金属焊接性复习

金属焊接性复习
金属焊接性复习

金属焊接性复习

1.焊接性概念

焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。

2.碳当量

把钢中合金元索的含量按相当于若干碳含量折算并叠加起来,作为粗略评定钢材冷裂纹倾向的参数指标,即所谓碳当量。

3.不锈钢的耐蚀性能定义

(1)均匀腐蚀均匀腐蚀是指接触腐蚀介质的金属表面全部产生腐蚀的现象。

(2)点腐蚀点腐蚀是指在金属材料表面大部分不腐蚀或腐蚀轻微,而分散发生的局部腐蚀,又称坑蚀或孔蚀。

(3)缝隙腐蚀在电解液中,如在氯离子环境中,不锈钢间或与异物接触的表面间存在间隙时,缝隙中溶液流动将发生迟滞现象,以至溶液局部Cl-浓化,形成浓差电池,从而导致缝隙中不锈钢钝化膜吸附Cl-而被局部破坏的现象称为缝隙腐蚀。

(4)晶间腐蚀在晶粒边界附近发生的有选择性的腐蚀现象。

(5)应力腐蚀也称应力腐蚀开裂,是指不锈钢在特定的腐蚀介质和拉应力作用下出现的低于强度极限的脆性开裂现象。

4.凝固模式

所谓凝固模式,首先是指以何种初生相开始结晶进行凝固过程,其次是指以何种相完成凝固过程。

5.加热减应区法

加热减应区法是在焊件上选定一处或几处适当的部位,作为所谓的“减应区”,焊前、焊后及焊接过程中,对其进行加热和保温,以降低或转移焊接接头拘束应力,防止裂纹的工艺方法。

6.热轧钢和正火钢粗晶区脆化

(1)被加热到1200℃以上的热影响区过热区可能产生粗晶区脆化,韧性明显降低。

(2)原因:由于热轧钢焊接时,采用过大的焊接热输入,粗晶区将因晶粒长大或出现魏氏组织而降低韧性;焊接热输入过小,粗晶区中马氏体组织所占的比例增大而降低韧性。

含有碳、氮化物形成元素的正火钢采用过大的焊接热输入时,粗晶区的V析出相基本固溶,这时V化合物抑制奥氏体晶粒长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体等,导致粗晶区韧性降低和时效敏感性的增大。

(3)措施:对含碳量偏高的热轧钢,焊接热输入要适中;对于含有碳、氮化物形成元素的正火钢,应选用较小的焊接热输入。如果为了提高生产率而采用大热输入时,焊后应采用800℃——1050℃正火处理来改善韧性。

7.热轧钢和正火钢焊接材料的选择

(1)选择与母材力学性能匹配的相应级别的焊接材料

从焊接接头力学性能“等强匹配”的角度选择焊接材科,一般要求焊缝的强度性能与母材等强或稍低于母材。

(2)同时考虑熔合比和冷却速度的影响

薄板焊接时熔合比较大,应选用强度较低的焊接材料,厚板深坡口则相反。

(3)考虑焊后热处理对焊缝力学性能的影响

当焊缝强度余量不大时,焊后热处理(如消除应力退火)后焊缝强度有可能低于要求。因此,对于焊后要进行正火处理的焊缝,应选择强度髙一些的焊接材料。

8.低碳调制钢热影响区脆化

在焊接热循环作用下,t8/5继续增加时低碳调质钢热影响区过热区易发生脆化,即冲击韧性明显降低。热影响区脆化的原因除了奥氏体晶粒粗化的原因外,更主要的是由于上贝氏体和M-A组元的形成。

控制焊接热输入和采用多层多道焊工艺,使低碳调质钢热影响区避免出现髙硬度的马氏体或混合组织,可改善抗脆能力,对提高热影响区韧性有利。

9.低碳调质钢焊接工艺特点

这类钢的特点是碳含量低,基体组织是强度和韧性都较高的低碳马氏体,下贝氏体,这对焊接有利。

低碳调质钢焊接时要注意两个基本问题:(1)要求马氏体转变时的冷却速度不能太快,使马氏体有一“自回火”作用,以防止冷裂纹的产生;(2)要求在800℃——500℃之间的冷却速度大于产生脆性混合组织的临界速度。这两个问题是制定低碳调质钢焊接参数的主要依据。此外,在选择焊接材料和制定焊接参数时,应考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。

