前后盘式制动器制动系统

前后盘式制动器制动系统
前后盘式制动器制动系统

前后盘式制动器制动系

集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

第1章制动系统设计计算

1.盘式制动器形式

与全盘式相比,浮动钳盘式具有如下优点:

在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管,家之液压缸;冷却条件好,所以制动液汽化的可能性小;成本低。

所以,本设计前后盘式制动器均采用浮动钳式盘式制动器。

2.制动能源的选择

3.制动管路的布置

X型的结构简单。直行制动时任一回路失效,剩余的总制动力都能保持正常值的50%。但是,一旦某一管路损坏造成制动力不对称,此时前轮将朝制动力大的一边绕主销转动,使汽车丧失稳定性。因此,这种方案适用于主销偏移距为负值(达20mm)的汽车上。这时,不平衡的制动力使车轮反向转动,改善了汽车的稳定性。所以本次设计选择X型管路。

4.液压制动主缸的设计

采用双回路制动系统,双回路制动系统的制动主缸为串联双缸制动主缸。,当制动系统中任一回路失效时,串联双缸制动主缸的另一腔仍能够工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大的提高了工作的可靠性。

5.行车制动与驻车制动形式

行车制动用液压,而驻车制动时通过拉线用机械力推动凸轮或螺杆推动活塞,使活塞移动,让制动盘与刹车片接触。

第2章 制动系统设计计算

制动系统主要参数数值

相关主要参数

同步附着系数的确定

根据相关资料查得,通常应满足空载同步附着系数在之间较为合适,满载同步附着系数在 之间较为合适。

制动器有关计算

确定前后制动力矩分配系数β

任何附着系数?路面上前后同时抱死的条件为、(?=):

G

F F f f ?=+21

g

g f f h L h L F F ??-+=

122

1

得:

1

f F =

2

f F =

一般常用制动器制动力分配系数β来表示分配比例

空载条件:

686.02

1

==

f f F F β

空载条件: N F f 4.54061= N F f 3.30372=

64.02

1

==

f f F F β

制动器制动力矩的确定

应急制动时,假定前后轮同时抱死拖滑,此时所需的前桥制动力矩为

r )(??μg h b L G

M +=

得,单个后轮盘式制动器的制动力矩μ1M =21

μM

= N/m

单个前轮盘式制动器的制动力矩μ2M =21μM

=N/m

盘式制动器主要参数确定

制动盘直径D 应尽可能取大些,这时制动盘的有效半径得到增加,可以降低制动钳的夹紧力,减少衬块的单位压力和工作温度。受轮辋直径的限制,制动盘的直径通常选择为轮辋直径的70%一79%。总质量大于2t 的汽车应取上限。 这里去制动盘的直径D 为轮辋直径的百分之79%,即D==300mm 制动盘厚度h

制动盘厚度对制动盘的质量和温升有影响。为使质量小些,厚度不宜太大,为了减少温升,厚度又不宜过小。因此,参考同类型车,取为25mm,通风式,增大散热。

摩擦衬块内半径R1和外半径R2

摩擦衬块外半径只与内半径及推荐摩擦衬块外半径R2与内半径R1的比值不大于。若此比值偏大,工作时衬块的外缘与内侧圆周速度相差较多,磨损不均匀,接触面积减少,最终导致制动力矩变化大。因为制动器直径D 等于300mm,则摩擦块R2=150mm,取R2/R1=,所以R1=100mm 。 制动衬块工作面积A

在确定盘式制动器制动衬块的工作面积时,根据制动衬快单位面积占有的汽车质量,推荐在~2

cm , 此处取为cm2,可得A =2305kg ÷cm2 = 922cm 。 摩擦衬块摩擦系数f

当前国产的制动摩擦片材料在温度低于 250℃时,保持摩擦系数f =~ 已无大问题。所选择摩擦系数f =。

盘式制动器的制动力计算

假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为

R fF M 02=μ

平均半径m R 为

mm 125200

1150221m =+=+=

R R R

对于前制动器

N 40410.1250.352122.92=??==

fR M F O μ

对于后制动器

N 31810.1250.352115.3

2μ=??==

fR M F O

第3章 液压制动驱动机构的设计计算

前轮制动轮缸直径d 的确定

制动轮缸对制动块施加的张开力0F 与轮缸直径d 和制动管路压力p 的关系为

)/(40p F d π=

制动管路压力一般不超过10~12a MP 。取a MP 10=p 。 mm 32m 023.010

10404

146

==??=

d 轮缸直径d 应在标准规定的尺寸系列中选取(HG2865-1997),具体为19mm 、22mm 、24mm 、25mm 、28mm 、30mm 、32mm 、35mm 、38mm 、40mm 、45mm 、50mm 、55mm 。因此取前轮制动轮缸直径为24mm.

同理,后轮制动轮缸直径0.023mm 0.023m 10

101318

46

==??=d 。因此取后轮制动轮缸直径为23mm.

制动主缸直径0d 的确定

第i 个轮缸的工作容积为: ∑=

n

d Vi 1

i i

2

4

δπ

式中,i d 为第i 个轮缸活塞的直径;n 为轮缸中活塞的数目;i δ为第i 个轮缸活塞在完全制动时的行程,初步设计时,对盘式制动器可取此处取2=δ.5mm.

