿触发进行累积,即将补偿流量值(Nm3/h)比上1800单位转换成每2S的流量值,进行累积求和,画面带复位清零功能

孔板流量计计算公式复习过程

孔板流量计计算公式

0引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。

1孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。 相同( 一定) 质量的气体在温度和压力发生变化时,有:

压差流量计计算公式

()差压式流量计差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量地平方成正比.在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛 地应用.孔板流量计理论流量计算公式为:式中,为工况下地体积流量,;为流出系数,无量钢;β,无量钢;为工况下孔板内径,;为工况下上游管道内径,;ε为可膨胀系数,无量钢;Δ为孔板前后地差压值,;ρ为工况下流体地密度,.对于天然气而言,在标准状态下天然气积流量地实用计算公式为: 式中,为标准状态下天然气体积流量,;为秒计量系数,视采用计量单位而定,此式×;为流出系数;为渐近速度系数;为工况下孔板内径,;为相对密度系数,ε为可膨胀系数;为超压缩因子;为流动湿度系数;为孔板上游侧取压孔气流绝对静压,;Δ为气流流经孔板时产生地差压,. 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高地场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等.流量计算器.()速度式流量计速度式流量计是以直接测量封闭管道中满管流动速度为原理地一类流量计.工业应用中主要有:①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器地磁阻值,检测线圈中地磁通随之发生周期性变化,产生周期性地电脉冲信号.在一定地流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体地体积流量成正比.涡轮流量计地理论流 量方程为:式中为涡轮转速;为体积流量;为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关地参数;为与涡轮顶隙、流体流速分布有关地系数;为与摩擦力矩有关地系数. ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则地交替排列地旋涡涡街.在一定地流量(雷诺数)范围内,旋涡地分离频率与流经涡街流量传感器处流体地体积 流量成正比.涡街流量计地理论流量方程为:式中,为工况下地体积流量,;为表体通径,;为旋涡发生体两侧弓形面积与管道横截面积之比;为旋涡发生体迎流面宽度,;为旋涡地发生频率,;为斯特劳哈尔数,无量纲. ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成地起旋器后,流体被强迫围绕中心线强烈地旋转形成旋涡轮,通过扩大管时旋涡中心沿一锥形螺旋形进动.在一定地流量(雷诺数)范围内,旋涡流地进动频率与流经旋进涡流量传感器处流体地体积流量成正比.旋进旋涡流量计地理论流量方程 为:式中,为工况下地体积流量,;为旋涡频率,;为流量计仪表系数,(为 脉冲数). ④时差式超声波流量计:当超声波穿过流动地流体时,在同一传播距离内,其沿顺流方向和沿逆流方向地传播速度则不同.在较宽地流量(雷诺数)范围内,该时差与被测流体在管道中地体积流量(平均流速)成正比.超声波流量计地流量方程式为:

限流孔板的工艺计算

限流孔板计算表编制说明PS323-03 限流孔板计算表编制说明 1范围 本标准规定了限流孔板计算表的格式和填写要求,以及限流孔板的计算方法,适用于工程设计。 2引用标准 HG/T 20570.15—95 《管路的限流孔板》 3限流孔板的使用场所 限流孔板适用于以下几个方面: 3.1工艺物料需要降压且精度要求不高。 3.2在管道中阀门上、下游需要有较大压降时,为减少流体对阀门的冲蚀,当经 孔板节流不会产生气相时,可在阀门上游串联孔板。 流体需要小流量且连续流通的地方,如泵的冲洗管道、热备用泵的旁路管道(低流量保护管道)、离心泵出口返回贮槽(罐)的旁路管、分析取样管等场所。 4限流孔板计算表填写 限流孔板计算表的格式见附表1,计算表应注明工程名称和装置名称。 4.1限流孔板位号 由系统专业提出并填写。 4.2PID图号 根据PID图填写。 4.3管道号 根据限流孔板所在的管道号填写。 4.4管道类别 根据限流孔板所在的管道填写。 4.5介质 根据工艺专业提供的工艺数据填写。 4.6流量 根据工艺专业提供的工艺数据填写。 4.7孔板流量系数 —1—

