八年级三角形的边角关系练习题(含解析答案)

八年级三角形的边角关系练习题(含解析答案)
八年级三角形的边角关系练习题(含解析答案)

三角形的边角关系

练习题

回顾:

1、三角形的概念

定义:由_______直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的分类

按角分:

?????

锐角三角形三角形直角三角形钝角三角形

按边分:

????????

不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形

3、三角形的重要线段

在三角形中,最重要的三种线段是三角形的中线、三角形的角平分线、三角形的高。 说明:(1)三角形的三条中线的交点在三角形的____部。

(2)三角形的三条角平分线的交点在三角形的______部。

(3)_______三角形的三条高的交点在三角形的内部;______三角形的三条高的交点是直角顶点;_____三角形的三条高所在直线的交点在三角形的外部。

4、三角形三边的关系

定理:三角形任意两边的和____第三边;

推论:三角形任意两边的差____第三边;

说明:运用“三角形中任意两边的和大于第三边”可以判断三条线段能否组成三角形,也可以检验较小的两边的和是否大于第三边。

5、三角形各角的关系

定理:三角形的内角和是______度;

推论:(1)当有一个角是90°时,其余的两个角的和为90°;

(2)三角形的任意一个外角______和它不相邻的两个内角的和。

(3)三角形的任意一个外角______任意一个和它不相邻的内角。

说明:任一三角形中,最多有三个锐角,最少有两个锐角;最多有一个钝角;最多有一个直角。

三角形的计数

例1 如图,平面上有A、B、C、D、E五个点,其中B、C、D及A、E、C分别在同一条直线上,那么以这五个点中的三个点为顶点的三角形有()

A、4个

B、6个

C、8个

D、10个

解析:

连接AB、AD、BE、DE。

课件出示答案: C。

小结:分类讨论是三角形的计数中常见的思路方法。

举一反三:

1、已知△ABC是直角三角形,且∠BAC=30°,直线EF与△ABC的两边AC,AB分别交于点M,N,那么∠CME+∠BNF=()

A、150°

B、180°

C、135°

D、不能确定

解析:

因为∠A=30°,所以∠NMA+∠MNA=180°-30°=150°,

所以∠CME+∠BNF=∠NMA+∠MNA=150°.故选A.

三角形的三边关系

例2 边长为整数,周长为20的等腰三角形的个数是。

解析:

根据三角形的周长及三角形的三边关系建立不等式和方程,求出其中一边长的范围,再求其正整数解.

答案:

解:设三角形三边分别为a、b、c且a≥b≥c,a+b+c=20,则a≥7,又由b+c>a,得a<10,因此79

a

≤≤,可求出(a,b,c)为(9,9,2),(9,8,3),(9,7,4),(9,6,5),(8,8,4),(8,7,5),(8,6,6),(7,7,6),其中等腰三角形有(9,9,2),(8,8,4),(8,6,6),(7,7,6),所以填4.

小结:

利用已知的等量关系及三角形的三边关系,建立不等式与方程,进而组成不等式与方程的混合组,求其正整数解.

举一反三:

2、现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()。

A.1

B.2

C.3

D.4

三角形的内角和定理

例3 已知三角形三个内角的度数之比是x:y:z,且x+ y

A、锐角三角形

B、直角三角形

C、钝角三角形

D、等腰三角形

解析:

设三角形三个内角为x,y,z.根据三角形内角和定理,得x+y+z=180°,结合x+y<z,利用不等式的性质进行判断.

答案:

解:三角形的内角和为180°,设三角形三个内角为x,y,z,则x+y+z=180°,又x+y90°,故这个三角形是钝角三角形。故选C。

小结:

利用三角形内角和为180°建立等量关系是常用的解题方法。

例4 如图(1),有一个五角星形ABCDE图案,(1)你能说明∠A+∠B+∠C+∠D+∠E=180°吗?(2)当A点向下移动到BE上[如图(2)],上述结论是否仍然成立?(3)当A点移到BE的另一侧[如图(3)],上述结论是否仍然成立?请说明理由。

解析:

(1)连接CD,设BD与EC相交于F,分别在△ACD及△BEF、△CDF中运用三角形内角和定理.