所以一个前轮轮缸的工作容积为31

1

2

32

1304m m 4

2

==∑

V

一个后轮轮缸的工作容积为311

2

25

953m m 4

2

==

∑?π

V

所有轮缸的总工作容积为∑=

m V V 1

i

,式中,m 为轮缸数目。制动主缸应

有的工作容积为V V V '+=0,式中V '为制动软管的变形容积。在初步设计时,制动主缸的工作容积可为:对于乘用车V V 1.10=;对于商用车V V 3.10=。此

处取V V 1.10=。

所以3m m 5144)9531304(22=+=+=

V V V 3

0mm 4.96541.1=='+=V V V V

主缸活塞行程0S 和活塞直径0d 为 00O 24

S d V π

=

一般0S =(~)o d 。此处取0S =o d 。

所以 30O 4

d V π

=

18.49mm 43

0==π

V d

主缸的直径o d 应符合QC/T311-1999中规定的尺寸系列,具体为19mm 、22mm 、28mm 、32mm 、35mm 、38mm 、40mm 、45mm 。所以取得190=d mm 。

制动踏板力p F 和制动踏板工作行程p S

制动踏板力p F 为:

)1

(14

p 0p 2η

π

i p

d F =

式中,0d 为制动主缸活塞直径;p 为制动管路的液压;p i 为探班机构的传动比;η为踏板机构及液压主缸的机械效率,可取η=~.此处取p i =4,η=. 制动踏板力应满足以下要求;最大踏板力一般为500N (乘用车)或700N (商用车)。设计时,制动踏板力可在200N ~350N 的范围内选取。

所以500N N 34.380.85

14110(0.019)4π)1(1462p 0p 2

<=???==

ηπi p d F 符合设计要求。

制动踏板工作行程p S 为

)(m2m10p p δδ++?=S i S 式中,1m δ为主缸中推杆与活塞间的间隙,一般取~2mm;2m δ为主缸活塞空行程,主缸活塞由不工作时的极限位置到使其皮碗完全封堵主缸上的旁通孔所经过的行程。

制动器调整正常时的踏板工作行程p S ,在只应占计及制动衬块的容许磨损量的踏板行程的40%~60%。

为了避免空气侵入制动管路,在计算制动主缸活塞回位弹簧时,应保证踏板放开后,制动管路中仍保持~MPa 的残余压力。

最大踏板行程,对乘用车应不大于100~150mm,对商用车不大于

180mm 。此外,作用在制动手柄上最大的力,对乘用车不大于400N ,对商用车不大于600N 。制动手柄最大

天车制动器调整方法及注意事项

天车制动器调整方法及注意事项: 1.制动器上共有可调整位置三处,示意图上对应符号位A、B、C。 2.A为顶杆;B为主弹簧;C为制动器架调节螺丝。 3.顶杆的作用是保证液力推动器活塞有足够的行程。 当制动器打开时,如闸瓦张开距离过小、液力推动器行程过小,则调整顶杆,同时观察液力推动器活塞杆的伸出量,一般为3mm左右即可。 4.主弹簧的作用是保证制动器工作时能够产生足够的制动力。 当制动器工作时,如发现制动力不足,要立即调整主弹簧的压缩力,以便产生足够的制动力。一般意义上的“调抱闸”,说的就是调整主弹簧,而不是调整顶杆。 5.制动器调节螺丝的作用是调节闸瓦与闸轮的间隙。 当更换制动器架、更换闸皮、更换闸轮时,如发现闸瓦与闸轮间隙过小,则要将盖螺丝退出几圈,同时要调整顶杆、主弹簧,保证闸瓦与闸轮有适当的间隙,一般为3mm。在保证闸瓦与闸轮间隙适当的前提下,保证液力推动器行程适当、制动力适当。 注意: 液力推动器必须保证有充足的油液

行车行走速度V 行车减速时间t 行车正常减速距离L=0.5*V*t 行车抱闸的安全滑行距离 行车动能W=0.5*m*V*V 行车抱闸后,在轨道上滑动,滑动摩擦力为F=m*g*μ 行车抱闸的安全滑行距离S=W/F (一)大车运行机构的传动形式及组成 大车运行机构的传动形式可分为两大类:一类为分别驱动形式(下图a),另一类为集中驱动形式(下图b)。分别驱动形式与集中驱动形式相比,其自重较轻,通用性好,便于安装和维修,运行性能不受吊重时桥架变形的影响,故目前在桥式起重机上获得广泛采用。集中驱动形式只用于小起重量和小跨度的桥式起重机。 大车运行机构构成如下图所示,是由电动机、齿轮联轴器及传动轴、减速器、车轮组、制动器等构成。由电动机经减速器传动所带动的车轮组称为主动车轮组,无电动机带动只起支承作用的独立车轮组称为从动车轮组。当电动机通电后,常闭

PZD盘式制动器调整方法

制动系统调整方法 1 总则 制动器是安全部件!只允许专业的、受过培训的人员对制动器进行安装、 调试和维修工作。 制动力矩是基于闸片的摩擦系数为0.45,这些数据只使用于下列工作条件: 保护摩擦面,使之不受油污、雨水和冰雪的侵蚀。 保证闸片不接触任何溶剂。 制动盘两侧面跳动(包括形位公差)最大为0.1mm。 闸瓦施力所引起的制动轮的变形量最大为0.1mm。 制动盘表面粗糙度Ra低于3.2。 最大制动时间为0.8s。 制动盘稳态温度:≤180℃。 2 制动器调整 1.导向套 2.调整螺栓M6X50 3.锁紧螺母M6 4.螺杆 5.基座 6.动铁芯盘 7.线圈骨架部件 8.手动松闸手柄 9.螺钉10.螺栓M12 11.弹簧座12.小弹簧13.闸片14.调整垫片15.螺钉16.螺钉17.限位销18.微动开关

通常情况下,制动器出厂已经调整好,无需再进行调整(闭闸情况下,B=0.5-0.6mm,开闸情况下,A=15.5-15.6mm,制动盘两侧间隙分别为0.25-0.3mm)。 当曳引机运行出现制动器闸片与制动盘侧面相摩擦、制动噪音大的情况时,要对盘 式制动器进行调整,调整方法如下: 断电抱闸,用塞尺检查盘式制动器的基座1与调整螺栓2之间的间隙(要求为0.2mm),

若不符合要求,进行调整:松开锁紧螺母3,用开口扳手(规格为10mm)逆时针(曳引轮侧方向看)转动调整螺栓,使调整螺栓与基座的间隙减小(两件调整螺栓与基座的间隙应相同);反之,使间隙增大,调整至符合要求,紧固锁紧螺母。 3 刹车状态的监控 通过微动开关可以监控刹车的制动状态。微动开关的触点有常开和常闭两种,可由客 户按需要连接。开关的界线方式详见后面的接线示 意图。 C尺寸为调整螺栓端部到微动开关触点的距离,通常闭闸状态下调整为0.15mm。 我公司选用的微动开关的最大容量为:250V AC/5A 4 启动 在进行功能测试时,要保证电机静止和未接通电源,并且加以固定,以防止意外重新启动。 制动系统的电气连接完成后,要求进行功能测试,通过转动电机轴检查制动盘的空运转(进行测试时,制动系统通电,而电机不通电)。 刹车的表面温度有可能超过100℃。因此,不要让温度敏感器件、如一般电缆或电子部件、经过或固定在刹车装置上。如有必要、要采取适当的防护措施,以防意外接触。如果在调试过程中要转动电机轴(电机未接通电源),可电气释放刹车装置。如有必要也可通过手动释放。

