2.1随机变量及其概率分布(1)

2.1随机变量及其概率分布(1)
2.1随机变量及其概率分布(1)

第二章概率 2.1随机变量及其概率分布(1)

编写人:编号:001

学习目标

1.在对具体问题的分析中,了解随机变量、离散型随机变量的意义,理解取有限值的离散型随机变量及其概率分布的概念;

2.会求出某些简单的离散型随机变量的概率分布,认识概率分布对于刻画随机现象的重要性。

学习过程:

一、预习:

1、问题:某商场要根据天气预报来决定今年国庆节是在商场内还是在商场外开展促销活动。统计资料表明,每年国庆节商场内的促销活动可获得经济效益2万元,商场外的促销活动如果不遇到有雨天气可获得经济效益10万元,如果促销活动中遇到有雨天气则带来经济损失4万元。9月30日气象台预报国庆节当地有雨的概率是40%,商场应该选择哪种促销方式?

这是日常生活中的常见随机现象,如何解决这个问题?这就需要学习新的数学知识来解决实际问题。于是今天我们来学习一章新的内容:概率,它是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和统计的一些知识。学习这些知识后,我们将能够解决类似上面问题的一些实际问题。

在一块地里种下10棵树苗,成活的树苗棵数X是0,1,2,…,10中的某个数;

抛掷一颗骰子,向上的点数Y是1,2,3,4,5,6中的某一个数;

新生婴儿的性别,抽查的结果可能是男,也可能是女,如果将男婴用0表示,女婴用1表示,那么抽查的结果Z是0和1中的某个数;………

上述现象有哪些共同的特点?

2、随机变量的定义:

问题1、某市射击运动队张昊同学在射击训练的某一次射击中,可能出现的命中环数的情况有哪些?

问题2、一个袋中装有5个白球和5个黑球,从中任取3个,那么其中含有白球的可能结果是哪几种?

总结、从上面的两个问题我们可以看出,在这些随机试验中,可能出现的结果都可以分别用一个数即“环数”“白球数”来表示,这个数在随机试验前是否是预先确定的?

在不同的随机试验中,结果是否不变?

就是说,这种随机试验的结果可以用一个变量来表示,这样的变量就叫做随机变量。

定义:叫做随机变量。随机变量常用希腊字母ξ,η等表示。

问题3、随机变量ξ的特点是什么?

思考:问题1,2中的随机变量是什么?取值情况如何?

二、课堂训练:

例1、(1)掷一枚质地均匀的硬币一次,用X表示掷得正面的次数,则随机变量X的可能取值有哪些?

(2)一实验箱中装有标号为1、2、3、3、4的五只白鼠,从中任取一只,记取到的白鼠的标号为Y,则随机变量Y的可能取值有哪些?

例2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的白球个数”,即1,

0,X ?=??当取到白球时,当取到红球时, 求随机变量X 的概率分布.

例3、同时掷两颗质地均匀的骰子,观察朝上的一面出现的点数,求两颗骰子中出现的最大点数X 的概率分布,并求X 大于2小于5的概率P (2

1、写出下列随机变量可能取的值,并说明这些值表示的随机试验的结果。

(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5。现从该袋内随机取出3只球,被取出的球的最大号码数ξ;

(2)某单位的某部电话在单位时间内收到的呼叫次数η。

2、抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?

三、巩固练习:

1、写出下列各随机变量可能的值,并说明随机变量所取的值表示的随机试验的结果。

(1)从一个装有编号为1号到10号的10个球的盒子中任取1球,被取出的球的编号为ξ;

(2)一个罐中装有10个红球,5个绿球,从中任取4个球,其中所含红球的个数为ξ;

(3)抛掷两个骰子,所得点数之和为ξ,所得点数之和是偶数为η;

(4)张华在射击训练中,接连不断地射击,首次命中目标需要的射击次数η;

(5)某电动工具制造公司加工某种轴承,其轴承最外边的外径与规定的外径尺寸之差为η;若误差规定不大于5,则η为何值?

2、若随机变量X 的分布列为:试求出常数c .

3、设随机变量

ξ的分布列为1()(1,2,3,4)3k P k a k ξ??=== ???

,求实数a 的值。 4、某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人,现抽1人,其血型为随机变量X ,求X 的分布列。

5、某人去商厦为所在公司购买玻璃水杯若干只,公司要求至少要买50只,但不得超过80只。商厦有优惠规定:一次购买这种水杯少于或等于50只的不优惠,多于50只的,超出的部分按原价格的7折优惠。已知水杯原来的价格是每只6元,这个人一次购买水杯的只数ξ是一个随机变量,那么他所付的钱款总额是否也为一个随机变量?如果是,那么这两个随机变量间有什么关系?