10.低碳调质钢焊接参数的选择

(1)焊接热输入的确定

焊接热输入的确定以抗裂性和对热影响区韧性要求为依据。从防止冷裂纹出发,要求冷却速度慢为佳,但对防止脆化来说,却要求冷却快较好,因此应兼顾两者的冷却速度范围。这个范围的上限取决于不产生冷裂纹,下限取决于热影响区不出现脆化的混合组织。因此,所选的焊接热输入应保证热影响区过热区的冷却速度刚好在该区域内。

(2)预热温度和焊后热处理

当低碳调质钢板厚不大,接头拘束度较小时,可以采用不预热焊接工艺。当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采取预热措施,在焊接低碳调质钢时采用较低的预热温度。

低碳调质钢焊接结构一般是在焊态下使用,正常情况下不进行焊后热处理。除非焊后接头区强度和韧性过低、焊接结构受力大或承受应力腐蚀以及焊后需要进行髙精度加工以保证结构尺寸等,才进行焊后热处理。为了保证材料的强度性能,焊后热处理温度必须比母材原调质处理的回火温度低30℃左右。

11.中碳调质钢淬硬性和冷裂纹

要点:中碳调质钢的冷裂倾向比低碳调质钢更为严重的原因主要在马氏体的类型和性能上。低碳马氏体有“自回火”作用,所以冷裂纹倾向较小。

淬硬性和冷裂纹产生原因:

中碳调质钢的淬硬倾向十分明显,焊接热影响区容易出现硬脆的马氏体组织,增大了焊接接头区的冷裂纹倾向。母材含碳量越高,淬硬性越大,焊接冷裂紋倾向也越大。中碳调质钢对冷裂纹的敏感性之所以比低碳调质钢大,除了淬硬倾向大外,还由于M s点较低,在低温下形成的马氏体难以产生“自回火”效应。由于马氏体中的碳含量较高,有很大的过饱和度,点阵畸变更严重,因而硬度和脆性更大,冷裂纹敏感性也更突出。

防止措施:焊接中碳调质钢时,为了防止冷裂纹,应尽量降低焊接接头的含氢量,除了采取焊前预热措施外,焊后须及时进行回火处理。此外,中碳调质超高强钢还具有应力腐蚀开裂敏感性。为了降低其焊接接头的应力腐蚀开裂倾向,应采用热量集中的焊接方法和较小的焊接热输入,避免焊件表面的焊接缺陷和划伤。

12.中碳调质钢的焊接工艺特点

中碳凋质钢的淬透性很大,因此焊接性较差,焊后的淬火组织是硬脆的高碳马氏体,不仅冷裂纹敏感性大,而且焊后若不经热处理时,热影响区性能达不到原来基体金属的性能。

(1)退火或正火状态下焊接

1)焊后通过整体调质处理获得性能满足要求的焊接接头,选择焊接材料的要求是不产生冷、热裂纹,而且要求焊缝金属与母材在同一热处理工艺下调质处理,能获得相同性能的焊接接头。

2)在焊后调质的情况下,焊接参数的确定是保证不出现冷裂纹,接头性能由焊后热处理来保证。因此可采用很高的预热温度和层间温度。当来不及焊后调质处理,为防止延迟裂纹,需在焊后进行一次中间热处理。

3)采用局部预热时,预热的温度范围离焊缝两侧应不小于100mm,焊后若不能及时调质处理应进行680℃回火处理。

(2)调质状态下焊接

1)为消除热影响区的淬硬组织和防止冷裂纹的产生,必须采用适当预热、层间温度控制、中间热处理,并应焊后及时进行回火处理。

2)为减小热影响区软化,从焊接方法考虑,应采用热量集中、能量密度越大的方法越有利,而且焊接热输入越小越好。

3)对于必须在调质状态下焊接,而且焊后不能进行调质处理的焊接构件,应采用尽可能小的焊接热输入。

4)选材时没有必要考虑成分和热处理规范与母材匹配的问题,可采用塑韧性较好的奥氏体铬镍钢或镍基焊条防止冷裂纹产生。

(3)焊接方法及焊接材料

1)焊接方法:中碳调质钢常用的焊接方法有焊条电弧焊、气体保护焊、埋弧焊等。采用热量集中的脉冲氩弧焊、等离子弧焊、电子束焊等方法,有利于减小焊接热影响区宽度,获得细晶组织,提高焊接接头的力学性能。中碳调质钢应采用尽可能小的焊接热输入,可以降低热影响区淬火区的脆化,同时采用预热、后热等措施,还能提高抗裂性能,改善淬火区的组织性能。采用小热输入还有利于减小软化区,降低软化程度。