前盘式制动器拆装实习教案

中级工强化训练-实习教案 前盘式制动器的拆装及检修 一、实训课时:节 二、主要内容及目的 (1)熟悉盘式制动器的构造和拆装过程。 (3)熟悉使用仪器测量制动盘厚度和摩擦厚度并判断好坏。 (4)掌握盘式制动器的检修方法。 (5)熟悉盘式制动器的构造名称。 三、技术标准和要求 1、外侧摩擦片及内侧摩擦片磨损极限为7.5m(包括底板)。 2、、当制动衬片磨损至厚度小于(或等于)1mm时,必须更换制动蹄总成。 四、实训器材 五菱小型货车前桥车轮制动器4个,塞尺4把,游标卡尺4把,常用工具4套。 五、操作步骤及工作要点: (一)、前盘式制动器零件

(二) 、拆卸和安装 1、拆装制动盘(制动蹄片) 拆卸: (1)拧松但不拆下前轮螺栓举升 车辆用安全架稳定车辆,并拆下车轮。 (2)拆下制动钳体定位螺栓。 (3)从支座上拆下制动钳体。 (4)拆下制动块。 注意:用金属钩将卸下的钳体挂起,避免制动软管被过度扭曲及拉伸。不踩制动踏板将制动块卸 下。 前盘式制动器零件 1、制动钳总成 2.制动钳螺栓 3.转向节 4.活塞 5.制动盘防尘罩 6.制动盘 7.前轮轮毂轴承 8.卡簧 9.固定螺栓 10.制动分泵 11.制动块

安装步骤 安装顺序与拆卸顺序相反。 (1)安装制动钳体及制动块。 (2)安装制动钳体并紧固其导向销螺栓至规定力矩。 (3)按要求紧固前车轮螺母 (4)完成以上步骤后,进行测试。

2、拆装制动钳总成 拆卸步骤: (1)安全地升起车辆并拆下车轮。 (2)拆下钳体上的制动软管装配螺栓。在此之前准备一储液容器,因为在此操作中将会有制动液从制动软管中流出。 (3)拆下制动钳体导向销螺栓。

盘式制动器制动间隙调整测量方法

盘式制动器制动间隙调整测量方法 为确保前轴盘式制动器正确使用,现对前轴盘式制动器制动间隙的 制动间隙的测测量方法进一步明确规范,请认真参阅执行。测量制动间隙前,应首 应首先先 活塞总成)可以正常工作。本确认间隙自动调整机构((AZ9100443500 AZ9100443500 AZ9100443500活塞总成) 文首先表述如何判断活塞总成是否可靠工作,再进一步说明制动间 再进一步说明制动间隙隙的测量方法。

(盘式制动器外形)外形)/ /(各部件名称)判断活塞总成是否有效: 1、用SW10SW10扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转扳手逆时针转动手调轴至极限位置(大体上逆时针旋转两两周),而后反向微调少许(以防螺纹发卡),而后反向微调少许(以防螺纹发卡); ;2、在气压足够大的情况下,原地连续踩刹车、在气压足够大的情况下,原地连续踩刹车101010次左右。注意:踩刹 次左右。注意:踩刹车时将扳手扣在手调轴上,以观察刹车时手调轴是否转动,正常现正常现象象应该是开始几次制动时扳手转动(顺时针)角度较大,越来越小,最后稳定到某个角度,此时即表明间隙已经调整到设计值。如果踩刹如果踩刹车车时手调轴不转动或者有逆时针转动状况,则该自动调整机构(活塞(活塞总总成)已不能正常工作,必须更换。 图一图一//图二图二/ /图三

制动间隙的测量: 盘式制动器从设计结构上已设定了制动间隙,并且制动间隙是自动并且制动间隙是自动调 调整的,不允许人为调整,制动间隙在0.80.8~ ~1.0mm 范围内是正常的。如果整车使用过程中出现左右制动力差值偏大、制动力不足或制动制动力不足或制动过过热等故障现象时,可按如下步骤检查制动间隙: 1、拆下压板(如塞尺插入方便可不拆压板),向箭头所指方向推动向箭头所指方向推动钳 钳体,使外侧制动块与制动盘紧密结合。(图一) 2、拨动内侧制动块使其靠近制动盘,测量间隙活塞总成整体推盘与制动块背板之间的间隙。(图二) 3、整体推盘与制动块背板之间的间隙应在、整体推盘与制动块背板之间的间隙应在0.80.80.8~ ~1.mm 之间,如小于0.8mm 0.8mm,应更换间隙自动调整机构(,应更换间隙自动调整机构(,应更换间隙自动调整机构(AZ9100443500AZ9100443500AZ9100443500活塞总成)(图三)活塞总成)注意事项: 盘式制动器从设计结构上已设定了制动间隙,并同时保证了制动间并同时保证了制动间隙 隙的自动调整。制动块和制动盘的间隙在制动块寿命期内是永远保持制动块和制动盘的间隙在制动块寿命期内是永远保持不不变的,只需按整车维修保养手册,定期检查制动块的磨损情况。因因此 此1.必须按上述正确方法测量制动间隙; 2.当制动块的摩擦材料的最小厚度小于2mm 时,必须更换制动块(此情况属于正常磨损,不属于三包范围)

盘式制动器的发展与现状

工学院毕业设计(论文综述) 题目:普通轿车前轮盘式制动器的设计 专业:车辆工程 班级: 07车辆(4)班 姓名:徐玉林 学号: 1608070421 指导教师:李同杰 日期: 2010年12月