6、某城市出租汽车的起步价为10元,行驶路程不超出3km 时,租车费为10元,若行驶路程超出3km ,则按每超出1km 收费为1.8元计费(超出不足1km 的部分按1km 计)。若行驶路程超过5km ,则按每超出1km 收费为2.7元计费。从这个城市的民航机场到某宾馆的路

程为15km,某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及中途停车时间要转换成行车路程(这个城市规定,每停车5min时间按1km路程计费),这个司

机一次接送旅客的实际行车路程ξ是一个随机变量,问他所收租车费η与ξ的关系式是什

么?若已知某旅客实付租车费48.7元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?

【免费下载】概率论与数理统计 第三章 二维随机变量及其概率分布 例题

概率论与数理统计 第三章 二维随机变量及其概率分布 例题1.甲乙两人独立地进行两次射击,命中率分别为0.2、0.5,把X 、Y 分别表示甲乙命中的次数,求(X,Y )联合分布律。2.袋中有两只白球,两只红球,从中任取两只以X 、Y 表示其中黑球、白球的数目,求(X,Y )联合分布律。3.设,且P{}=1,求()的X 1=(?1011/41/21/4) X 2=(011/21/2)X 1X 2=0X 1,X 2联合分布律,并指出是否独立。 X 1,X 24.设随机变量X 的分布律为Y=,求(X,Y )联合分布律。X 2X Y 01

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 5.设(X,Y )的概率分布为 且事件{X=0}与{X+Y=1}独立求a ,b 。6. 设某班车起点上车人数X 服从参数λ(λ>0)的泊松分布,每位乘客中途下车的概率为P (0

概率论与数理统计 第三章 二维随机变量及其概率分布 例题 (1)C 的值 (2), (3)P{X+Y ≤1}并判别X 与Y 是否独立。f z (x)f Y (y)9.设f(x,y)= 为(X,Y )的密度函数,求{10 |y |1/2|Y>0}(2) f Y|X (y|x ), f X|Y (x|y )10. 设f(x,y)= 为(X,Y )的密度函数,求 {12x 2y 0 1x ≤y ≤x,x ≥1 其它 f X|Y (x|y )11. 设f(x,y)= 为(X,Y )的密度函数,求的联合分布 {4xy 0 0≤x ≤1,0≤y ≤1 其它 (X,Y )

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

二维随机变量及其分布题目

一、单项选择题 1 ,那么下列结论正确的是 ()A B C D.以上都不正确 2设X与Y相互独立,X 0—1分布,Y 0—1分布,则方程 t 有相同实根的概率为 (A(B(C (D 3.设二维随机变量(X,Y)的概率密度为 则k的值必为 (A(B(C (D 4.设(X,Y)的联合密度函数为 (A (B(C(D 5.设随机变量X与Y相互独立,而且X服从标准正态分布N(0,1),Y服从二项分布B(n,p),0

二、填空题 2 若(X ,Y )的联合密度 , 3 4 ,则 且区域 5 。 6 . 7

=? ∞+∞ -)(x f X . 8 如果随机变量),(Y X 的联合概率分布为 X 1 2 3 1 61 91 181 2 3 1 α β 则βα,应满足的条件是 ;若X 与Y 相互独立,则=α ,=β . 9 设Y X ,相互独立,)1.0(~),1,0(~N Y N X ,则),(Y X 的联合概率密度 =),(y x f ,Y X Z +=的概率密度=)(Z f Z . 10、 设 ( 、 ) 的 联 合 分 布 函 数 为 ()()()()?? ??? ≥≥+-+-+++= y x y x y x A y x F 00,0111111,2 22则 A =_____。 11设X 服从参数为1的泊松分布,Y 服从参数为2的泊松分布,而且X 与Y 相互独立,则 (max(,)0)_______. (min(,)0)_______.P X Y P X Y ≠=≠= 12 设X 与Y 相互独立,均服从[1,3]上的均匀分布,记(),A X a =≤(),B Y a => 7 ()9 P A B ?= 且,则a=_______. 13 二维随机变量(X ,Y )的联合概率密度为 221()21sin sin (,)(,),2x y x y f x y e x y π -++= -∞<<+∞ 则两个边缘密度为_________. 三.解答题 1 一个袋中有三个球,依次标有数字 1, 2, 2,从中任取一个, 不放回袋中 , 再任取一个, 设每次取球时,各球被取到的可能性相等,以 X , Y 分别记第一次和第二次取到的球上标有的数字 ,求 ( X , Y ) 的分布律与分布函数. 2.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取2次,定义随机变量12,X X 如下:

第二章__随机变量及其概率分布_考试模拟题答案范文

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

《概率论与数理统计》习题答案(复旦大学出版社)第三章

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=???? ? ≤ ≤≤ ≤. , 020,20, sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ?? ≤<≤ <36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin 4 3 4 6 3 6 1). 4 =--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X ,Y )的分布密度 f (x ,y )=?? ?>>+-. , 0, 0,0, )43(其他y x A y x e 求:(1) 常数A ; (2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由-(34) (,)d d e d d 112 x y A f x y x y A x y +∞+∞+∞+∞+-∞ -∞ == =? ??? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞ -∞ = ?? ( 34 ) 3400 12e d d (1e )(1e ) 0,0, 0,0, y y u v x y u v y x -+--??-->>? ==?? ? ????其他 (3) {01,02}P X Y ≤<≤< 12(34) 38 {01,02} 12e d d (1 e )(1e )0.9499. x y P X Y x y -+--=<≤<≤= =--≈?? 5.设随机变量(X ,Y )的概率密度为 f (x ,y )=?? ?<<<<--. , 0, 42,20),6(其他y x y x k (1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

联合概率分布:离散与连续随机变量

Joint Distributions,Discrete Case In the following,X and Y are discrete random variables. 1.Joint distribution(joint p.m.f.): ?De?nition:f(x,y)=P(X=x,Y=y) ?Properties:(1)f(x,y)≥0,(2) x,y f(x,y)=1 ?Representation:The most natural representation of a joint discrete distribution is as a distribution matrix,with rows and columns indexed by x and y,and the xy-entry being f(x,y).This is analogous to the representation of ordinary discrete distributions as a single-row table.As in the one-dimensional case,the entries in a distribution matrix must be nonnegative and add up to1. 2.Marginal distributions:The distributions of X and Y,when considered separately. ?De?nition: ?f X(x)=P(X=x)= y f(x,y) ?f Y(y)=P(Y=y)= x f(x,y) ?Connection with distribution matrix:The marginal distributions f X(x)and f Y(y) can be obtained from the distribution matrix as the row sums and column sums of the entries.These sums can be entered in the“margins”of the matrix as an additional column and row. ?Expectation and variance:μX,μY,σ2 X ,σ2 Y denote the(ordinary)expectations and variances of X and Y,computed as usual:μX= x xf X(x),etc. https://www.360docs.net/doc/bd14715912.html,putations with joint distributions: ?Probabilities:Probabilities involving X and Y(e.g.,P(X+Y=3)or P(X≥Y)can be computed by adding up the corresponding entries in the distribution matrix:More formally,for any set R of points in the xy-plane,P((X,Y)∈R))= (x,y)∈R f(x,y). ?Expectation of a function of X and Y(e.g.,u(x,y)=xy):E(u(X,Y))= x,y u(x,y)f(x,y).This formula can also be used to compute expectation and variance of the marginal distributions directly from the joint distribution,without?rst computing the marginal distribution.For example,E(X)= x,y xf(x,y). 4.Covariance and correlation: ?De?nitions:Cov(X,Y)=E(XY)?E(X)E(Y)=E((X?μX)(Y?μY))(Covariance of X and Y),ρ=ρ(X,Y)=Cov(X,Y) σXσY (Correlation of X and Y) ?Properties:|Cov(X,Y)|≤σXσY,?1≤ρ(X,Y)≤1 ?Relation to variance:Var(X)=Cov(X,X) ?Variance of a sum:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)(Note the analogy of the latter formula to the identity(a+b)2=a2+b2+2ab;the covariance acts like a “mixed term”in the expansion of Var(X+Y).) 1

随机变量及其概率分布

第二章 随机变量及其概率分布 【内容提要】 一、随机变量及其分布函数 设()X X ω=是定义于随机试验E 的样本空间Ω上的实值函数,且x R ?∈, {}()X x ωω≤是随 机事件,则称()X X ω=为随机变量,而称()()()F x P X x ω=≤为其概率分布函数。 随机变量()X X ω=的概率分布函数()()()F x P X x ω=≤具有如下性质: ⑴.非负性: x R ?∈,有0()1F x ≤≤; ⑵.规范性: ()0,()1F F -∞=+∞=; ⑶.单调性: 若12x x ≤,则12()()F x F x ≤; ⑷.右连续性: x R ?∈,有(0)()F x F x +=。 二、离散型随机变量 1.离散型随机变量及其概率分布律 若随机变量()X X ω=只取一些离散值12n x x x -∞<<=其中而。 三、连续型随机变量