课件出示答案:

(1)解:设BD与CE相交于F点

在△BEF中,

∠B+∠E+∠1=180°

又∠A+∠C=∠2

有∠1=∠2+∠D=∠A+∠C+∠D

所以∠A+∠B+∠C+∠D +∠E=180°

解法二:

解:(1)以题图(1)为例,说明如下:

如图,连接CD,设BD与EC相交于F,在△BEF中,

∠B+∠E+∠3=180°

在△CDF中,∠1+∠2+∠4=180°,

所以∠B+∠E+∠3=∠1+∠2+∠4

所以∠B+∠E=∠1+∠2

在△ACD中,∠A+∠ACD+∠ADF=180°,

即∠A+∠ACF+∠1+∠ADF+∠2=180°,

所以∠A+∠ACF+∠ADF+∠B+∠E=180°

下一步(2)(3):

根据(1)的解答方法独立完成(2)和(3)的探索。

小结:

在解决新问题时,往往将其转化为比较熟悉的问题,再加以解决.(2)本例中出现的“对顶三角形”(如图),有如下结论:∠1+∠2=∠3+∠4.

举一反三

4 如图,∠BDC=98°,∠C=38°,∠B=23°,∠A的度数是()

A、61°

B、60°

C、37°

D、39°

解析:连接AD并延长,可证明∠BDC=∠A+∠B+∠C,所以∠A=98°-38°-23°=98°-61°=37°.故选C.

三角形的外角和

例5 如图3-7,△ABC中,∠A、∠B、∠C的外角分别记为∠α,∠β,∠γ,若∠α:∠β:∠γ=3:4:5,则∠A:∠B:∠C =()

A、3:2:1

B、1:2:3

C、3:4:5

D、5:4:3

解析:

设∠α=3x,∠β=4x,∠γ=5x,根据三角形的外角和等于360°列方程,再求∠A、∠B、∠C.

答案:

解:设∠α=3x,∠β=4x,∠γ=5x,则

3x+4x+5x=360°

解得 x=30°

即:∠α=90°,∠β=120°,∠γ=150°,

所以∠A=180°-∠α=180°-90°=90°,

∠B=180°-∠β=180°-120°=60°,

∠C=180°-∠γ=180°-150°=30°

所以∠A:∠B:∠C=90°:60°:30°=3:2:1

小结:

(1)三角形的外角和等于360°;

(2)方程思想是解决几何计算的常用方法.

举一反三:

5、将一副直角三角板如图3-11放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()

学生分小组来解决这道题目,老师给予适当的指导,最后来讲解一下。

课件出示解析:

∠1=45°+30°=75°.

举一反三:

6、如图3-12所示,求∠A+∠B+∠C+∠D+∠E+∠F的度数。

解析:

设BE、CF、AD相互交于G、H、K.

因为在△AFK中,∠A+∠F+∠4=180°,

在△BCG中,∠B+∠C+∠5=180°,

在△EDH中,∠D+∠E+∠6=180°,

所以∠A+∠F+∠4+∠B+∠C+∠5+∠D+∠E+∠6=180°×3=540°.

又因为∠1+∠3+∠2=180°,∠1=∠4,∠2=∠5,∠3=∠6,

所以∠A+∠F+∠B+∠C+∠D+∠E=360°.

三角形与平行线的综合运用

例6 如图,直线A C∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四部分,规定:线上各点不属于任何部分。当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角。(提示:有公共端点的两条重合的射线所组成的角是0°角。)

(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立)?

(3)当动点P在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P 的具体位置和相应的结论。选择其中一种结论加以证明。

解析:

(1)延长BP交AC于点E,运用平行线的性质和三角形内角和定理及推论;

答案:

(1)解法一:如图(1),延长BP交直线AC于点E。

∵A C∥BD,∴∠PEA=∠PBD

∵∠APB=∠PAE+∠PEA

∴∠APB=∠PAC+∠PBD

解法二:如图(2),过点P作FP∥AC,

∴∠PAC=∠APF,

∵A C∥BD ,∴FP∥BD

∴∠FPB=∠PBD

∴∠APB=∠APF+∠FPB=∠PAC+∠PBD

(2)

不成立

(3)

运用平行线的性质或三角形内角和定理的推论解决.

(a)当动点P在射线BA的右侧时,结论是∠PBD=∠PAC+∠APB

如图(3),连接PA、PB,设PB交AC于M,

∵A C∥BD,∴∠PMC=∠PBD。

又∵∠PMC=∠PAM+∠APM,

∴∠PBD=∠PAC+∠APB

(b)当动点P在射线BA上时,结论是∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD(任写一个即可)。

证明:如图(4)

∵点P在射线BA上,∴∠APB=0°

∵A C∥BD ,∴∠PBD=∠PAC,∴∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB或∠APB=0°,∠PAC=∠PBD。

(c)当动点P在射线BA的左侧时,结论是∠PAC=∠APB+∠PBD。

证明:

如图(5),连接PA、PB,设PB交AC于F,

∵A C∥BD ,∴∠PFC=∠PBD,

∵∠PAC=∠APF+∠PFA,

∴∠PAC=∠APB+∠PBD。

小结:

解此类探索性命题的关键是由图形提供的信息,探索、猜想、归纳出点在不同位置上有关角之间的变化规律.