限流孔板计算表编制说明PS323-03 由系统专业根据Re和d。/D值查附图(附图1)填写。 4.8液体密度 根据工艺专业提供的工艺数据填写。 4.9分子量 根据工艺专业提供的工艺数据填写。 4.10压缩系数 由系统专业根据流体对比压力、对比温度查气体压缩系数图求取 4.11孔板前温度 根据工艺专业提供的工艺数据填写。 4.12绝热指数 根据工艺专业提供的工艺数据填写。 4.13粘度 根据工艺专业提供的工艺数据填写。 4.14板数 见5.2中说明。 4.15孔板允许压差 见5.2中说明。 4.16孔板前绝压 见5.2中说明。 4.17孔板后绝压 见5.2中说明。 4.18开孔数 见5.1中说明。 4.19计算孔径 见5.3中说明。 4.20选用孔径 由系统专业按计算的孔径圆整后填写。 5限流孔板的计算 5.1限流孔板孔数的计算 5.1.1管道公称直径小于或等于150m时,通常采用单孔孔板;大于150m时,采 —2—

流量孔板设计

节流孔板在发电厂的应用 摘要:通过对液体汽蚀现象的分析,提出了采用节流孔板来降低发电厂汽水管道压力,从而防止流体产生汽蚀的方法。介绍了选择节流孔板的计算方法,包括节流孔板级数、压力差和孔径的计算。 关键词:汽水管道;汽蚀;节流孔板 Applying throttle orifice to power plants Abstract:With the analysis on liquid cavitation, the use of throttle orifice is suggested to lower the pressure in steam water piping of power plants so as to prevent liquid cavitation. As for the selection of throttle orifice, methods for calculating the number of orifice stages, pressure difference and orifice diameter are described as well. Keywords:steam water piping;cavitation;throttle orifice 在工程中,当发电厂汽水管道不需要根据系统的要求调节不同压力,但管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响管道的安全运行。 1汽蚀现象 节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。流束的最小横断面出现在实际缩口的下游,称为缩流断面。在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果(见图1)。如果缩流断面处的压力p vc降到液体对应温度下的饱和蒸汽压力p v以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。 闪蒸和空化的主要区别在于汽泡是否破裂。存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现

孔板流量计简易计算公式应用

孔板流量计简易计算公式应用 介绍孔板流量计的计算公式,通过将简易公式和通用公式的对比,发现简易公式更直观,而且计量误差很小,能够满足生产要求,为维护提供了方便。 关键词计量学;孔板;流量;公式;误差 孔板是典型的差压式流量计,它结构简单,制造方便,使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度(情况)在孔板前后发生了很大的变化,从而在孔板前后形成了差压,通过测量差压可以反映流体流量大小。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 其中Q ——体积流量,Nm3/h; Qmax——设计最大流量,Nm3/h;? P ——实际差压,Pa; ? P设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动(变化)较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。 在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流

量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1、孔板流量计计算公式; 1.1 通用计算公式: 其中Q----体积流量,Nm3/h; K----系数; d----工况下节流件开孔直径,mm;ε----膨胀系数;α----流量系数;? P----实际差压,Pa;ρ----介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方 程,有(3) P ----压力,单位Pa;V ----体积,单位m3;T ----绝对温度,K; n ----物质的量;R ----气体常数。 相同(一定)质量的气体在温度和压力发生变化时,有: P1----某种状态下气体压强,Pa;V1----某种状态下气体体积,m3;T1----某种状态下气体绝对温度,K;又:

节流孔板地原理及限流计算

节流孔板的原理 管道的前后压差较大时,往往采用增加节流孔板的方式,其原理是:流体在管道中流动时,由于孔板的局部阻力,使得流体的压力降低,能量损耗,该现象在热力学上称为节流现象。该方式比采用调节阀要简单,但必须选择得当,否则,液体容易产生汽蚀现象,影响 1汽蚀现象 节流孔板的作用,就是在管道的适当地方将孔径变小,当液体经过缩口,流束会变细或收缩。流束的最小横断面出现在实际缩口的下游,称为缩流断面。在缩流断面处,流速是最大的,流速的增加伴随着缩流断面处压力的大大降低。当流束扩展进入更大的区域,速度下降,压力增加,但下游压力不会完全恢复到上游的压力,这是由于较大内部紊流和能量消耗的结果。如果缩流断面处的压力pvc降到液体对应温度下的饱和蒸汽压力pv以下,流束中就有蒸汽及溶解在水中的气体逸出,形成蒸汽与气体混合的小汽泡,压力越低,汽泡越多。如果孔板下游的压力p2仍低于液体的饱和蒸汽压力,汽泡将在下游的管道继续产生,液汽两相混合存在,这种现象就是闪蒸。如果下游压力恢复到高于液体的饱和蒸汽压力,汽泡在高压的作用下,迅速凝结而破裂,在汽泡破裂的瞬间,产生局部空穴,高压水以极高的速度流向这些原汽泡占有的空间,形成一个冲击力。由于汽泡中的气体和蒸汽来不及在瞬间全部溶解和凝结,在冲击力作用下又分成小汽泡,再被高压水压缩、凝结,如此形成多次反复,并产生一种类似于我们可以想象的砂石流过管道的噪音,此种现象称为空化(见图2)。流道材料表面在水击压力作用下,形成疲劳而遭到严重破坏。我们把汽泡的形成、发展和破裂以致材料受到破坏的全部过程称为汽蚀现象。 闪蒸和空化的主要区别在于汽泡是否破裂。存在闪蒸现象的系统管道,由于介质为汽水两相流,介质比容和流速成倍增加,冲刷表面磨损相当厉害,其表现为冲刷面有平滑抛光的外形。闪蒸也产生噪音和振动,但其声级值一般为80 dB以下,不超出规范规定的许可范围。空化则不然,汽泡破裂和高速冲击会引起严重的噪音,管道振动大,在流道表面极微小的面积上,冲击力形成的压力可高达几百甚至上千兆帕,冲击频率可达每秒几万次,在短时间内就可能引起冲刷面的严重损坏,其表现为冲刷面会产生类似于煤渣的粗糟表面。而且,由液体中逸出的氧气等活性气体,借助汽泡凝结时放出热量,也会对金属起化学腐蚀作用。 不管是闪蒸还是空化,都会对管道造成不同程度的损害,对安全运行均是不利的,因此,选择节流孔板时应避免这两种情况的发生。由于孔板下游的压力往往高于液体的饱和蒸汽压力,因此,选择节流孔板时,最主要是防止空化的产生。 2 防止流体产生汽蚀的方法 对于汽蚀,冲刷面换用高级材料不是彻底解决问题的办法,控制缩流断面处的压力pvc,保持该压力不低于液体的饱和蒸汽压力pv,才是防止汽蚀产生的一项根本措施。对于压降较大的管道,可通过多级降压,确保介质经过每一个缩流断面时压力都大于液体的饱和蒸汽 3 节流孔板压差的计算 为了计算节流孔板的压差,需引入一个新的概念——阻塞流压差Δps。当孔板两端的压差Δp增加时,流量qm也增加,当压差Δp增大到一定值时,缩口处的压力pvc下降到流体饱和蒸气压力pv以下,一部分流体汽化,管道流量不再随压差增加而增加,即形成所谓阻塞流现象。此时,孔板两端的压差称为阻塞流压差Δps。当节流孔板的实际压差Δp小于其对应的Δps时,就可避免闪蒸或汽蚀的发生。当管道两端压差较大时,可采用多级减压,但每一级节流孔板的实际压差Δp均应小于本级入口对应的Δps。