盘式制动器的现状与发展趋势 车辆工程07级(4)班 学号:1608070421 姓名:徐玉林 指导教师:李同杰 摘要:现今盘式制动器在汽车上的应用越来越普遍,其优越性也越来越明显。本文 主要介绍了盘式制动器的发展历程和现状以及其发展趋势,并对国外先进的制动器 制造和应用技术进行大体的介绍,同时针对我国汽车工业的发展提出了建议和展 望。 关键词:现状发展趋势 Pro/E 盘式制动器 一、盘式制动器介绍 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,点击放大图片主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。 盘式制动器由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动,制动钳上的两个摩擦片分别装在制动盘的两侧,分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好像用钳子钳住旋转中的盘子,迫使它停下来一样。盘式制动器散热快、重量轻、构造简单、调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。很多轿车采用的盘式制动器有平面式制动盘、打孔式制动盘以及划线式制动盘,其中划线式制动盘的制动效果和通风散热能力均比较好。盘式制动器沿制动盘向施力,制动轴不受弯矩,径向尺寸小,制动性能稳定。[1] 结构型式主要有点盘式和全盘式。点盘式:由于摩擦面仅占制动盘的一小部分,故称点盘式。有固定卡钳式和浮动卡钳式两种。为了不使制动轴受到径向力和弯矩,点盘式制动缸应成对布置。制动转矩较大时,可采用多对制动缸。必要时可在中间开通风沟,以降低摩擦副温升,还应采取隔热散热措施,以防止液压油温高变质。全盘式:这种制动器结构紧凑,摩擦面积大。 现代轿车的制动器的鼓式和盘式两大类型,它们各有千秋,但随着轿车车速的不断提高,近年来采用盘式制动器的轿车日益增多,尤其是中高级轿车,一般都采用了盘式制动器。汽车制动简单来讲,就是利用摩擦将动能转换成热能,使汽车失去动能而停止下来。因此,散热对制动系统是十分重要的。如果制动系统经

盘式制动器工作原理

盘式制动器工作原理 盘式制动器又称为碟式制动器,顾名思义是取其形状而得名。它由液压控制,主要零部件有制动盘、分泵、制动钳、油管等。制动盘用合金钢制造并固定在车轮上,随车轮转动。分泵固定在制动器的底板上固定不动。制动钳上的两个摩擦片分别装在制动盘的两侧。分泵的活塞受油管输送来的液压作用,推动摩擦片压向制动盘发生摩擦制动,动作起来就好象用钳子钳住旋转中的盘子,迫使它停下来一样。这种制动器散热快,重量轻,构造简单,调整方便。特别是高负载时耐高温性能好,制动效果稳定,而且不怕泥水侵袭,在冬季和恶劣路况下行车,盘式制动比鼓式制动更容易在较短的时间内令车停下。有些盘式制动器的制动盘上还开了许多小孔,加速通风散热提高制动效率。反观鼓式制动器,由于散热性能差,在制动过程中会聚集大量的热量。制动蹄片和轮鼓在高温影响下较易发生极为复杂的变形,容易产生制动衰退和振抖现象,引起制动效率下降。 当然,盘式制动器也有自己的缺陷。例如对制动器和制动管路的制造要求较高,摩擦片的耗损量较大,成本贵,而且由于摩擦片的面积小,相对摩擦的工作面也较小,需要的制动液压高,必须要有助力装置的车辆才能使用。而鼓式制动器成本相对低廉,比较经济。 所以,汽车设计者从经济与实用的角度出发,一般轿车采用了混合的形式,前轮盘式制动,后轮鼓式制动。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的70%-80%,因此前轮制动力要比后轮大。轿车生产厂家为了节省成本,就采用前轮

盘式制动,后轮鼓式制动的方式。 四轮盘式制动的中高级轿车,采用前轮通风盘式制动是为了更好地散热,至于后轮采用非通风盘式同样也是成本的原因。毕竟通风盘式的制造工艺要复杂得多,价格也就相对贵了。随着材料科学的发展及成本的降低,在汽车领域中,盘式制动有逐渐取代鼓式制动的趋向。鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用于各类汽车上。但由于结构问题使它在制动过程中散热性能差和排水性能差,容易导致制动效率下降,因此在近三十年中,在轿车领域上已经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济类轿车中使用,主要用于制动负荷比较小的后轮和驻车制动。

盘式制动器结构和原理

盘式制动器结构和原理文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

盘式制动器结构和原理 2、定钳盘式制动器 如下图所示:制动钳体通过导向销与车桥相连,可以相对于制动盘轴向移动,制动钳只在制动盘的内侧设置油缸,而外侧的制动块附装在钳体上,制动时,来自制动主缸的液压油通过进油口进入制动油缸,推动活塞及其上的制动块向右移动,并压到制动盘,于是制动盘给活塞一个向左的反作用力,使得活塞连同制动钳体整体沿导销向左移动,直到制动盘右侧的制动块也压紧在制动盘上,此时两侧的制动块都压在制动盘上,夹住制动盘使其制动。 定钳盘式制动器 转播到腾讯微博 定钳盘式制动器 3、典型浮钳盘式制动器 浮钳盘式制动器 如下图所示为桑塔纳轿车前轮制动器。 转播到腾讯微博 桑塔纳轿车前轮制动器 制动钳体用螺栓与支架相连,螺栓同时兼作导向销,支架固定在前悬架总成轮毂轴承座凸缘上。壳体可沿导各销与支架作轴向相对移动,两制动块装在支架上,用保持弹簧卡住,使两制动块可以在支架上作轴向移动,但不会上下窜动。制动盘装在两制动块之间,