解三角形应用举例练习高考试题练习

解三角形应用举例练习 班级 姓名 学号 得分 一、选择题 1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为…………………( ) A.α>β B.α=β C.α+β=90° D.α+β=180° 2.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为…..( ) A. 3 400 B. 33400米 C. 2003米 D. 200米 3.在?ABC 中, 已知sinA = 2 sinBcosC, 则?ABC 一定是…………………………………….( ) A. 直角三角形; B. 等腰三角形; C.等边三角形; D.等腰直角三角形. 4.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面 成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为……………….( ) A C D B 阳光地面 A.75° B.60° C.50° D.45° 5.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内的时间为…………………………………..( ) A.0.5 h B.1 h C.1.5 h D.2 h 6.在△ABC 中,已知b = 6,c = 10,B = 30°,则解此三角形的结果是 …………………( ) A 、无解 B 、一解 C 、两解 D 、解的个数不能确定 二、填空题 7. 甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是 8.我舰在敌岛A 南50°西相距12nmile 的B 处,发现敌舰正由岛沿北10°西的方向以10nmile/h 的速度航行,我舰要用2小时追上敌舰,则需要速度的大小为 9.有一两岸平行的河流,水速为1,小船的速度为2,为使所走路程最短,小船应朝_______方 向行驶. C D 12 A B D 6045 0 m o o 10..在一座20 m 高的观测台顶测得地面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的 高为_______.

2020年高考数学三角函数与解三角形大题精做

2020年高考数学三角函数与解三角形大题精做 例题一:在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(),2a c b =-m ,()cos ,cos C A =n ,且⊥m n . (1)求角A 的大小; (2)若5b c +=,ABC △a . 例题二:如图,在ABC △中,π 4A ∠=,4AB =,BC =点D 在AC 边上,且1cos 3 ADB ∠=-. (1)求BD 的长; (2)求BCD △的面积. 例题三: ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos 0a c B b A ++=.

(1)求B ; (2)若3b =,ABC △的周长为3+ABC △的面积. 例题四:已知函数()22 cos cos sin f x x x x x =+-. (1)求函数()y f x =的最小正周期以及单调递增区间; (2)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c ,若()1f C =,2c =,()sin sin 2sin 2C B A A +-=,求ABC △的面积.

例题一:【答案】(1)π3 A =;(2 )a = 【解析】(1)由⊥m n ,可得0?=m n ,即2cos cos cos b A a C c A =+, 即2sin cos sin cos sin cos B A A C C A =+,即()2sin cos sin B A A C =+, ∵()()sin sin πsin A C B B +=-=,∴2sin cos sin B A B =,即()sin 2cos 10B A -=, ∵0πB <<,∴sin 0B ≠,∴1cos 2 A = , ∵0πA <<,∴π3A =. (2 )由ABC S =△ 1sin 2 ABC S bc A ==△,∴4bc =, 又5b c +=,由余弦定理得()22222cos 313a b c bc A b c bc =+-=+-=, ∴a = 例题二:【答案】(1)3;(2 ) 【解析】(1)在ABD △中,∵1cos 3 ADB ∠=-, ∴sin 3ADB ∠=, 由正弦定理sin sin BD AB BAD ADB =∠∠, ∴4sin 3sin AB BAD BD ADB ∠===∠. (2)∵πADB CDB ∠+∠=, ∴()1cos cos πcos 3 CDB ADB ADB ∠=-∠=-∠=. ∴( )sin sin πsin CDB ADB ADB ∠=-∠=∠= ,sin CDB ∠= 在BCD △中,由余弦定理2222cos BC BD CD BD CD CDB =+-??∠, 得21179233 CD CD =+-??,解得4CD =或2CD =-(舍). ∴BCD △ 的面积11sin 3422S BD CD CDB =??∠=??=. 例题三:【答案】(1)2π3 B =;(2 )ABC S =△ 【解析】(1)∵()2cos cos 0a c B b A ++=, ∴()sin 2sin cos sin cos 0A C B B A ++=,()sin cos sin cos 2sin cos 0A B B A C B ++=,