流量计算公式大全

流量计算公式大全 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d 为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG 为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。流量计算器。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为: 式中,qf为工况下的体积流量,m3/s;D为表体通径,mm;M为旋涡发生体两侧弓形面积与管道横截面积之比;d为旋涡发生体迎流面宽度,mm;f为旋涡的发生频率,Hz;Sr为斯特劳哈尔数,无量纲。 ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成的起旋器后,流体被强迫围绕

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

孔板流量计理论流量计算公式

孔板流量计理论流量计 算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29|分类: |标签: |字号大中小订阅 引用 的 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是许多人不知道孔板流量计是怎么计算出来,今天我就和大家探讨一下孔板流量计的计算公式 简单来说差压值要开方输出才能对应流量 实际应用中计算比较复杂一般很少自己计算的这个都是用软件来计算的下面给你一个实际的例子看看吧 一.流量补偿概述 差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。以体积流量公式为例: Q v = CεΑ/sqr(2ΔP/(1-β^4)/ρ1)

孔板流量计计算公式

0 引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获

得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。 1 孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。

孔板流量计流量计算方法

孔板流量计流量计算方法 本方法所需配置:适宜的孔板流量计,空盒气压计,压差计,温度计,瓦斯浓度测定仪。 孔板流量计由抽采瓦斯管路中加的一个中心开孔的节流板、孔板两侧的垂直管段和取压管等组成。当气体流经管路内的孔板时,流束将形成局部收缩,在全压不变的条件下,收缩使流速增加、静压下降,在节流板前后便会产生静压差。在同一管路截面条件下,气体的流量越大,产生的压差也越大,因而可以通过测量压差来确定气体流量。 混合气体流量由下式计算: Q=Kb△h1/2δPδT (1) 该公式系数计算如下: K=189.76a0mD2 (2) b=(1/(1-0.00446x))1/2 (3) K—孔板流量计系数,由实验室确定; b—瓦斯浓度校正系数,由有关手册查取; △h—孔板两侧的静压差,mmH2O,由现场实际测定获取;δP—压力校正系数; δT—温度校正系数; x--混合气体中瓦斯浓度,%; t--同点温度,℃; a0--标准孔板流量系数;(在相关手册中查出) m--孔板截面与管道截面比; D--管道直径,米; P T--孔板上风端测得的绝对压力,毫米水银柱; 抽采的纯瓦斯流量,采用下式计算: Qw=x·Q (6) 式中x—抽采瓦斯管路中的实际瓦斯浓度,%。 孔板流量计在安装时要注意孔板与瓦斯管的同心度,不能装偏。在钻场内安装流量计时,应保证孔板前后各1m段应平直,不要有阀门和变径管。在抽采巷瓦斯管末端安装流量计应保证孔板前后各5m段应平直,不要有阀门和变径管。