2)焊接材料:中碳调质钢焊接材料应采用低碳合金系,降低焊缝金属的S、P杂质含量,以确保焊缝金属的韧性、塑性和强度,提高焊缝金属的抗裂性。根据焊缝受力条件、性能要求及焊后热处理情况选择焊接材料。

3)预热和焊后热处理:预热和焊后热处理是中碳调质钢的重要工艺措施,是否预热以及预热温度的高低根据焊件结构和生产条件而定。除了拘束度小,构造简单的薄壁壳体或焊件不用预热外,一般情况下,中碳调质钢焊接时都要采取预热或及时后热的措施,预热温度一般为200——350℃。若焊接结构件焊后不能及时进行调质处理,需焊后及时进行中间热处理,如低温回火或650——680℃高温回火。若焊件焊前为调质状态,预热温度、层间温度及热处理温度应比母材淬火后的回火温度低50℃。进行局部预热时,应在焊缝两侧100mm 内均匀加热。

13.奥氏体不锈钢的晶间腐蚀(此处为重点)

18-8钢焊接接头有三个部位能出现晶间腐蚀现象,分别是HAZ敏化区、焊缝区、熔合区。

晶间腐蚀产生原因:由于奥氏体不锈钢加热到450——850℃温度区间会发生敏化,其机理是过饱和固溶的碳向晶粒边界扩散,与晶界附近的铬结合形成铬的碳化物Cr23C6或C6,并在晶界析出,由于碳比铬的扩散快得多,铬来不及从晶内补充到晶界附近,以至于邻近晶界的晶粒周边层Cr的质量分数低于12%,即所谓“贫铬”现象,从而造成晶间腐蚀。

晶间腐蚀防止措施:

(1)焊缝区晶间腐蚀

为防止焊缝发生晶间腐蚀:一是通过焊接材料,使焊缝金属或者成为超低碳情况或者含有足够的稳定化元素Nb;二是调整焊缝成分以获得一定数量的铁素体相。

(2)热影响区敏化区晶间腐蚀

为防止18-8钢敏化区腐蚀,在焊接工艺上应采取小热输入、快速焊过程、以减少处于敏化加热的时间。

(3)刀状腐蚀即在熔合区产生的晶间腐蚀

为防止18-8Ti和18-8Nb钢的刀状腐蚀,18-8Ti和18-8Nb钢,最好控制ωC<0.06%。焊接时尽量减少过热。如尽量避免交叉焊缝和采用小的热输入,面向腐蚀介质的一面无法放在最后施焊时,应调整焊缝尺寸和焊接参数,使另一面焊缝焊接时所产生的实际敏化加热热影响区不落在第一面的表面过热区上。此外,稀土元素如La、Ce可加速碳化物在晶内的沉淀,可有效地防止刀状腐蚀。

14.奥氏体钢焊接热裂纹的原因

(1)奥氏体钢的热导率小和线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中可形成较大的拉应力。焊缝金属凝固期间存在较大拉应力是产生热裂纹的必要条件。

(2)奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于有害杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹。

(3)奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限,也能形成易溶共晶,这样,焊缝及近缝区都可能产生热裂纹。

15.凝固模式对热裂纹的影响

晶粒润湿理论指出,偏析液膜能够润湿γ-γ、δ-δ界面,不能润湿γ-δ异相界面。以FA模式形成的δ铁素体呈蠕虫状,妨碍γ枝晶支脉发展,构成理想的γ-δ界面,因而不会有热裂倾向。单纯F或A模式凝固时,只有γ-γ或δ-δ界面,所以会有热裂倾向。以AF模式凝固时,由于是通过包晶/共晶反应面形成γ+δ,这种共晶δ不足以构成理想的γ-δ界面,所以仍然可以呈现液膜润湿现象,以至还会有一定的热裂倾向。

16.四种凝固模式:1)以δ相完成整个凝固过程,凝固模式以F表示;2)初生相为δ,依次发生包晶和共晶反应,这种凝固模式以FA表示;3)初生相为γ,依次发生包晶和共晶反应,这种凝固模式则以AF表示;4)初生相为γ,直到凝固结束不再发生变化,因此用A 表示这种凝固模式。