并通过轮胎螺栓固定在前轮毂上,制动块由无石棉的活塞在制动液压力作用下,推动内制动块压向制动盘内侧,制动钳上的反力使制动钳壳体向内侧移动,从而带动外制动块压向制动盘外侧面。于是内、外摩擦块将制动盘的两端面紧紧夹住,实现了制动。 4、制动间隙自调结构 利用活塞矩形密封圈的弹性变形实现制动间隙的自动调整。 转播到腾讯微博 制动间隙自调结构 矩形密封圈嵌在制动钳油缸的矩形槽内,密封圈刃边与活塞外圆配合较紧,制动时刃边在摩擦作用下随活塞移动,使密封圈发生弹性变形,相应于极限摩擦力的密封圈极限变形量应等于制动器间隙为设定值时完全制动所需的活塞行程,解除制动时,密封圈恢复变形,活塞在密封圈弹力作用下退回原位,当制动盘与摩擦衬块磨损后引起的制动间隙超过设定值时,则制动时活塞密封圈变形量达到极限值后,活塞仍可在液压作用下,克服密封圈的摩擦力而继续移动,直到实现完全制动为止。解除制动后,制动器间隙即恢复到设定值δ,因活塞密封将活塞拉回的距离仍然等于原设定值δ,活塞密封圈兼起活塞复位弹簧和一次调准式间隙自调装置的作用。 5、制动块磨损报警装置 许多盘式制动器上装有制动块摩擦片磨损报警装置,用来提配驾驶员制动块上的摩擦片需要更换。下图为应用较广泛的声音式制动块磨损损装置。 转播到腾讯微博

盘式制动器使用说明书

盘式制动器使用说明书

————————————————————————————————作者:————————————————————————————————日期: ?

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途………………………………………………………………….1 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑…………………………………………………………….………..12 六、特别警示 (1) 七、故障原因及处理方法...................................................... (12) 附图1:盘式制动器结构图………………………………………….….…….15 附图2:盘形闸结构图…………………………………………….….…….16 附图3: 制动器限位开关结构图………………………………….….…….17 附图4: 盘式制动器的工作原理图 (18) 附图5:盘式制动器安装示意图………………………………….….…….19 附图6: 制动器信号装置安装示意图…………………………….….…….20 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

制动器间隙调整

制动器 适用于安装在旋转的制动盘上,用于停机制动、工作制动和紧急制动 制动器安装在齿轮箱的高速轴侧。该制动器是一个液压动作的盘式制动器,为常闭式,具有刹车间隙自动补偿功能。 主动式与被动式制动器 ?主动式:加压制动、泄压打开(SL3000) ?被动式:加压打开、泄压制动(SL1500) ?在首次安装制动器时,必 须检查主动制动器刹车片保 持架与制动盘之间的距离。 该距离必须大于1mm,小 于3mm。 刹车片更换: 取下制动器尾帽上的两个传感器; 手动打开制动器; 在尾帽中间传感器的安装孔内安装 气隙螺栓和垫圈,并手动拧紧 ①刹车片磨损传感器 ②制动器打开与未调整传感器 ③气隙螺栓和垫片

制动器最小打开压力、泵启动压力、停止压力、溢流压力、系统最大可承受压力 制动器最小打开压力:125bar 液压泵站启动压力:130bar 液压泵站停止压力:160bar 溢流压力:190bar 系统最大可承受压力:210bar

1:AWA定位装置的位置 主定位系统 辅助定位系统 2:制动间隙调整 2.1:制动器的安装,见下图 2.2制动间隙的调整 1)制动间隙调整前的制动钳相对于制动盘的位置。(见图2-1) O型圈 图2-1 图2-2 2)调试前先拆除制动器上的O型圈,位置在制动钳与基座之间。(见图2-2)3)松开主定位系统、辅助定位系统的螺栓、螺母。

图2-3 图2-4 完全拧松 4)检查滑动轴是否滑动顺畅。应能够用手指推动滑动轴上下运动。 若滑动不畅则可以松开顶部的螺栓进行微调。(产生原因为:拧紧安装螺栓(或螺母)时液压扳手有可能会带动AWA的安装基板产生位移。)同时检查滑动轴与定位轴之间的平面的间隙。 图2-5 图2-6 在滑动轴滑动不畅时此U型孔可进行微调。此时滑动轴应可以轻易滑动。 5)手动加压8~10次,注意:任何情况下手动加压的次数不应少于8次,目的是为了将制动器的制动间隙调整为2mm。间隙全部位于被动钳一侧 图2-7 图2-8 主动钳被动钳制动间隙2mm 6)泄压后使制动器进入闭闸状态。

盘式制动器-课程设计

盘式制动器-课程设计

中北大学 课程设计说明书 学生姓名:学号: 学院(系):机电工程学院 专业:车辆工程 题目:夏利汽车盘式制动器方案设计 综合成绩: 职称: 年月日

目录 一、夏利汽车主要性能参数---------------------4 二、制动器的形式-----------------------------5 三、盘式制动器主要参数的确定-----------------7 四、盘式制动器制动力矩的设计计算-------------9 五、盘式制动器制器的校核计算----------------10 1.前轮制动器制动力矩的校核计算 2.摩擦衬片的磨损特性计算 六、经过计算最终确定后轮制动器的参数--------13 七、设计小结--------------------------------13 八、设计参考资料----------------------------13

轿车前轮制动器设计说明书前言汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。本次课程设计根据任务要求只对夏利汽车盘式制动器方案设计。

一、汽车主要性能参数 主要尺寸和参数: (1)、轴距:L=2405mm (2)、总质量:M=900kg (3)、质心高度:0.65m (4)、车轮半径:165mm (5)、轮辋内径:120mm (6)、附着系数:0.8 (7)、制动力分配比:后制动力/总制动力=0.19 (8)、前轴负荷率:60%;即质心到前后轴距离分别为 (9)、轮胎参数:165/70R13; 轮胎有效半径为: 轮胎有效半径=轮辋半径+(名义断面宽度×高宽比) 所以轮胎有效半径 (10)、制动性能要求:初速度为50KM/h时,制动距离为15m。则满足制动性能要求的制动减速度由:计

制动器的拆装

制动器的拆装 一、实验目的 1、熟悉盘式制动器与鼓式制动器的结构与拆装过程 2、掌握盘式制动器与鼓式制动器的自调原理 二、实验原理 根据盘式制动器与鼓式制动器的工作原理、结构特点,以及组成部分和制动力传递路线进行各式制动器的分拆装实训 三、实验设备、仪器及材料 1、浮钳盘式制动器、鼓式制动器各1个 2、工作台架1张 3、常用、专用工具全套 4、各式量具全套 四、实验步骤 盘式制动器的拆装: 1、拆下制动钳体与分泵总成,并取出内、外制动块总成 2、拆下制动钳支架 3、拆下制动盘 4、(分泵总成视情况进行分解拆装) 5、按技术要求,反顺序装回 鼓式制动器的拆装: 1、拆下制动鼓 2、依次拆下左、右制动蹄压力弹簧帽、压力弹簧、夹紧销