煤矿抽放瓦斯使用孔板流量计 计算抽放要领及参考系数 孔板流量计由抽采瓦斯管路中扩展的一个焦点开孔的节流板、孔板两侧的垂直管段和取压管等组成,如下图。煤矿。当气体流经管路内的孔板时,流束将造成局限缩短,孔板流量计原理。在全压不变的条件下,缩短使流速扩展、静抬高落,孔板流量计原理。在节流板前后便会出现静压差。学习孔板流量计计算公式。在同一管路截面条件下,计算公式。气体的流量越大,你知道流量计。出现的压差也越大,是以能够经历丈量压差来肯定气体流量。一体化孔板流量计。 瓦斯混合气体流量由下式计算:想知道流量计。 Q=Kb△h1/2δPδT (1) 该公式系数计算如下:孔板流量计算公式。 K=189.76a0mD2 (2) b=(1/(1-0.00446x))1/2 (3) δP=(PT/760)1/2 (4) δT=(293/(273+t))1/2 (5) 式中:孔板流量计计算公式煤矿抽放瓦斯利用孔板流量计计算抽放方法。 Q—瓦斯混合流量,米3/秒; K—孔板流量计系数,孔板流量计计算公式煤矿抽放瓦斯利用孔板流量计计算抽放方法。由实验室肯定见表-4现实孔板流量特性系数K b—瓦斯浓度校正系数,相比看孔板流量计生产厂家。由相关手册查表-3瓦斯浓度校正系数b值表 △h—孔板两侧的静压差,孔板流量计到普能。mmH2O,孔板流量计工作原理。由现场现实测定获取; δP—压力校正系数; δT—温度校正系数; x--混合气体中瓦斯浓度,一体化孔板流量计。%; t--同点温度,℃; a0--准绳孔板流量系数;(在相关手册中查出) m--孔板截面与管道截面比; D--管道直径,孔板流量计华清好。孔板流量计工作原理。米; PT--孔板优势端测得的完全压力,孔板流量计华清好。毫米水银柱; PT =测定本地气压(毫米水银柱)+该点管内正压(正)或负压(负)(毫米水柱)÷13.6 为了计算利便,孔板流量计安装要求。将δT、δP、b、K 值不同列入表1、表2、表3、表4中。 抽采的纯瓦斯流量,对比一下孔板流量计工作原理。采用下式计算: Qw=x·Q (6) 式中x—抽采瓦斯管路中的现实瓦斯浓度,相比看孔板流量计原理。%。事实上孔板流量计华清好。 孔板流量计在安设时要预防孔板与瓦斯管的同心度,瓦斯。不能装偏。在钻场内安设流量计时,孔板流量计工作原理。应保证孔板前后各1m段应平直,计算。不要有阀门和变径管。方法。在抽采巷瓦斯管末端安设流量计应保证孔板前后各5m段应平直,孔板流量计算公式。不要有阀门和变径管。利用。 各矿井应依据不同的管路条件和完全实在地点安设相应的流量计,想知道孔板流量计生产厂家。凿凿酌量计算公式,相比看孔板流量计安装要求。按原则按期维持校正,以便为瓦斯抽采提供信得过真实数据。

孔板流量计理论流量计算公式

如果你没有计算书,你只需要向制造厂提供下列数据:管道(法兰)尺寸,管道(法兰)材质,介质,流体的最大和常用流量,温度,压力和你现有的孔板外圆尺寸,生产厂会根据你 的数据重新计算,然后你根据计算书重新调整你的差压变送器和流量积算仪引用孔板流量计理论流量计算公式 2009-05-10 17:11:29| 分类:技术资料| 标签:|字号大中小订阅 引用 蝈蝈的孔板流量计理论流量计算公式 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 孔板流量计,可广泛应用于石油、化工、天然气、冶金、电力、制药等行业中,各种液体、气体、天燃气以及蒸汽的体积流量或质量流量的连续测量。但是

孔板流量计计算公式

孔板流量计计算公式-CAL-FENGHAI.-(YICAI)-Company One1

0引言 孔板是典型的差压式流量计,它结构简单,制造方便,在柳钢炼铁厂使用广泛,主要用于测量氧气、氮气、空气、蒸汽及煤气等流体流量。由于孔板的流入截面是突然变小的,而流出截面是突然扩张的,流体的流动速度( 情况) 在孔板前后发生了很大的变化,从而且在孔板前后形成了差压,通过测量差压可以反映流体流量大小[1]。但是流量的计算是一个复杂的过程。炼铁厂以往仅仅是通过开方器对孔板前后差压进行开方,然后乘以设计最大流量从而获得实际流量值,如公式(1)所示。 (1) 其中Q ——体积流量,Nm3/h; Q max——设计最大流量,Nm3/h; ΔP ——实际差压,Pa; ΔP设——设计最大差压,Pa。 其实这种方法并不能真实反映准确流量,特别是在压力、温度波动( 变化) 较大的时候,测量出来的流量和真实流量相差较大。所以,流量的计算还需要增加温度、压力补偿。在孔板通用公式中,增加压力、温度补偿的流量计算公式关键是对介质在工况下的密度进行处理,此外还需要孔板设计说明书上的流量系数、孔板开孔直径、膨胀系数、工况密度等参数,公式比较复杂;笔者经过大量的数据统计获得的简易公式则简单得多,只要有孔板的设计最大流量、设计差压和设计压力,即可准确获得实际流量值。