16.超低碳复相马氏体钢

超低碳复相马氏体钢成分特点是钢的含碳量降低到0.05% 以下并添加Ni,此外也可能含有少量Mo、Ti 或Si。这种钢可在淬火状态下使用,因为低碳马氏体组织并无硬脆性。

含Ni>4%以上的超低碳合金钢淬火后形成低碳马氏体M,经回火加热至As以上即可开始发生M→γ′的“逆转变”。γ′富C富Ni,因而很稳定,冷却至-196℃也不会再转变为马氏体,为韧性相。因而回火后获得的是超微细化的M+γ′复相组织,具有优异的强韧性组合,所以名之为“超低碳复相马氏体钢”。

17.马氏体钢焊前预热和焊后热处理

采用同质焊缝焊接马氏体不锈钢吋,为防止焊接接头形成冷裂纹,宜采取预热措施。预热温度的选择与材料厚度、填充金属种类、焊接方法和构件的拘束度有关,其中与碳含量关系最大。马氏体型不锈钢的预热温度不宜过髙,否则将使奥氏体晶粒粗大,并旦随冷却速度

降低,还会形成粗大铁素体加晶界碳化物组织,使焊接接头塑性和强度均有所下降。

焊后热处理的目的是降低焊缝和热影响区硬度,改善其塑性和韧性,同时减少焊接残余应力。焊后热处理必须严格控制焊件的温度,焊件焊后不可随意从焊接温度直接升温进行回火热处理。正确的方法是:回火前使焊件适当冷却,让焊缝和热影响区的奥氏体基本分解为马氏体组织。

18.双相不锈钢焊接的冶金特性

(1)焊缝金属的组织转变

焊接过程是不平衡冷却过程,与平衡冷却过程相比,室温所得的奥氏体γ相的数量比平衡时少得多,也就是说,同样成分的焊缝和母材,焊缝中γ相的要比母材少得多。

获得适当的相比例方法

1)增加奧氏体化元素,如Ni,增加γ;

2)焊后短时固溶处理也可增多一些γ相;

3)多层焊接热循环.、焊后缓冷也会起到一些改善效果。

(2)焊接热影响区的组织转变

19.双相不锈钢焊接接头的析出现象

双相不锈钢焊接时,有可能发生3种类型的析出,即铬的氮化物、二次奥氏体及金属间相。

当焊缝金属铁素体数量过多或为纯铁素体组织时,很容易有氮化物的析出,这与在髙温时,氮在铁素体中的溶解度高,而快速冷却时溶解度又下降有关。尤其是在焊缝近表面,由于氮的损失,使铁素体量增加,氮化物更易析出。为了增加焊缝金属的奥氏体数量,可在填充金属中提高镍、氮元素的含量。另外,采用大的热输入焊接,也可防止纯铁素体晶粒的生成而引起的氮化物的析出。

在含氮量髙的超级双相不锈钢多层焊时会出现二次奥氏体的析出。特别是前道焊缝采用低热输入而后续焊缝采用大热输入焊接时,部分铁素体会转变成细小分散的二次奥氏体,会降低焊缝的耐腐蚀性能,尤其以表面析出影响更大。

采用较髙的热输入和较低的冷却速度有利于奥氏体的转变,减少焊缝金属的铁素体量,但是热输入过高或冷却速度过慢会使金属间相的析出。通常双相不锈钢焊缝金属不会发现有σ相析出,但在焊接材料或热输入选用不合理时,也有可能出现σ相。

20.铝及其合金熔焊时的焊缝气孔

(1)铝及其合金熔焊时形成气孔的原因

1)弧柱气氛中水分的影响

由弧柱气氛中水分分解而来的氢,溶入过热的熔融金属中,凝固时来不及析出成为焊缝气孔。这时所形成的气孔具有白亮内壁的特征。

2)氧化膜中水分的影响

在正常的焊接条件下,对于气氛中的水分已严格限制,这时,焊丝或工件氧化膜中所吸附的水分将是生成焊缝气孔的主要原因。氧化膜不致密、吸水性强的铝合金比氧化膜致密的纯铝具有更大的气孔倾向。

(2)防止焊缝气孔的途径

防止焊缝中的气孔可从两方面着手:一是限制氢溶入熔融金属,或者是减少氢的来源,或减少氢与熔融金属作用的时间;二是尽量促使氢自熔池逸出,这就要改善冷却条件以增加氢的逸出时间。