第13章三角形中的边角关系、命题与证明单元测试题

第13章测试题 姓名 一、选择题 1.下列语句中,属于定义的是( ). A .直线A B 和CD 垂直吗 B .过线段AB 的中点 C 画AB 的垂线 C .数据分组后落在各小组内的数据个数叫做频数 D .同旁内角互补,两直线平行 2.命题“垂直于同一条直线的两条直线互相平行”的题设是( ). A .垂直 B .两条直线 C .同一条直线 D .两条直线垂直于同一条直线 3.三角形一边上的中线把原三角形分成两个( ) A .形状相同的三角形 B .面积相等的三角形 C .直角三角形 D .周长相等的三角形 4.已知△ABC 的三个内角度数比为2:3:4,则这个三角形是( ). A .锐角三角形 B .直角三角形 C.钝角三角形 D .等腰三角形 5.在三角形的内角中,至少有( ) A .一个钝角 B .一个直角 C .一个锐角 D .两个锐角 6.如图,ABC △中,50A =∠,点D E ,分别在AB AC ,上,则12+∠∠的大小为 ( ) A . B .230 C .180 D .310 7.如图,在锐角△ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,若∠A=50°,则∠BPC 的度数是( ).A .150° B .130° C .120° D .100° 8.如图,AD 是∠CAE 的平分线,∠B=300, ∠DAE=600,那么∠ACD 等于( ) A .900 B .600 C .800 D .1000 9.已知等腰三角形的一边长为5,另一边长为8,则它的周长为( ) A .18 B .21 C .13 D .18或21 10.如图所示,BE 、CF 是△ABC 的角平分线,∠A=650, 那么∠BDC 等于( ) A .122.50 B .187.50 C .178.50 D .1150 二、填空题 1.写出图中以AB 为边的三角形_____________________________________________. 2.已知,如图,∠ACB=90°,CD ⊥AB ,垂足为D (1)图中有_________个直角三角形,它们是_____________________________; (2)∠A=________,理由是___________________________________________. 3.如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=________. 4.如图,已知DB 平分∠ADE ,DE ∥AB ,∠CDE=82°,则∠EDB=_____,∠A=______. 5.三角形一边上的高与另两边的夹角分别为620和280,则这边对应的角的度数为= . 三、解答题 1.如图,在△ABC 中,D 是BC 边上的一点,∠1=∠2,∠3=∠4,∠BAC=630,求∠DAC 的度数. 2.已知:如图,在△ABC 中,CH 是外角∠ACD 的角平分线,BH 是∠ABC 的平分线, ∠A=58°. 求∠H 的度数. B A B C D H 第7 第4题 第3题 第8题 A E B C D 第10 C 3 2 1 4 A B D

必修5解三角形数列综合测试题

必修5解三角形数列综合测试题 第Ⅰ卷(选择题共60分) 一、选择题:(每小题5分,共60分) 1.已知锐角ABC ?的面积为4,3BC CA ==,则角C 的大小为( ) A . 30 B . 45 C . 60 D . 75 2. 在等差数列{}n a 中,若4612a a +=,n S 是数列{}n a 的前n 项和,则9S =( ) A .48 B .54 C .60 D .108 3. 已知等比数列{}n a 的公比为正数,且2 3952a a a ?=,21a =,则1a =( ) A . 1 2 B .2 C D .2 4. 已知{}n a 是首项为1的等比数列,n s 是{}n a 的前n 项和,且369s s =,则数列1n a ?? ???? 的前5项和为( ) A . 158或5 B . 5 或1631 C .3116 D .15 8 5. 已知数列{}n a 的前n 项和2 9n S n n =-,第k 项满足58k a <<,则k =( ) A .9 B .8 C .7 D .6 6. 在各项均为正数的等比数列{n a }中,123a a a =5,789a a a =10,则456a a a =( ) A . B .7 C . 6 D . 7. 在ABC ?中,60A =,且最大边长和最小边长是方程2 7110x x -+=的两个根,则第三边的长为( ) A .2 B .3 C .4 D .5 8. 在数列{}n a 中,12a =, 11ln(1)n n a a n +=++,则n a = ( )

A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++ 9. 在ABC ?中,A 、B 的对边分别是a 、b ,且 30=A ,a =4b =,那么满 足条件的ABC ?( ) A .有一个解 B .有两个解 C .无解 D .不能确定 10. 已知等差数列{}n a 的公差0d <,若462824,10a a a a =+=,则该数列的前n 项和n S 的最大值为( ) A .50 B .45 C .40 D .35 11. 各项均为正数的等比数列{}n a 的前n 项和为n S ,若10302,14S S ==,则40S =( ) A .80 B .30 C .26 D .16 12. 在?ABC 中,222sin sin sin sin sin A B C B C ≤+-.则A 的取值范围是( ) A .(0, 6 π ] B .[ 6π,π) C .(0,3π] D .[ 3 π ,π) 第Ⅱ卷(非选择题共90分) 二、填空题:(每小题5分,共20分) 13. 已知c b a ,,分别是ABC ?的三个内角C B A ,,所对的边,若 B C A b a 2,3,1=+==则=C sin . 14. 设n S 是等差数列{}n a 的前n 项和,若 5359a a =,则95 S S = . 15. 已知ABC ? 的一个内角为 120,并且三边长构成公差为4的等差数列,则ABC ?的面积为_______________. 16.下表给出一个“直角三角形数阵” 41 4 1,21