1孔板流量计计算公式 1.1通用计算公式(2) (2) 其中Q——体积流量,Nm3/h; K——系数; d——工况下节流件开孔直径,mm; ε——膨胀系数; α——流量系数; ΔP——实际差压,Pa; ρ——介质工况密度,kg/m3。 公式(2)中的介质工况密度ρ和温度、压力有关,根据克拉珀龙方程,有 (3) P ——压力,单位Pa; V ——体积,单位m3; T ——绝对温度,K; n ——物质的量; R ——气体常数。 相同( 一定) 质量的气体在温度和压力发生变化时,有:

气体限流孔板的计算

限流孔板的计算 一、D-1101手动放空限流孔板FO-1134(气体) 1、计算孔板锐孔直径 827.2d G =式中:G —— 通过喷嘴的流量,kg/h ;本算例G =104186 kg/h K ——气体绝热系数;本算例K = 1.606 P 1—— 喷嘴前压力,MPa (a );本算例P 1= 7.3MPa (a ) ρ1 —— 喷嘴前气体密度,kg/m 3;本算例ρ = 67.71 kg/m 3 d —— 锐孔直径,mm ; 则:锐孔直径 1 111)12(827.2ρP K K G d K K -++= 71 .673.7)1606.12(606.1827.2104186 1606.11606.1??+=-+ = 48.07mm 经圆整:取锐孔直径d = 48mm(60mm) 2、计算孔板厚度 当流体温度< 375℃时,?P D H ?=6 .31 式中:H —— 孔板厚度,mm ; p ?—— 孔板前后的压力降,kg/cm 2; 本算例p ? = (7.3-0.3)× 10.197 = 71.379kg/cm 2 (62.20171kg/cm 2) D —— 管子内径,mm ;本算例D = 89-5.5×2 = 243mm(78 mm) ? —— 挠度系数。本算例d/D = 45/78 = 0.576,查表8-15为0.5436。(0.3033) 则:孔板厚度 5436.0379.716 .31243?=H = 47.90mm (5.90447mm )

孔板厚度一般不应超过0.1D,但此处用作降压孔板,厚度超过此值是允许的。

二、阻泡剂添加管道AW-1114上的限流孔板FO-1115(液体) 1、锐孔孔径计算 p d q ?=ραε2252.1 式中:q —— 流体的重量流率,kg/h ;本算例q =1000 kg/h α —— 流量系数,查《工艺管道安装手册(老)》; ε —— 膨胀系数,对于液体及不压缩流体ε = 1; d —— 锐孔直径,mm ; ρ —— 操作条件下流体密度,kg/m 3;本算例ρ = 978 kg/m 3 p ?—— 孔板前后的压力降,kg/cm 2。 本算例p ? = 0.1×10.197 = 1.0197kg/cm 2 则:锐孔直径 ?P =ραε252.1q d 本算例管子内径D = 34-4.5×2 = 25〈 50mm ,则对于液体α = 0.61,ε = 1 0197.1978161.0252.11000 ????=d = 6.44mm 2、计算孔板厚度 当流体温度< 375℃时,?P D H ?=6 .31 式中:H —— 孔板厚度,mm ; p ?—— 孔板前后的压力降,kg/cm 2; 本算例p ? = 0.1×10.197 = 1.0197kg/cm 2 D —— 管子内径,mm ;本算例D = 34-4.5×2 = 25mm ? —— 挠度系数。本算例d/D = 6.44/25 = 0.2576,查表8-15为0.5052。 则:孔板厚度 5052.00197.16 .3125?=H = 0. 57mm

相关文档
最新文档