1)减少氢的来源焊接材料要严格限制含水量,使用前需干燥处理;焊前处理,彻底清除表面的氧化膜;正反面全面保护,配以坡口刮削

2)控制焊接参数 TIG焊接时,采用小热输入以减少熔池存在时间,适当提高焊接速

度,从而减少气氛中氢的溶入;适当增大焊接电流,保证根部熔合,以利根部氧化膜中的气泡浮出。在MIG焊条件下,增大熔池时间以利气泡逸出,降低焊接速度和提高热输人,有利于减少焊缝中的气孔。必要时可采取预热来降低接头冷却速度,以利气体逸出。改变弧柱气氛的性质,对焊缝气孔倾向也有一些影响。

21.铜的焊接热裂纹

形成原因:1)铜与杂质形成多种低熔点共晶,氧对铜的危害性最大,它不但在冶炼时以杂质的形式存在于铜中,在焊接过程中还会以氧化亚铜的形式溶入。

2)纯铜及黄铜的收缩率及线膨胀系数较大,焊接应力较大,促使热裂纹形成。

防止措施,

1)严格限制铜中的杂质含量。

2)增强对焊缝的脱氧能力,通过焊丝加入Si、Mn、C、P等合金元索;C与O生成气体逸出,其余脱氧产物进入熔渣浮出。

3)选用能获得双相组织的焊丝,使焊缝晶粒细化,使易熔共晶物分散、不连续。

22.铸铁的种类

按照碳元素在铸铁中存在的形式和石墨形态,可将铸铁分为白口铸铁、灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁等五大类。

23.铸铁焊接冷裂纹

(1)冷裂纹产生的原因

灰铸铁焊接接头冷裂纹,主要受焊接应力即热应力的影响,只要热应力不超过焊缝及热影响区金属的塑性变形能力就不会开裂,白口和马氏体等脆硬组织通过影响焊缝及热影响区金属的力学性能和热应力而促进裂纹,氢的影响不大。

(2)防止冷裂纹的措施

同质焊缝

1)对焊补工件进行整体高温预热

2)可以调节铸铁焊缝的成分,使得石墨以蠕虫状或球状析出,提高焊缝金属的力学性能

3)在铸铁型焊缝中提髙碳含量,并加人一定量的合金元素,利用二次连续相变产生的应力松弛效应,可以有效地防止焊缝出现冷裂紋。

异质焊缝

1)在低碳钢焊条药皮中可以加入大量赤铁矿和大理石等矿物质,提高电弧和熔渣的氧化性2)采用EZV型髙钒铸铁焊条3)采用“短段焊”、“断续焊”等工艺措施,采用小规范焊接。4)可以采用预热焊方法防止焊接接头冷裂纹。

24.同质焊缝电弧冷焊

优点是焊接材料价格较低,焊补区与母材颜色一致,可以减少能源消耗,改善焊接条件,降低焊补成本,缩短焊补周期。但是,与热焊和半热焊相比,焊接熔池及热影响区冷却速度快,容易产生白口及淬硬组织,焊接接头裂纹倾向也较大。若缺陷体积偏小则热输入不足,冷却速度快,使焊缝及半熔化区形成白口。

同质焊缝电弧冷焊要点:1)提髙焊条药皮的石墨化能力,使焊缝含有较高的碳、硅,还可以加入多元少量有孕育作用的合金元素,促进石墨化,防止白口。2)采用大电流、大直径、连续焊工艺,降低焊缝的冷却速度,来增大焊接热输入,改善基体组织,提高焊缝的抗冷裂纹性能。3)还可以使用具有贝氏体和马氏体连续相变松弛应力效应的焊条进行灰铸铁不预热电弧焊,提髙铸铁型焊缝的抗冷裂纹性能。

25.异质焊缝电弧冷焊工艺

焊接工艺内容包括:焊前准备、焊接参数的选择、焊接方向及焊道顺序,以及采取的特殊措施。

异质焊缝电弧冷焊工艺要点可以归纳为四句话:“短段断续分散焊,较小电流熔深浅,每段锤击消应力,退火焊道前段软”。

使用异质焊接材料进行铸铁电弧冷焊时,在保证焊缝金属成形及与母材熔合良好的前提下,尽量用小规格焊条和小规范施焊,并采用短孤焊、短段焊、断续焊、分散焊及焊后立即锤击焊缝等工艺措施,适当提髙焊接速度,不作横向摆动,并注意选择合理的焊接方向及顺序。其目的是降低焊接应力,减小半熔化区和热影响区宽度,改善接头的加工性及防止裂纹产生。