3、拆下制动蹄总成 4、拆下轮毂总成,并卸下轮毂轴承 5、拆下制动轮缸(制动分泵)总成 5、拆下制动底板总成 6、按技术要求,反顺序装回 五、实验注意事项 1、把活塞装入制动钳缸孔,注意在装配时,不要使活塞歪斜,以免损伤缸孔表面。 2、将活塞防尘罩装入制动钳上,并装上防尘罩固定环,在装防尘罩时,活塞外端应伸出轮缸端约10mm,这样有助于安装。 3、把制动钳装在转向节上后,并按规定拧紧力矩紧固螺栓,螺栓的拧紧力矩为70~100N.m。 4、用轴销螺栓,将制动钳体装在制动钳上,并检查滑动是否灵活,然后按规定力矩拧紧轴销螺栓,轴销螺栓的紧固力矩为22~32N.m。 5、安装制动软管。并注意不要扭曲软管,确保软管不与任何部件干涉。软管接头螺栓的紧固力矩为20~35N.m。 6、在制动底板和后轴的接触面涂防水密封胶,然后将制动底板装在后轴上。螺栓紧固力矩为18~28N.m 7、把制动油管与轮缸连接起来,将力矩拧紧油管接头螺母。螺母的紧固力矩为14~18N.m。 8、装垫圈和后轴螺母,并按规定力矩紧固槽螺母,然后装好开口销,并弯折开口销。槽螺母紧固力矩为80-l20N.m。9、装后车轮,装防尘罩,在几处用锤轻轻地敲防尘罩凸缘,直到凸缘紧紧与制动鼓接触为止,并按规定力矩拧紧车轮螺母。其拧紧力矩为40~70N.m。

盘式制动器使用说明书

盘式制动器使用说明书 盘式制动器使用说明书盘式制动器使用说明书目录一、性能与用途.1二、结构特征与工作原理..1三、安装与调整..4四、使用与维护..9五、润滑...12六、特别警示...13七、故障原因及处理方法...12附图1:盘式制动器结构图...15附图2:盘形闸结 盘式制动器使用说明书 目录 一、性能与用途 (1) 二、结构特征与工作原理 (1) 三、安装与调整 (4) 四、使用与维护 (9) 五、润滑 (12) 六、特别警示 (13) 七、故障原因及处理方法 (12) 附图1:盘式制动器结构图 (15) 附图2:盘形闸结构图 (16) 附图3: 制动器限位开关结构图 (17) 附图4: 盘式制动器的工作原理图 (18) 附图5: 盘式制动器安装示意图 (19) 附图6: 制动器信号装置安装示意图 (20) 一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。

二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来 确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放 气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线 BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4) 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动 块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。 如上所述,盘式制动器的工作原理是油压松闸,弹簧力制动。如(图4)所示:当油腔Y 通入压力油时,碟形弹簧组(3)被压缩,随着油压P的升高,碟形弹簧组(3)被压缩并贮存弹簧力F,且弹簧力F越来越大,制动块离开闸盘的间隙随之增大,此时盘形制动器处于松闸状态,调整闸瓦间隙△为1mm (注:调整方法见后);当油压P降低时,弹簧力释放,推动活塞、滑套连同其上的制动块(又名闸瓦),使制动块向制动盘方向移动,当闸瓦间隙△为零后,弹簧力F作用在闸盘上并产生正压力,随着油压P的降低正压力加大,当油压P=0时,正压力N=Nmax,在N力的作用下闸瓦与闸盘间产生摩擦力即制动力最大(全制动状态);当P=Pmax时,N=0,△=△max,即全松闸。 由上可以看出盘形制动器的摩擦力决定于弹簧力F和油压力F1,当闸瓦间隙为零后:

盘式制动器使用说明书

目录 1概 述 页码 1.1 结 构 2 1.2 制动器总成与工作原理 3 1.3 液压管路连接 4 1.4 泵站与盘式制动器的匹配组合 4 2 安装与调试 5 2.1 运 输 5 2.2 安装前的准备工作 6 2.3 将制动头装到支架上 6 2.4 将制动器整体安装到支架上 7 2.5盘式制动器与支架之间的形位公差要求 8 2.6设定制动力矩 8 2.7安装限位开关 9 2.8制动器通风 10 3试 车10 4 维修保养11 4.1 检查制动衬垫 11 4.2 更换制动衬垫 11 4.3 定期检查 11 4.4 润 滑 12 4.5 存 放 12 5拆卸制动器13 5.1 准备措施 13 5.2 拆卸制动器 13 5.3 更换碟簧组 13

1 概 述 1.1 结 构 SHI系列盘式制动器主要用作中型、重型起重机起升机构和缆机驱动机构的安全制动器,也可用作胶带机等设备的工作制动器,也可能用作夹轨器。 SHI 251松闸压力:105 bar 最大工作压力:150 bar 每侧碟簧组作用力,松闸时:367 kN 碟簧组弹性系数,每mm :约 32.5 kN SHI 252松闸压力:140 bar 每侧碟簧组作用力,松闸时:205 kN 每侧碟簧组作用力,松闸时:480 kN 碟簧组弹性系数,每mm :约 40 kN 技术参数 系统最大压力:205 bar 活塞面积:380 cm2 松闸间隙:(1 - 4)mm 最高松闸压力:532 kN 油缸最大油容量:0.142 升 最长上闸时间:约0.2秒 液压油管规格:18 × 2 液压站电磁阀流量:100 升/分 最长松闸时间:约0.9秒 液压站泵流量:9 升/分

