正弦定理和余弦定理详细讲解

正弦定理和余弦定理详细讲解
正弦定理和余弦定理详细讲解

正弦定理、余弦定理及其应用

1.考查正弦定理、余弦定理的推导;

2.利用正、余弦定理判断三角形的形状和解三角形;

3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中

恒等变换、诱导公式等知识点进行综合考查.

1.理解正弦定理、余弦定理的意义和作用;

2.通

过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.

基础知识梳理

正弦定理: 七=光=七 =2R ,其中R 是三角形外接圆的半径.由正弦定理可以 sin A sin B sin C

变形:(1)a : b : c = sin_A : sin_B :. sin_C ; (2)a = 2Rsin_A , b = 2Rsin_B , c = 2Rsin_C ; (3)sin A = 2R sin B = ?;, sin C = 等形式,解决不同的三角形问题.

余弦定理: a 2= b 2+ c 2 — 2bccos A , b 2= a 2 + c 2 — 2accos B , c 2= a 2+ b 2 — 2abcos C . 余 、亠 、卄 b 2 + c 2— a 2 _ a 2+ c 2— b 2 _ a 2 + b 2— c 2

弦疋理可以变形:cos A =

, cos B =

, cos C =

.

2bc 2ac

2ab

111

abc 1

? 宀"亠「 L 「一 、,

&ABC = 2absin C = gbcsin A = gacsin B = 4R = ?(a + b + c) r(r 是二角形内切圆的半径 ),并 可由

此计算R 、r.

A 为钝角或直角

1.

3.

4.

A 为锐角

在厶ABC中,已知a、b和A时,解的情况如下:

图形

关系式 a = bs in A bsin A

a >

b a>b 解的个数

一解

两解

一解

一解

[难点正本疑点清源]

1. 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,

即在△ ABC 中,A>B? a>b? sin A>sin B ; tanA+tanB+tanC=tanA tanB tanC ;在锐角三角 形中,cosA

2.

根据所给条件确定三角形的形状,主要有两种途径:

(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.

例 1 ?已知在 ABC 中,c 10, A 45°, C 思路点拨:先将已知条件表示在示意图形上(如图) 然后用三角形内角和求出角 B ,最后用正弦定理求出边

解析:Q a C ,

sin A sinC 3

...b 込 10 sin105°

20sin75°

sinC

sin 30

总结升华:

1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;

2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从 而恰当地选择解答方式?

举一反三:

【变式1】在 ABC 中,已知A 32.0°, B 81.8° , a 42.9cm ,解三角形。

【答案】根据三角形内角和定理, C 180° (A B) 180° (32.0° 81.80) 66.2° ; csin A

10 sin 45

…a

o ■

sin C

sin 30 ??? B 180° (A C) 105o ,

▼ b

c

又 ---- ------

30o ,解三角形.

,可以确定先用正弦定理求出边

a ,

20

根据正弦定理, asinB

si nA 42.9s in 81.8°

sin 32.0

80.1(cm); B

10 2 , sin B sin C

当 C 30°时,A 90°,.?.a ? C 60°即 C 为锐角, ? C 30°,A 90°

? a 4b ~c 2 2 ? 总结升华:

1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。

2. 在利用正弦定理求角 C 时,因为sinC sin (180° C ),所以要依据题意准确确定 角C 的范围,再求出角C .

3. 一般依据大边对大角或三角形内角和进行角的取舍 类型二:余弦定理的应用:

例3.已知 ABC 中,AB 3、BC 37、AC 4,求 ABC 中的最大角。

根据正弦定理, asi nC 42.9si n66.2° C

sin A sin 32.0°

74.1(cm).

【变式2】在 ABC 中, 已知 B 75°, C 60° ,

c 5,求 a 、A .

【答案】A 180°

(B C)

180° (75°

60°)

45°,

根据正弦定理

a sin 45°

o )

sin 60 ??? a 5花

3

【变式3】在 ABC 中, 已知 sin A:sin B:sin C 1: 2:3,求 a: b: c

a

b c 【答案】根据正弦定理 ----- ------ ------ ,得a: b :c sin A:si nB:si nC 1: 2:3 .

sin A sin B

sin C

例 2?在 ABC 中,b 、_3, B 60°, c 1,求:a 和 A , C . 思路点拨:先将已知条件表示在示意图形上 (如图),可以确定先用正弦定理求出角

然后用三角形内角和求出角

解析:由正弦定理得:

A ,最后用正弦定理求出边 a . b

sin B

csin B

?- sin C ----------

b

sin 60°

(方法一)??? 0° C 180°, ??? C 30°或 C 150°, 当 C 150° 时,B C 210°

180°,(舍去);

(方法二)??? b B 60°,

【变式3】在ABC 中,若 a 2 b 2

c 2 bc ,求角

A .