金属焊接性试题

一、名词解释 1.工艺焊接性:在一定工艺焊接条件下,能否获得优质、无缺陷的焊接接头的能力。 2.碳当量:把钢中包括碳在内的合金元素对淬硬、冷裂及脆化等的影响折合成碳的相当含量。 3.晶间腐蚀:是起源于金属表面沿金属晶界发生的有选择的深入金属内部的腐蚀。 4.高温脆性:指钢在变形温度为0.4~0.6TT时所出现的高温塑形急剧下降的现象。 5.焊接性:金属材料对焊接加工的适应性和使用的可靠性。 6.半热焊:正焊前将铸件整体或局部预热到300℃~400℃,在焊补过程中保持这一温度,并在焊后采取缓 冷措施的工艺方法称为热焊。 7.σ相脆性:指不论母材还是焊缝,在ω(Cr)>21%,并且在520~820℃之间长期加热形成的硬而脆的铁铬 金属间化合物。 8.调质钢:含碳量在0.3-0.6%的中碳钢。 9.刀状腐蚀:简称刀蚀,它是焊接接头中特有的一种晶间腐蚀,只发生在含有Ti、Nb等稳定化元素的 奥氏体不锈钢焊接接头中。腐蚀部位沿熔合线发展,处于HAZ的过热区,由于区域很窄,形状有如刀削缺口,故称为刀状腐蚀。 10.使用焊接性:焊接接头或整体结构满足技术条件中所规定的使用性能的程度。 11.不锈钢:指主加元素铬的质量分数ω(Cr)>12%的钢。 12.奥氏体不锈钢:是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1% 时,具有稳定的奥氏体组织。 13.沉淀硬化不锈钢:在不锈钢中单独或复合添加硬化元素,通过适当的热处理获得高强度、高韧性并具 有良好耐蚀性的一类不锈钢。 14.固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到 过饱和固溶体的热处理工艺。 15.475℃脆性:铁素体钢在ω(Cr)≥15.5%,并在温度400~500℃长期加热后,常常出现强度升高而韧 性下降的现象。 16.耐热钢:在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢(或称高温不起皮 钢)和热强钢两类。 17.应力腐蚀开裂:在拉伸应力与腐蚀介质的共同作用下产生的断裂。 18.热裂纹:是指焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间产生的焊接裂纹。 19.冷裂纹:指的是焊接接头冷却到较低温度时产生的焊接裂纹。 20.热焊:正焊前将铸件整体或局部预热到600℃~700℃,在焊补过程中保持这一温度,并在焊后采取缓冷 措施的工艺方法称为热焊。 21.高强度钢:屈服点TT≥295TTT、抗拉强度TT≥390TTT的钢。 22.热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能变化的区域,称为 焊接热影响区。 二、填空 1.焊接性是金属材料的一种工艺性能,除了受材料本身性质影响外,还受到工艺条件、(结构条件)和(使用条件)的影响。 2.中、高碳钢焊后若(冷却)速度较快,则可能在焊缝和热影响区形成(马氏体)组织,导致裂纹倾向增大。 3.一根45钢,Φ75mm机轴,采用焊接方法连接,焊接接头处就、开坡口,预热温度为(200℃),采用(E5015)焊条。 4.热轧及正火钢随着合金元素的增加,焊接的问题主要来至于两方面,即:(热影响区的脆化)与(冷裂纹)。 5.焊接低温钢时所选用的焊接材料必须使焊缝金属具有与母材相近的(低温韧性)和(线膨胀系数)。