概率与概率分布习题及答案

第三章概率、概率分布与抽样分布 计算题: 1.某种零件加工必须依次经过三道工序,从已往大量的生产记录得知,第一、二、三道工序的次品率分别为,,,并且每道工序是否产生次品与其它工序无关。试求这种零件的次品率。 2. 某项飞碟射击比赛规定一个碟靶有两次命中机会(即允许在第一次脱靶后进行第二次射击)。某射击选手第一发命中的可能性是80%,第二发命中的可能性为50%。求该选手两发都脱靶的概率。 3. 某企业决策人考虑是否采用一种新的生产管理流程。据对同行的调查得知,采用新生产管理流程后产品优质率达95%的占四成,优质率维持在原来水平(即80%)的占六成。该企业利用新的生产管理流程进行一次试验,所生产5件产品全部达到优质。问该企业决策者会倾向于如何决策? 4. 一家人寿保险公司某险种的投保人数有20000人,据测算被保险人一年中的死亡率为万分之5。保险费每人50元。若一年中死亡,则保险公司赔付保险金额50000元。试求未来一年该保险公司将在该项保险中(这里不考虑保险公司的其它费用):(1)至少获利50万元的概率;(2)亏本的概率;(3)支付保险金额的均值和标准差。 5. 某企业生产的某种电池寿命近似服从正态分布,且均值为200小时,标准差为30小时。若规定寿命低于150小时为不合格品。试求该企业生产的电池的:(1)合格率是多少?(2)电池寿命在200左右多大的范围内的概率不小于。 6. 某商场某销售区域有6种商品。假如每1小时内每种商品需要12分钟时间的咨询服务,而且每种商品是否需要咨询服务是相互独立的。求:(1)在同一时刻需用咨询的商品种数的最可能值是多少?(2)若该销售区域仅配有2名服务员,则因服务员不足而不能提供咨询服务的概率是多少? 7. 美国汽车联合会(AAA)是一个拥有90个俱乐部的非营利联盟,它对其成员提供旅行、金融、保险以及与汽车相关的各项服务。1999年5月,AAA通过对会员调查得知一个4口之家出游中平均每日餐饮和住宿费用大约是213美元(《旅行新闻》Travel News,1999年5月11日)。假设这个花费的标准差是15美元,并且AAA所报道的平均每日消费是总体均值。又假设选取49个4口之家,并对其在1999年6月期间的旅行费用进行记录。⑴ 描述x(样本家庭平均每日餐饮和住宿的消费)的抽样分布。特别说明x服从怎样 的分布以及x的均值和方差是什么?证明你的回答;⑵对于样本家庭来说平均每日消费大于213美元的概率是什么?大于217美元的概率呢?在209美元和217美元之间的概率呢? 解: a. 正态分布, 213, b. , ,

《概率论与数理统计》习题三问题详解-设二维随机变量(x,y)

《概率论与数理统计》习题及答案 习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ?? 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

第二章随机变量及其函数的概率分布

第二章 随机变量及其函数的概率分布 §2.1 随机变量与分布函数 §2.2 离散型随机变量及其概率分布 一、 填空题 1. 某射手每次命中目标的概率为0.8,若独立射击了三次,则三次中命中目标次数为k 的概率==)(k X P 3,2,1,0,) 2.0()8.0(33=-k C k k k ; 2. 设随机变量X 服从泊松分布,且)2()1(===X P X P ,则==)4(X P 0.0902 ; 3. 设X 服从参数为p 的两点分布,则X 的分布函数为 ?? ? ??≥<≤-<=1 ,110 ,10 ,0)(x x p x x F ; 4. 已知随机变量X 的概率分布:P(X =1)=0.2, P(X =2)=0.3, P(X =3)=0.5, 则其分布 函数)(x F = 0 10.2 120.5 231 3x x x x =λ==则且,0),,2,1()(b k b k X P k 为(B ) (A) λ>0的任意实数; (B) ;11+=b λ (C) λ=b +1; (D) 1 1 -=b λ. 三、 计算下列各题 1. 袋中有10个球,分别编号为1~10,从中任取5个球,令X 表示取出5个球的最大号码,试求X 的分布列。 解 X 的可能取值为5,6,7,8,9,10 且10,9,8,7,6,5 ,)(5 10 41 ===-k C C k X P k 所以X 的分布列为