高中数学-解三角形应用举例练习及答案

高中数学-解三角形应用举例练习 一、选择题 1. △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为………………………………………………( ) A.直角三角形 B.等腰直角三角形 C.等边三角形 D.等腰三角形 2.海上有A 、B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是……………………………………………………….( ) A.103海里 B.3610海里 C. 52海里 D.56海里 3. 有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要伸长( ) A. 1公里 B. sin10°公里 C. cos10°公里 D. cos20°公里 4. .已知平行四边形ABCD 满足条件0)()(=-?+→ -→-→-→-AD AB AD AB ,则该四边形是………( ) A.矩形 B.菱形 C.正方形 D.任意平行四边形 5. 一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°, 另一灯塔在船的南偏西75°,则这只船的速度是每小时………………………………………………………………………………………… . ( ) A.5海里 B.53海里 C.10海里 D.103海里 6.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离1d 与第二辆车与第三辆车的距离d 2之间的关系为 ………………………………………………………………………..( ) A. 21d d > B. 21d d = C. 21d d < D. 不能确定大小 二、 填空题

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

三角形中的边角关系命题与证明教案

第13章三角形中的边角关系、命题与证 明 13.1三角形中的边角关系 第1课时三角形中的边角关系(一) 教学目标 【知识与技能】 1.认识三角形,理解三角形的边角关系. 2.知道三角形的高、中线、角平分线等概念,并能作出三角形的一边上的高. 3.理解等腰三角形及其相关概念. 【过程与方法】 1.经历三角形边长的数量关系的探索过程,理解三角形的三边关系. 2.掌握判断三条线段能否构成一个三角形的方法,并运用此方法解决有关问题. 【情感、态度与价值观】 1.带领学生探究三角形的边角关系问题,引起学生的好奇心,激发学生的求知欲. 2.帮助学生树立几何知识源于生活并服务于生活的意识. 重点难点 【重点】 理解并掌握三角形的三边关系. 【难点】 已知三条线段能构成三角形,求表示线段长度的代数式中字母的取值范围. 教学过程 一、创设情境,导入新知 教师多媒体出示: 教师把事先收集的与三角形有关的生活图片运用多媒体播放,让学生对三角形有一个感性认识,如图所示. 教师活动:通过播放图片,引导学生认识三角形,并提出:图(b)中能找出几个三角形,这些三角形具有怎样的特性? 学生活动:回顾小学学过的三角形,与同桌交流,找出图(b)中的三角形. 教师归纳:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形. 教师多媒体出示:

师:你能指出这个三角形的顶点有几个吗?分别是什么? 生:这个三角形的顶点有三个,分别是A、B、C. 师:这个三角形的边呢? 生:边有三条,分别是AB、BC和CA. 师:对.我们把这个三角形记作“△ABC”,读作“三角形ABC”.三角形的三边有时用它所对角的相应小写字母表示.如边AB对着∠C,记作c;边BC对着∠A,记作a;边CA对着∠B,记作b.也就是说,一边可用两个大写字母或一个小写字母表示,角可用“∠”加上一个大写字母表示. 师:按边分类时,你知道的都有哪些三角形? 生:等边三角形. 师:等边三角形是三条边都相等的三角形.如果不是三条边都相等,比如两条边相等,这类三角形叫什么三角形呢? 生:等腰三角形. 师:对,等边三角形是等腰三角形的特例.如果三条边都不相等呢? 学生思考. 师:我们把这类三角形叫做不等边三角形. 教师多媒体出示: 教师板书: 三角形(按边分) 师:在等腰三角形中,你能区分哪条边是腰,哪条边是底吗? 生:相等的两边叫做腰,第三边叫做底边. 师:对.我们现在再来认识一下顶角和底角.两腰的夹角叫做顶角,腰与底边的夹角叫做底角. 二、共同探究,获取新知 师:请大家任意画出一个三角形,用刻度尺测量一下,并说说任意两边之和与第三边的关系. 学生操作. 生:任意两边之和大于第三边. 师:对,你有没有其他的方法来证明三角形的任意两边之各大于第三边呢? 生:由所有两点之间的连线中线段最短得到. 教师板书: 三角形中任何两边的和大于第三边. 师:对.根据不等式的性质,我们能得到三角形中任意两边的差小于第三边.(教师板书)如果三条线段要构成一个三角形,它们就要满足这两个条件,但是在实际计算中,需要验证六个不等式都成立吗? 学生思考,讨论. 师:不等式a+b>c,你把a移到不等式的右边,这个不等式如何表示? 生:b>c-a. 师:对,也就是c-a