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

焊接冶金学习题总结

焊接冶金学(基本原理) 部分习题及答案 绪论 一、什么是焊接,其物理本质是什么? 1、定义:焊接通过加热或加压;或两者并用,使焊件达到原子结合,从而形成永久性连接工艺。 2、物理本质:焊接的物理本质是使两个独立的工件实现了原子间结合,对于金属而言,既实现了金属键结合。 二、怎样才能实现焊接,应有什么外界条件? 1、对被焊接的材质施加压力:目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2、对被焊材料加热(局部或整体):对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 三、试述熔焊、钎焊在本质上有何区别? 钎焊母材不溶化,熔焊母材溶化。 1.温度场定义,分类及其影响因素。 1、定义:焊接接头上某一瞬间各点的温度分布状态。 2、分类: 1)稳定温度场——温度场各点温度不随时间而变动; 2)非稳定温度场——温度场各点随时间而变动; 3)准稳定温度场——温度随时间暂时不变动,热饱和状态;或随热源一起移动。 3、影响因素: 1)热源的性质 2)焊接线能量 3)被焊金属的热物理性质

a.热导率 b.比热容 c.容积比热容 d.热扩散率 e.热焓 f.表面散热系数 4)焊件厚板及形状

第一章 二、焊接化学冶金分为哪几个反应区,各区有何特点? 1、药皮反应区:指焊条受热后,直到焊条药皮熔点前发生的一些反应。(100-1200℃) 1)水分蒸发:100 ℃吸附水的蒸发,200-400 ℃结晶水的去除,化合水在更高 温度下析出 2)某些物质分解:形成Co,CO2,H2O,O2等气体 3)铁合金氧化:先期氧化,降低气相的氧化性 2、熔滴反应区:指熔滴形成、长大、脱离焊条、过渡到整个熔池 1)温度高:1800-2400℃ 2)与气体、熔渣的接触面积大:1000-10000 cm2/kg 3)时间短速度快:;熔渣和熔滴金属进行强烈的搅拌,混合. 3、熔池反应区 1)反应速度低 熔池T 1600~1900℃低于熔滴T ;比表面积,接触面积小300~1300cm2/kg;时间长,手工焊3~8秒埋弧焊6~25s 2)熔池温度不均匀的突出特点 熔池前斗部分发生金属熔化和气体的吸收,利于吸热反应熔池后斗部分发生金属凝固和气体的析出,利于放热反应 3)具有一定的搅拌作用 促进焊缝成分的均匀化,有助于加快反应速度,有益于气体和夹渣物的排除。然而,没有熔滴阶段激烈。 三、焊接区内有那些气体?它们是怎样产生的? 1、种类:金属及熔渣蒸气 2、来源: 1)焊接材料 2)气体介质

金属焊接与切割试题Word版

山东省2008年安全培训机构师资培训班试卷 金属焊接与切割试题 一、单项选择题(将正确答案的代号填入括号内,每题1分,共40分) 1、我国安全生产方针的思想核心是( )。 A.安全第一 B.以人为本 C.预防为主 D.以人为主 2、只有掌握了安全生产( )知识,才能维护自己的合法安全生产权益不受侵害。 A.政策 B.法规 C.法律、法规 D. 操作技术 3、生产经营活动在谁的行政管辖范围内,即由谁负责管理其安全生产活动,这叫( )管理原则。 A.直辖 B.属地 C.垂直 D.直接 4、对从事特种作业人员的年龄要求是( )。 A.年满16周岁 B.年满20周岁 C.年满19周岁 D.年满18周岁 5、电流对人体的伤害分为( )两种类型。 A.烧伤与电伤 B. 电击与电伤 C.电击与触电 D. 电击与辐射 6、电焊机接地时,接地线路总电阻不应超过( )欧姆。 A.2 B. 4 C. 5 D.10 7、直接与空气形成爆炸性混合物的有:( )。 A.可燃性气体、可燃性固体、可燃性粉尘 B.可燃性气体、可溶性液体、可燃性粉尘 C.可燃性气体、可燃性液体、可燃性灰尘 D.可燃性气体、可燃性液体、不燃性粉尘 8、乙炔与氧气混合的爆炸极限范围是( )。 A.4.8~93% B.2.8~93% C.2.8~73% D.2.9~93% 9、焊补燃料容器和管道的常用安全措施有两种,称为:( )。 A.置换焊补、带压置换焊补 B.置换焊补、带压不置换焊补 C.大电流焊补、带压不置换焊补 D. 置换焊补、带料焊补 10、触电事故可分为直接电击和( )两种。 A.间接电伤 B.间接电击 C.间隔电击 D.意外电击 11、成人的感知电流约为( )mA 。 A.10 B.5 C. 1 D. 2 12、水下作业时的安全电压为( )。 A. 3.5伏 B. 2.5伏 C. 2.0伏 D. 2.8伏 13、置换焊补防爆的关键是( )。 A.用惰性介质多置换几遍 B.安全隔离 C.控制可燃物质的含量符合动火要求D 、用小电流焊接 14、带压不置换焊补的关键安全措施是( )。 A.调节好焊接参数, B.正压操作 C.可燃气体浓度较小 D. 操作者技术水平高 15、在焊接过程中,空气中的氧在( )的激发下大量地被破坏,生成臭氧。 A.电极 B. 红外线 C.短波紫外线 D.可见光 16、水射流切割利用的工作介质是( )。 A.高密度水 B.高压水 C. 气流 D.高压电 17、人体电阻值一般为( )Ω。 A.80 B.1000 C. 50 D. 10000 18、水下焊割时,气管与电缆每隔( )应扎牢。 山东大学安全技术培训中心试卷 姓名: 工作单位: 学号: 密 封 线 内 不 要 答 题 ………… 。。。。。。。。。。。。。。。 。。。………..