如何进行前盘式制动器的拆装和检查

如何进行前盘式制动器的拆装和检查? (1)拆卸 1)制动钳组件装配关系,如图3-242所示。 2)拧松但不拆下前轮螺母,拆下传动轴开口销。 3)用千斤顶将车辆顶起离地,用安全支架支承稳定车辆。 4)拆下前轮。 5)踩动制动踏板,并保恃在制动位置,拆下传动轴槽螺母;松开制动盘螺栓,但不拆下,如图3-243所示。 6)拆开制动软管与制动钳体的连接,并用塞堵装入软管接头中,防止制动液流出。 7)拆下制动钳螺栓(2件),取下制动钳。 注意:拆卸时应小心,不要损伤制动软管,也不要踩动制动踏板。 8)拆下摩擦块。 9)用专用工具从转向节上拆下制动盘和轮毂。 图3-242 制动钳组件的装配关系 1-制动钳总成(右) 2-制动钳总成(左) 3-制动钳轴销 4-制动钳轴销螺栓

5-摩擦块 6-弹簧片 7-放气螺塞 8-放气螺塞罩9-轮缸活塞 10-活塞防尘罩 11-活塞防尘罩 12-轴销套13、16-螺栓 14、17-垫圈 15-制动盘防尘罩 图3-243 松开制动盘螺栓 1-开口销 2-槽螺母 3-制动盘螺栓 4-制动钳螺栓 10)制动轮缸的分解,如图3-244所示。擦净制动钳。从动轮缸上拆下制动软管.在轮缸接头上装上导气管,向轮缸内吹入压缩空气,如图3-245所示。并用此空气压力,将活塞推出轮缸缸外。 注意:不得使用压力高的压缩空气,压力高的空气会使活塞从轮缸射出而伤入或损伤活塞。应使 用适中的压缩空气逐渐把活塞推出,当用压缩空气推出活塞时,不允许将手指放置在活塞的前方。 用平口旋具,拆下活塞密封,如图3-246所示。注意不要损伤轮缸孔内表面及密封圈。 图3-244前单活塞式制动轮缸的分解 l-防尘罩2-活塞扣皮碗4-缸体5-齿形螺母6-制动间隙调整螺栓

轿车盘式制动器结构设计-汽车专业

摘要 汽车的设计与生产涉及到许多的领域,其独有的安全性、经济性、舒适性等众多指标,也对设计提出了更高的要求。汽车制动系统是汽车行驶的一个重要主动安全系统,其性能的好坏对汽车的行驶安全有着重要影响。随着汽车的行驶速度和路面情况复杂程度的提高,更加需要高性能,长寿命的制动系统。 鉴于制动系统的重要性,本次设计的主要内容就是运输车辆中的制动器,从制动系的功用及设计的要求出发,依据给定的设计参数,进行了方案论证。对各种形式的制动器的优缺点进行了比较后,在前盘后鼓得基础上改为前后都是盘式制动器,保持制动力分配系数的稳定,改善了汽车的制动稳定性,简化了汽车的制动装置,减轻了整车质量,从而提高了汽车在行驶过程中的安全性与稳定性。选择了简单液压驱动机构和双管路系统,选用了间隙自动调节装置,采用比例阀作为制动力的调节装置。 关键词:制动钳; 制动盘; 制动轮缸;制动衬片

Abstract Automobile design and production are involved in many fields, its unique safety, economy, comfort and so many indicators, also raised taller requirement to the design. Automobile braking system is an important vehicle active safety system, and its performance depends on car has an important influence on road safety. As the vehicle of the speed and pavement situation was complex degree rise, more require high-performance, long life of brake system. In view of the importance of brake system, the design of the main content is a transport vehicles, the brake from brake system function and design, according to the requirement of design parameters, given the scheme comparison. On all forms of brake their advantages and disadvantages are discussed, based on HouGu have in QianPan instead of before and after are disc brakes, maintain braking force distribution coefficient, improves the stability of the braking stability and simplify the automobile braking device, reduce the vehicle quality, thereby improving the car while driving in the process of security and stability. Choose a simple hydraulic driving mechanism and double pipeline system, chose clearance automatic adjusting device, proportional valve as brake force adjusting device Keywords:brake disc; Brake wheel cylinder; Brake caliper; Braking facings formulations

盘式制动器结构、工作原理盘式制动器图示前桥驱动桥盘式制动器结构

一、盘式制动器结构、工作原理 1、盘式制动器图示: 前桥驱动桥 2、盘式制动器结构 1、副钳体 2、左摩擦块 3、右摩擦块 4、自调机构 5、气室 6、主钳体 7、制动盘 8、托架 9、滑销 3、工作原理: 制动时,气室(5)推动自调机构(4)向左压出,使右摩擦块(3)与制动盘(7)右侧制动,由于制动盘(7)的轴向移动受限制,因此在反作用力的作用下,主副钳体向右移动,使左摩擦块(2)与制动盘 (7)左侧制动,最后将旋转的制动盘(7)刹住。 二、盘式制动器使用、保养 1、日常检查制动器钳体密封体:

①检查副钳体端2个滑销密封盖,如出现松脱或者遗失及时给予更换或安装; ②检查主钳体端2个滑销端盖,如出现松脱或者遗失及时给予更换或安装; ③检查主钳体上密封帽,如存在裂纹、损伤或者遗失及时给予更换或安装; ④推动主、副钳体滑动检查4个滑销密封圈,如存在裂纹和损伤及时给予更换。 2、定期检查内容: 3、制动盘失效判定标准: ①尺寸检查:如图:A=制动盘厚度45mm(新),B=制动盘厚度37mm(极限); ②裂纹检查:如图所示:检查制动盘上的裂纹和磨损划痕; A1=小裂纹在表面上延伸,此情况允许。 B1=小于0.75a长、1.5mm宽和深的裂纹径向延伸,此情况允许。 C1=小于1.5mm深的环形槽,此情况允许。 D1=径向贯通裂纹是不允许的,制动盘必须更换。 4、摩擦片更换及间隙调整:

4.1、摩擦块拆卸 4.1.1拨出传感器线束的插座,拿出摩擦块压板总成和摩擦块。 4.1.2一字槽螺钉旋具将弧形弹簧拆卸;用平口螺丝刀将传感器线束的内、外感应头撬出。取下摩擦块。 注意:撬内、外感应头应避免将绕在感应头上的线束伤断! 4.2、摩擦块安装 将摩擦块安装在托架内,再用压棒将传感器感应头预先压入摩擦块的U形槽中。 注意:摩擦块安装在托架内后,必须保证摩擦材料与制动盘对应,防止摩擦片装反后出现制动故障;传感器感应头按图示方向装入U形槽,不得装反以及压坏线束。线束插头按箭头方 向拔出 内感应头 外感应头