解三角形与数列Word版

解三角形及其数列专练 1.(2016·吉林)△ABC的内角A,B,C所对的边分别为a,b,c,已知向量m=(cosA,3sinA),n=(2cosA,-2cosA),m·n=-1. (1)若a=23,c=2,求△ABC的面积; (2)求 b-2c acos( π 3 +C) 的值. 解析(1)因为m·n=2cos2A-3sin2A=cos2A-3sin2A+1=2cos(2A+ π 3 )+1=-1,所以cos(2A+ π 3 )=-1.又 π 3 <2A+ π 3 <2π+ π 3 ,所以2A+ π 3 =π,A= π 3 .由12=4+b2-2×2×b×cos π 3 ,得b=4(舍负值).所以△ABC的面积为 1 2 ×2×4×sin π 3 =2 3. (2) b-2c acos( π 3 +C) = sinB-2sinC sinAcos( π 3 +C) = sin(A+C)-2sinC 3 2 cos( π 3 +C) = 3 2 cosC- 3 2 sinC 3 2 cos( π 3 +C) = 3cos( π 3 +C) 3 2 cos( π 3 +C) =2. 2.(2016·福建)在△ABC中,B= π 3 ,点D在边AB上,BD=1,且DA=DC. (1)若△BCD的面积为3,求CD; (2)若AC=3,求∠DCA. 解析(1)因为S △BCD =3,即 1 2 BC·BD· sinB=3,又B= π 3 ,BD=1,所以BC=4. 在△BDC中,由余弦定理得,CD2=BC2+BD2-2BC·BD·cosB, 即CD2=16+1-2×4×1× 1 2 =13,解得CD=13. (2)在△ACD中,DA=DC,可设∠A=∠DCA=θ,则∠ADC=π-2θ,又AC=3,由正弦定

高中数学解三角形的实际应用举例综合测试题(含答案)

高中数学解三角形的实际应用举例综合测 试题(含答案) 解三角形的实际应用举例同步练习 1.在△ABC中,下列各式正确的是() A. ab =sinBsinA B.asinC=csinB C.asin(A+B)=csinA D.c2=a2+b2-2abcos(A+B) 2.已知三角形的三边长分别为a、b、a2+ab+b2 ,则这个三角形的最大角是() A.135 B.120 C.60 D.90 3.海上有A、B两个小岛相距10 nmile,从A岛望B岛和C 岛成60的视角,从B岛望A岛和C岛成75角的视角,则B、C间的距离是() A.52 nmile B.103 nmile C. 1036 nmile D.56 nmile 4.如下图,为了测量隧道AB的长度,给定下列四组数据,测量应当用数据 A.、a、b B.、、a C.a、b、 D.、、 5.某人以时速a km向东行走,此时正刮着时速a km的南风,那么此人感到的风向为,风速为. 6.在△ABC中,tanB=1,tanC=2,b=100,则c=. 7.某船开始看见灯塔在南偏东30方向,后来船沿南偏东60 的方向航行30 nmile后看见灯塔在正西方向,则这时船与灯

塔的距离是. 8.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为300,则甲、乙两楼的高分别是. 9.在塔底的水平面上某点测得塔顶的仰角为,由此点向塔沿直线行走30米,测得塔顶的仰角为2,再向塔前进103 米,又测得塔顶的仰角为4,则塔高是米. 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标记物C,测得CAB=45,CBA=75,AB=120 m,求河宽.(精确到0.01 m) 12.甲舰在A处,乙舰在A的南偏东45方向,距A有9 nmile,并以20 nmile/h的速度沿南偏西15方向行驶,若甲舰以28 nmile/h的速度行驶,应沿什么方向,用多少时间,能尽快追上乙舰? 答案 1.C 2.B 3.D 4.C 5.东南2 a 6.40 7.103 8.203 ,203 3 9.15 10.在△ABC中,求证:cos2Aa2 -cos2Bb2 =1a2 -1b2 . 提示:左边=1-2sin2Aa2 -1-2sin2Bb2 =(1a2 -1b2 )-2(sin2Aa2 -sin2Bb2 )=右边. 11.欲测河的宽度,在一岸边选定A、B两点,望对岸的标

高考文科数学真题大全解三角形高考题学生版

高考文科数学真题大全解 三角形高考题学生版 This manuscript was revised by the office on December 10, 2020.