概率、随机变量及分布列(一)

概率、随机变量及分布列(一) 一.知识回顾: 1.随机事件的概率 (1)随机事件的概率范围:0≤P (A )≤1;必然事件的概率为____;不可能事件的概率为___. (2)古典概型的概率:P (A )=_________. (3)几何概型的概率:P (A )=__________. 2.离散型随机变量的分布列:设离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则称表 为离散型随机变量(1)①p i ______0,i =1,2,…,n ;②∑n i =1 p i =_____ (2)离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的____________. 3.离散型随机变量的数字特征: (1)E (X )=__________________________为X 的均值或数学期望(简称期望). (2)D (X )=____________________________________叫做随机变量X 的方差. 性质 : ①E (aX +b )=aE (X )+b ,②D (aX +b )=a 2D (X ); 4.特殊分布 (1)二点分布:如果随机变量X 的分布列为 其中0

概率论与数理统计随机变量及其分布问题

随机变量及其分布问题 1、假设随机变量X 的绝对值不大于1,1(1),8P X =-= 1 (1).4 P X ==在事件(11)X -<<出现的条件下,X 在(1,1)-内的任一子区间上取值的条件概率与该子区间的长度成正比。试求X 的分布函数()()F x P X x =≤ 解:当1x <-时,()0F x =。 当1x =-时,()()(1)(1)F x P X x P X P x x =≤=≤-+-<≤ 1 (1)8 P X x = +-<≤ 而 5(11)1(1)(1)8 P X P X P X -<<=-=--==, 因此 (1)(1,11)P X x P X x X -<≤=-<≤-<< (11)(111)P X P X x X =-<<-<<-<< 5155 8216 x x ++=?= , 于是,得 5155 ()8216 x x F x ++=?= 当1x ≥-时,()1F x =。 故所求分布函数为 0, 1 55(), 11161, 1 x x F x x x <-??+? =-≤≤??≥?? 评述 分由函数可以完整地描述任何类型随机变量的取值规律,这里的随机变量包括离散 型、连续型和混合型在类。 2、一汽车沿一街道行驶,需要通过三个均设有红绿号灯的路口,每个路口的信号灯为红或绿与其他路口的信号灯为红或绿相互独立,且红、绿两 种信号显示的时间相等。以X 表示该汽车遇到红灯前已通过的路口的个数,求X 的概率分布。 解 设i A =“汽车在第i 个路口首次遇到红灯”(i =1,2,3)。依题意,1A ,2A ,3A 相互独立。X 的可能取值是0,1,2,3。于是,得X 的概率分布为 11 (0)(),2 P X P A ===

二维随机变量及其概率分布

1 第三章二维随机变量及其概率分布 一.二维随机变量与联合分布函数 1.定义若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量. 对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数.2.分布函数的性质 (1)F(x,y)分别关于x 和y 单调不减. (2)0≤F(x,y)≤1,F(x,-∞)=0,F(-∞,y)=0,F(-∞,-∞)=0,F(∞,∞)=1.(3)F(x,y)关于每个变量都是右连续的,即F(x+0,y)=F(x,y),F(x,y+0)=F(x,y).(4)对于任意实数x 1

随机变量的概率分布

随机变量的概率分布 一、填空题 1.某射手射击所得环数X 的概率分布为 解析 P (X >7)=P (X =8)+P (X =9)+P (X =10)=0.28+0.29+0.22=0.79. 答案 0.79 2.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于________. 解析 由已知得X 的所有可能取值为0,1, 且P (X =1)=2P (X =0),由P (X =1)+P (X =0)=1, 得P (X =0)=1 3. 答案 1 3 3.(优质试题·常州期末)设X 是一个离散型随机变量,其概率分布为: 则q 的值为________解析 由概率分布的性质知??? ?? 2-3q ≥0, q 2 ≥0, 13+2-3q +q 2 =1, 解得q =32-33 6. 答案 32-33 6 4.设离散型随机变量X 的概率分布为