#盘式制动器使用说明书(改后版)

一、性能与用途 盘式制动器是靠碟形弹簧产生制动力,用油压解除制动,制动力沿轴向作用的制动器。 盘式制动器和液压站、管路系统配套组成一套完整的制动系统。适用于码头缆车、矿井提升机及其它提升设备,作工作制动和安全制动之用。 其制动力大小、使用维护、制动力调整对整个提升系统安全运行都具有重大的影响,安装、使用单位必须予以重视,确保运行安全。 盘式制动器具有以下特点: 1、制动力矩具有良好的可调性; 2、惯性小,动作快,灵敏度高; 3、可靠性高; 4、通用性好,盘式制动器有很多零件是通用的,并且不同的矿井提升机可配不同数量相同型号的盘式制动器; 5、结构简单、维修调整方便。 二、结构特征与工作原理 1、盘式制动器结构(图1) 盘式制动器是由盘形闸(7)、支架(10)、油管(3)、(4)制动器信号装置(8)、螺栓(9)、配油接头(11)等组成。盘形闸(7)由螺栓(9)成对地把紧在支架(10)上,每个支架上可以同时安装1、2、3、4对甚至更多对盘形闸,盘形闸的规格和对数根据提升机对制动力矩的大小需求来确定。 2、盘形闸结构(图2) 盘形闸由制动块(1)、压板(2)、螺钉(3)、弹簧垫圈(4)、滑套(5)、碟形

弹簧(6)、接头(7)、组合密封垫(8)、支架(9)、调节套(10)、油缸(11)、油缸盖(12)、盖(13)、放气螺栓(17)、放气螺钉(19)、O形密封圈(20)、Yx密封圈(21)、螺塞(22)、Yx密封圈(23)、压环(24)、活塞(25)、套筒(26)、联接螺钉(27)、键(28)及其它副件、标件等组成。 3、制动器限位开关结构(图3) 制动器限位开关由弹簧座(1)、弹簧(2)、滑动轴(3)、压板(6)、开关盒(7)、螺栓M4x45(9)、轴套(11)、盒盖(14)、螺钉M4X10(17)、微动开关JW-11(20)、支座板(23)、导线BVR(24)、装配板(29)及其它副件、标件等组成。 4、盘式制动器的工作原理(图4) 盘式制动器是靠碟形弹簧预压力制动,油压解除制动,制动力沿轴向作用的制动器。提升机制动时,图2中碟形弹簧(6)的预压力迫使活塞(25)向制动盘移动,通过联接螺钉(27),将滑套(5)连同其上的制动块(又名闸瓦)推出,使制动块(1)与卷筒的制动盘接触,并产生正压力,形成摩擦力而产生制动。提升机松闸运行时,油缸(11)A腔中充入压力油,活塞(25)再次压缩碟形弹簧(6),并通过联接螺钉(27)带动滑套(5)向后移动(离开制动盘),从而使制动块(1)离开制动盘,解除制动力(即松闸)。 滑套(5)是由钢套和拉杆组成的装配件,其拉杆承受制动时的切向力。制动块(1)嵌合在滑套(5)的燕尾槽中,并用压板(2)、螺钉(3)将其固定。键(28)防止滑套(5)转动。转动放气螺钉(19),可排出油缸中的存留气体,以保证盘形闸能灵活地工作。盘形闸在密封件允许泄漏范围内,可能有微量的内泄,虽内泄油可起润滑滑套(5)与支架(9)的作用,但时间较长时,内泄油可能存留过多,因此应定期从螺塞(22)处排放内泄油液。

汽车底盘构造与维修-教案 第55、56节 盘式制动器检查教案

教学设计

教学过程 教学环节教师讲授、指导(主导)内容 学生学习、 操作(主体)活动 时间 分配 一二组织教学 一、工具准备 悦动轿车一辆、百分表及磁力表座、开口扳手、轮缸活塞拆 装专用工具、气动扳手及21mm套筒、外径千分尺,钢尺、抹 布、举升机、工具车。 二、项目实施 1、将车辆正确停放到举升机平台上。 2、安装泡沫垫块,同时撤下车轮挡块。(注意垫块的安装位 置,应正确垫放在汽车下部,两边距离举升机边缘约4cm,外 侧与汽车底部约平行) 3、举升车辆,当垫块与汽车底部刚发生接触时,应检查确认 垫块支撑点位置是否正确,如不正确,应及时将车降下,及 时调整,确保升车的安全可靠。 4、技工甲举升操作举升机开关,技工乙在车辆的另外一侧, 环视汽车周围,应无障碍物影响汽车举升。 5、将车辆举升至距离地面约20cm左右时,停止继续举升车 辆,技工甲走向汽车前部,技工乙走向汽车后部,检查车体 的前部和后部是否稳定可靠,如出现异常晃动,应立即停止 举升汽车,将车辆降下,重新调整举升位置,没有问题后, 可继续举升车辆。 6、将车辆举升至中位,同时技工甲与技工乙应检查举升机的 落锁情况是否正常。(具体情况根据操作技工的身高而定, 大约在胸口位置) 7、对车轮进行标记。 教师介绍这次教学 任务内容,学生了解 本次课学习内容。 通过图片介绍流程 2min 8min

8、连接气动扳手,并校核气功扳手的正转或反转。(注意,此时严禁将套筒连接到气动扳手上,防止由于气动扳手的卡扣松动,造成套筒的滑落伤人) 9、按照对角原则,拆卸车轮。(气动扳手的转速调整,应按照正一反三原则,即拆卸时转速应调整在3左右,安装时转速调整在1左右,具体情况视气源压力而定) 10、拆下第一个螺栓后,不要将螺栓取下,将第一个螺栓重新安装回去。(将螺栓重新安装,目的是为了当拆下剩下螺栓时,汽车车轮不会掉落) 11、将车轮拆下后,安全可靠的放置。教师讲授,学生认真 听讲,记好笔记。 注意事项 10min 10min

相关文档
最新文档