8.(2012上海)在ABC ?中,若C B A 222sin sin sin <+,则ABC ?的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 9.(2013天津理)在△ABC 中,∠ABC =π 4 ,AB =2,BC =3,则sin ∠BAC 等于( ) 10.(2013新标2文) △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B = π6,c =π 4 ,则△ABC 的面积为( ) A .23+2 +1 C .23-2 -1 11、(2013新标1文) 已知锐角ABC ?的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b =( ) (A )10 (B )9 (C )8 (D )5 12.(2013辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =1 2b ,且a >b ,则∠B =( ) 13.(2013山东文)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若B =2A ,a =1,b =3,则c =( ) A .2 3 B .2 D .1 14.(2013陕西)设△ABC 的内角A, B, C 所对的边分别为a, b, c, 若cos cos sin b C c B a A +=, 则 △ABC 的形状为 (A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定 15、(2016年新课标Ⅰ卷文)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =, 2 cos 3 A = ,则b= (A )2 (B )3 (C )2 (D )3 16、(2016年新课标Ⅲ卷文)在ABC △中,π4B ,BC 边上的高等于1 3 BC ,则sin A (A )3 10 (B )1010 (C )55 (D )31010 17、(2016年高考山东卷文)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ,则A = (A ) 3π4(B )π3(C )π4(D )π6

解三角形、数列2018年全国数学高考分类真题(含答案)

解三角形、数列2018年全国高考分类真题(含答案) 一.选择题(共4小题) 1.△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=() A.B.C.D. 2.在△ABC中,cos=,BC=1,AC=5,则AB=() A.4 B. C. D.2 3.已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则() A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4 4.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=() A.﹣12 B.﹣10 C.10 D.12 二.填空题(共4小题) 5.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为. 6.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=. 7.设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为. 8.记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=. 三.解答题(共9小题) 9.在△ABC中,a=7,b=8,cosB=﹣. (Ⅰ)求∠A; (Ⅱ)求AC边上的高. 10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过

点P(﹣,﹣). (Ⅰ)求sin(α+π)的值; (Ⅱ)若角β满足sin(α+β)=,求cosβ的值. 11.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B ﹣). (Ⅰ)求角B的大小; (Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值. 12.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5. (1)求cos∠ADB; (2)若DC=2,求BC. 13.设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列. (1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围; (2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).14.已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n. (Ⅰ)求q的值; (Ⅱ)求数列{b n}的通项公式. 15.设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (Ⅰ)求{a n}和{b n}的通项公式; (Ⅱ)设数列{S n}的前n项和为T n(n∈N*), (i)求T n; (ii)证明=﹣2(n∈N*). 16.等比数列{a n}中,a1=1,a5=4a3.

解三角形应用举例最新衡水中学自用精品教学设计

解三角形应用举例 主标题:解三角形应用举例 副标题:为学生详细的分析解三角形应用举例的高考考点、命题方向以及规律总结。 关键词:距离测量,高度测量,仰角,俯角,方位角,方向角 难度:3 重要程度:5 考点剖析: 能够运用正弦定理、余弦定理等知识解决一些与测量和几何计算有关的实际问题. 命题方向: 1.测量距离问题是高考的常考内容,既有选择、填空题,也有解答题,难度适中,属中档题. 2.高考对此类问题的考查常有以下两个命题角度: (1)测量问题; (2)行程问题. 规律总结: 1个步骤——解三角形应用题的一般步骤 2种情形——解三角形应用题的两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 2个注意点——解三角形应用题应注意的问题 (1)画出示意图后要注意寻找一些特殊三角形,如等边三角形、直角三角形、等腰三角形等,这样可以优化解题过程. (2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.

知识梳理 1.距离的测量 背景可测元素图形目标及解法 两点均可到达a,b,α 求AB:AB= a2+b2-2ab cos α 只有一点可到达b,α,β 求AB:(1)α+β+B=π; (2) AB sin β= b sin B 两点都不可到达a,α,β, γ,θ 求AB:(1)△ACD中,用 正弦定理求AC; (2)△BCD中,用正弦定理 求BC; (3)△ABC中,用余弦定理 求AB 2.高度的测量 背景可测元素图形目标及解法 底部可 到达 a,α求AB:AB=a tan_α 底部不可到达a,α,β 求AB:(1)在△ACD中用正弦 定理求AD;(2)AB=AD sin_β 3.实际问题中常见的角 (1)仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角(如图1).

高考解三角形大题(30道)

专题精选习题----解三角形 1.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,已知 b a c B C A -= -2cos cos 2cos . (1)求A C sin sin 的值; (2)若2,4 1 cos ==b B ,求ABC ?的面积S . 2.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知2 sin 1cos sin C C C -=+. (1)求C sin 的值; (2)若8)(42 2 -+=+b a b a ,求边c 的值. 3.在ABC ?中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+ π ,求A 的值; (2)若c b A 3,3 1 cos ==,求C sin 的值. 4.ABC ?中,D 为边BC 上的一点,5 3 cos ,135sin ,33=∠==ADC B BD ,求AD .