【答案】?- b 2 c 2 a 2

. b 2

c 2

bc , ? c°s A ----------

2

a

2bc

??? 0° A 180°,

? A 120°

思路点拨:首先依据大边对大角确定要求的角,然后用余弦定理求解

解析:???三边中BC ,37最大,? BC 其所对角A 最大,

?/ 0° A 180°, ? A 120°

故 ABC 中的最大角是A 120o . 总结升华: 1.

ABC 中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;

2. 用余弦定理时,要注意公式中的边角位置关系 举一反三:

【变式1】已知 ABC 中a 3, b 5, c 7,求角C .

2 2 2 2 2 2

【答案】根据余弦定理:cosC

a

-

5 3

2ab

235

【变式2】在 ABC 中,角 代B,C 所对的三边长分别为 a,b,c .

a: b:c .6:2:( 3 1),求 ABC 的各角的大小.

同理可得A 60° ;

??? C 180° A B 75°

根据余弦定理:

8SA ABIABJ 2

32 42 G 37)2

?/ 0° C 180°,

??? C 120°

【答案】设a x 6k , b

2k , c

1

根据余弦定理得:c°sB

6

3 1^4

1 v 6

?/ 0° B 180° ,? B

45°;

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得 BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶 A 的仰角为θ,求塔高A B . 分析:本题是一个高度测量问题,在?BCD 中,先求 出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出 塔高AB. 解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得 sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠= tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高. 二、在测量不可到达的两点间距离中的应用 例2某工程队在修筑公路时,遇到一个小山 包,需要打一条隧道,设山两侧隧道口分别为A 、B , 为了测得隧道的长度,在小山的一侧选取相距3km 的C 、D 两点高,测得∠ACB=750, ∠BCD=450 , ∠ADC=300,∠ADC=450(A 、B 、C 、D ) ,试求隧道的长度. 分析:根据题意作出平面示意图,在四边形 ABCD 中,需要由已知条件求出AB 的长,由图可知,在?ACD 和?BCD 中,利用正弦定理可求得AC 与BC ,然后再在?ABC 中,由余弦定理求出AB. 解析:在?ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3. 在?BCD 中,∠CBD==600 由正弦定理可得,BC=003sin 75sin 60=26)2 +

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

正弦定理和余弦定理

正弦定理和余弦定理 高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查. 学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合. 1. 正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C = c 2R 等形式,解决不同的三角形问题. 2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形: cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =1 2 (a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、 r . 4. 在△ABC 中,已知a 、b 和A 时,解的情况如下: [1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ?a >b ?sin A >sin B ;tanA+tanB+tanC=tanA·tanB·tanC ;在锐角三角形中,cos A

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

正弦定理和余弦定理测试题

正弦定理和余弦定理测试题 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.4 3 B .8-4 3 C .1 D.2 3 2.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( ) A .0

(完整版)立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

正弦定理余弦定理练习题及答案

正弦定理、余弦定理练习题 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、选择题(共20题,题分合计100分) 已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为 1.A.- B. C.- D.λλ则满足此==中,在△ABCa,b,°=45A,2.条件的三角形的个数是 D.无数个A.0B. 1 C.2,则三角形为a cos Bb在△ABC中,cos A=3. D.C.锐角三角形等边三角形等腰三角形. A.直角三角形 B 22,则最大角为x2x+1(>1)x已知三角形的三边长分别为+1,+xx和-14.° C.60 D.75° 120B A.150° .° 在△ABC中,=1,5.,=2. +((·)+ )则=5+2边等于|| A. 5-2.B.