解析由概率分布的性质,知 0.2+0.1+0.1+0.3+m=1,∴m=0.3. 由Y=2,即|X-2|=2,得X=4或X=0, ∴P(Y=2)=P(X=4或X=0) =P(X=4)+P(X=0) =0.3+0.2=0.5. 答案0.5 5.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则“放回5个红球”事件可以表示为________. 解析“放回五个红球”表示前五次摸到黑球,第六次摸到红球,故ξ=6. 答案ξ=6 6.(优质试题·南通调研)从装有3个白球、4个红球的箱子中,随机取出了3个球,恰好是2个白球、1个红球的概率是________. 解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布 问题,故所求概率为P=C23C14 C37= 12 35. 答案12 35 7.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 解析设X取x1,x2,x3时的概率分辊为a-b,a,a+d,则(a-d)+a+(a

自考概率论与数理统计多维随机变量及其概率分布

第三章多维随机变量及其概率分布 内容介绍 本章讨论多维随机变量的问题,重点讨论二维随机变量及其概率分布。 考点分析 内容讲解 §3.1多维随机变量的概念 1. 维随机变量的概念: 个随机变量,,…,构成的整体=(,,…,)称为一个维随机变量, 称为的第个分量(). 2.二维随机变量分布函数的概念: 设(,)为一个二维随机变量,记 ,,, 称二元函数为二维随机变量(,)的联合分布函数,或称为(,)的分布函数. 记函数= =, 则称函数和为二维随机变量(,)的两个分量和的边缘分布函数. 3. 二维随机变量分布函数的性质: (1)是变量(或)的不减函数;

(2)01,对任意给定的,;对任意给定的,; ,; (3)关于和关于均右连续,即. (4)对任意给定的,有 . 例题1. P62 【例3-1】判断二元函数是不是某二维随机变量的分布函数。【答疑编号12030101】

解:我们取, = 1-1-1+0=-1<0,不满足第4条性质,所以不是。 4.二维离散型随机变量 (1)定义:若二维随机变量(X,Y)只取有限多对或可列无穷多对(),(=1,2,…),则称(X,Y)为二维离散型随机变量. (2)分布律: ① 设二维随机变量(X,Y)的所有可能取值为(),(=1,2,…),(X,Y)的各个可能取值的概率为 ,(=1,2,…), 称,(=1,2,…)为(X,Y)的分布律. (X,Y)的分布律还可以写成如下列表形式

②(X,Y)分布律的性质 [1] ,(=1,2,…); [2] 例题2. P62 【例3-2】设(X,Y)的分布律为 求a的值。 【答疑编号12030102】 解:

随机变量及其概率分布、超几何分布

随机变量及其概率分布、超几何分布 沙市五中高三数学组 一、填空题(每小题6分,共48分) 1.设X 则q的值为________ 2.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为________. 3.已知随机变量ξ的分布列为P(ξ=k)=a 2k ,k=1,2,3,4.则P(2<ξ≤4) =________. 5.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,若P(X=k)=C4 7 C6 8 C10 15 ,则k=________. 6

7.某电子管正品率为34,次品率为1 4 ,现对该批电子管有放回地进行测试, 设第ξ次首次测到正品,则P (ξ=3)=______. 8.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P (ξ≥8)=_______. 二、解答题(共42分) 9.(12分)袋中有同样的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量ξ为此时已摸球的次数,求随机变量ξ的概率分布. 10.(14分)设离散型随机变量ξ的分布列P ? ? ???ξ=k 5=ak ,k =1,2,3,4,5. (1)求常数a 的值;(2)求P ? ? ???ξ≥35; (3)求P ? ????1 10 <ξ<710. 11.(16分)某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品. (1)用ξ表示抽检的6件产品中二等品的件数,求ξ的概率分布; (2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.

《2.1 随机变量及其概率分布》教案

《2.1 随机变量及其概率分布》教案 教学目标: 1?理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2?掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 3. 理解三个分布的意义. 教学重点: 离散型随机变量的分布列的意义及基本性质. 教学难点: 分布列的求法和性质的应用. 教学过程; 一.复习引入: 1.随机变量 2.随机变量常见的类型 二?离散型随机变量及其分布: 1. 如果离散型随机变量X的所有可能取得值为x1,x2,…,x n;X取每一个值x i(i=1,2,…,n)的概率为p1,p2,…,p n,则称表 2. 离散型随机变量的分布列的两个性质: ⑴; ⑵. 例:某人射击4发子弹,击中目标则停止射击或直至射击完毕,该人每次击中目标的概率为0.8,求(1)该人射击子弹的分布列;(2)P{X<3},P{1

2.二项分布 定义若随机变量X的可能取值为0,1,…,n,而X的分布律为 其中0

相关文档
最新文档