5.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知4 1cos ,2,1===C b a . (1)求ABC ?的周长; (2)求)cos(C A -的值. 6.在ABC ?中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且24 1b ac = . (1)当1 ,4 5 ==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围. 7.在ABC ?中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值; (2)求C B sin sin +的最大值. 8.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知4 12cos -=C . (1)求C sin 的值; (2)当C A a sin sin 2,2==时,求c b ,的长.

三角形中的边角关系、命题与证明期末复习(含答案)

期末复习三角形中的边角关系、命题与证明 类型一 三角形的有关概念 1.已知AD ,AE 分别是△ABC 的中线和角平分线,则下列结论中错误的是 ( )A .BD=BC B .BC=2CD 12 C .∠BAE=∠BAC D .∠BAC=2∠CAD 122.如图QM3-1所示: 图QM3-1 (1)在△ABC 中,BC 边上的高是 ; (2)在△AEC 中,AE 边上的高是 . 3.如图QM3-2,回答下列问题: (1)图中有几个三角形?试写出这些三角形; (2)∠1是哪个三角形的内角? (3)以CE 为一条边的三角形有几个?是哪几个? 图QM3-2 类型二 三角形中三边关系的应用 4.小明和小丽是同班同学,小明的家距学校2千米远,小丽的家距学校5千米远,设小明家距小丽家x 千米远,则x 的值应满足 ( )A .x=3B .x=3或x=7C .3

8.[2017·大庆]在△ABC中,∠A,∠B,∠C的度数之比为2?3?4,则∠B的度数为 ( ) A.120° B.80° C.60° D.40° 9.将一副三角尺如图QM3-3放置,已知AE∥BC,则∠AFD的度数是( ) 图QM3-3 A.45° B.50° C.60° D.75° 10.如图QM3-4,在△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2, 求∠BPC的度数. 图QM3-4 类型四 命题与证明 11.请写出一个原命题是真命题,逆命题是假命题的命 题: . 12.请举反例说明“对于任意实数x,x2+5x+4的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可). 13.对于同一平面内的三条直线a,b,c,给出下列5个论断:①a∥b;②b∥c;③a⊥ b;④a∥c;⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确 的命题.

解三角形应用举例

第7节 解三角形应用举例 最新考纲 能够运用正弦定理、余弦定理等知识方法解决一些与测量、几何计算有关的实际问题. 知 识 梳 理 1.仰角和俯角 在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1). 2.方向角 相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角 指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 4.坡度:坡面与水平面所成的二面角的正切值. [常用结论与微点提醒] 1.不要搞错各种角的含义,不要把这些角和三角形内角之间的关系弄混. 2.在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易出现错误. 诊 断 自 测 1.思考辨析(在括号内打“√”或“×”) (1)东北方向就是北偏东45°的方向.( ) (2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为? ?????0,π2.( ) (4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )

解析 (2)α=β;(3)俯角是视线与水平线所构成的角. 答案 (1)√ (2)× (3)× (4)√ 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ) A.北偏东15° B.北偏西15° C.北偏东10° D.北偏西10° 解析 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°. 答案 B 3.(教材习题改编)如图所示,设A ,B 两点在河的两岸,一测量 者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m , ∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的 距离为( ) A.50 2 m B.50 3 m C.25 2 m D.2522 m 解析 由正弦定理得AB sin ∠ACB =AC sin B , 又∵B =30°,∴AB =AC sin ∠ACB sin B =50×2212 =502(m). 答案 A 4.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile/h ,15 n mile/h ,则下午2时两船之间的距离是______n mile. 解析 设两船之间的距离为d , 则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.

三角函数与解三角形大题部分-高考数学解题方法训练

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2)

∴当时,,∴. 当时,,∴. 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知中,角所对的边分别是,且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】

专题讲练:三角形边角关系及命题与证明重难点问题

专题讲练:二角形边角关系及命题与证 明重难点问题 ※题型讲练 【例1】设厶ABC 的三边a , b ,c 的长度均为自然数, a + b + C =13 ,求以a , b , c 为三边的三角形共有多少 个 A B 【例5】已在 △ ABC 中,AB=AC, AC 上中线BD 把△ ABC 周长分别24和18两部分,求△ ABC 的三边长. 【例2】如图,已知P 是厶ABC 内一点,连结AP, PB,PC, 在某个区域时,连接 PA PB,得到/ PBD / PAC 两个角. 【例 3】在厶ABC 中,/ A 中,使得30。角(即/ P )的两边分别经过点 A 之间的等量关系. IS C2) £ (3}

相关文档
最新文档