C. D.,b°BABC在△中,已知=30,=50=150c,6.那么这个三角形是

等腰三角形或直角等边三角形 B. 直角三角形 C.D. 等腰三角形A.三角形2222C+c, 则此三角形为sin B=2bc cos B cos C在△ABC中,若b sin7.等腰直角三角形 C.D.等边三角形 A. 直角三角形 B.等腰三角形 正弦定理适应的范围是8. D.任意△钝角△ A.Rt△B.锐角△ C.= =45°,则c°a已知△ABC中,=10,B=60,C9.B. 10 A.10+ C. )-1(. (+1 )D.10A sin<a<b,则此三角形有ABC在△中,b10.无解 C. 两解 D.不确定. A.一解B 5和3,它们夹角的余弦是方程5x-7x-6=0的根,则三角形的另一11.边 2三角形的两边分别为 长为

正余弦定理复习教案设计

正弦、余弦定理 一. 教学内容: 正弦、余弦定理 二. 教学重、难点: 1. 重点: 正弦、余弦定理。 2. 难点: 运用正、余弦定理解决有关斜三角形问题。 一、正弦定理和余弦定理 1、正弦定理和余弦定理 cos ,cos ,cos . bc A ac B ab C 注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。(∵sinA>sinB ? 22R R >?a>b ?A>B ) 二、应用举例 1、实际问题中的常用角 (1)仰角和俯角 在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)

(2)方位角 从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。仰角与俯角是相对于水平线而言的,而方位角是相对于正北方向而言的。 (3)方向角:相对于某一正方向的水平角(如图③) ①北偏东α即由指北方向顺时针旋转α到达目标方向; ②北偏本α即由指北方向逆时针旋转α到达目标方向; ③南偏本等其他方向角类似。 (4)坡度:坡面与水平面所成的二面角的度数(如图④,角θ为坡角) 坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡比) 2、ΔABC 的面积公式 (1)1 ()2a a S a h h a = 表示边上的高; (2)111sin sin sin ()2224abc S ab C ac B bc A R R ====为外接圆半径; (3)1 ()()2 S r a b c r =++为内切圆半径。 【典型例题】 [例1] 已知在ABC ?中,?=∠45A ,2=a ,6=c 解此三角形。 练习:不解三角形,判断下列三角形解的个数。 (1)5=a ,4=b ,?=120A (2)7=a ,14=b ,?=150A (3)9=a ,10=b ,?=60A (4)50=c ,72=b ,?=135C 正弦定理余弦定理的应用:

正弦定理、余弦定理检测题

正弦定理、余弦定理检测题 、 知识点摘要 1. 正弦定理公式: 2. S?ABC 的面积公式: 3. 余弦定理公式:① ;② 4. 解三角形的两种思想:① :② _ 、 选择题 1 在?ABC 中,若..3a 2bsinA ,则 B =() 2 5 A. - B . — C .—或 D 或工 3 6 3 3 6 6 2 .在?ABC 中,已知b J2c 1,B 45o ,则 a=() A 拆 <2 . B .恵 4 C . <2 1 D . 3 42 2 2 3. ?ABC 中,已知 A B 2, AC 3, AB ? AC 3,则 A ( ) A . 60 0 B . 1200 C . 300 D . 1500 4.在?ABC 中, / B=30°,AB=2 J3,AC=2,则厶 ABC 的面积为( ) A . 2 . 3 B . ,3 C . 2,3 或 4.3 D . 3 或 2 . 3 5.在?ABC 中,2cosBsinA=sinC ,贝U ?ABC 形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 2 39 V39 .39 4厢 A.- B. C. D. 3 3 3 7.海面上有 A,B 两个小岛相距 10nmile ,从A 岛望 B 岛和 C 岛都成60o 的视角,从B 岛望A 岛和C 岛成 75o 的视角, 则B,C 间的距离是 ( ) A. 5、2nmile B. 5 6nmile C. 10 . 3nmile c 106 D. n mile 3 8. 在?ABC 中,已知a=x,b=2,B=45 如果利用正弦定理解三角形时有两解,则 x 的取值范围是( ) A. 2 x 2、2 B. 2 x 2 . 2 C. x>2 D.x<2 2 2 2 9. 在厶 ABC 中,a -c +b =ab,则/ C=() A.60o B.45 或 135o C.120 D.30 10. 在锐角△ ABC 中,若a=1,b=2,则边c 的取值范围是( ) A. (0,、一5) B. (1, ■■ 5) C. ( - 3, 一5) D.(1,3) 6.在?ABC 中,A = 60o , b=1 ,S △ AB K 3,则 a b c sin A sin B sin C

相关文档
最新文档