金属的焊接性

金属的焊接性 一、金属焊接性 1.概念:金属焊接性就是金属是否能适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行的能力。 评价标准:如果某种金属采用简单的焊接工艺就可获得优质焊接接头并且具有良好的使用性能或满足技术条件的要求,就称其焊接性好;如果只有采用特殊的焊接工艺才能不出缺陷,或者焊接热过程会使接头热影响区性能显著变坏以至不能满足使用要求,则称其焊接性差。 2.影响焊接性的因素 1)材料因素 材料是指用于制造结构的金属材料及焊接所消耗的材料。前者称为母材或基本金属,即被焊金属。后者称为焊接材料包括焊条、焊丝、焊剂、保护气体等。 材料因素包括化学成分、冶炼轧制状态、热处理状态、组织状态和力学性能等。其中化学成分(包括杂质的分布与含量)是主要的影响因素。碳对钢的焊接性影响最大。含碳量越高,焊接热影响区的淬硬倾向越大,焊接裂纹的敏感性越大。也就是说,含碳量越高焊接性越差。除碳外钢中的一些杂质如氧、硫、磷、氢、氮以及合金钢中常用的合金元素锰、铬、钴、铜、硅、钼、钛、铌、钒、硼等都不同程度地增加了钢的淬硬倾向使焊接性变差。 若焊接材料选择不当或成分不合格,焊接时也会出现裂纹、气孔等缺陷,甚至会使接头的强度、塑性、耐蚀性等使用性能变差。 2)设计因素 设计因素是指焊接结构在使用中的安全性不但受到材料的影响而且在很大程度上还受到结构形式的影响。例如结构刚度过大或过小,断面突然变化,焊接接头的缺口效应,过大的焊缝体积以及过于密集的焊缝数量,都会不同程度地引起应力集中,造成多向应力状态而使结构或焊接接头脆断敏感性增加。 3)工艺因素 工艺因素包括施焊方法(如手工焊、埋弧焊、气体保护焊等)、焊接工艺(包括焊接规范参数、焊接材料、预热、后热、装配焊接顺序)和焊后热处理等。在结构材料和焊接材料选择正确、结构设计合理的情况下工艺因素是对结构焊接质量起决定性作用的因素。 4)使用因素 使用因素指焊接结构的工作温度、负荷条件(动载、静载、冲击、高速等)和工作环境(化工区、沿海及腐蚀介质等)。一般来讲环境温度越低钢结构越易发生脆性破坏,承受交变载荷的焊接结构易发生疲劳破坏。 二、如何分析金属的焊接性 (一)从金属的特性分析焊接性 1.化学成分 1)碳当量法 钢材中的各种元素,碳对淬硬及冷裂影响最显著,所以有人将钢材中各种元素的作用按照相当于若干含碳量折合并迭加起来,求得所谓的“碳当量”(C eq),以C eq值的大小估价冷裂纹倾向的大小,认为C eq值越小,钢材的焊接性能越好。 碳当量公式没有考虑元素之间的交互作用,也没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。因而用碳当量评价焊接性是比较粗略的,使用时应注意条件。 2)焊接冷裂纹敏感系数

材料焊接性考试重点试题及答案

3.5.分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如(14MnMoNiB、HQ70、HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。 答:焊接时易发生脆化,焊接时由于热循环作用使热影响区强度和韧性下降。焊接工艺特点:焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术。。典型的低碳调质钢的焊接热输入应控制在Wc>0.18%时不应提高冷速,Wc<0.18%时可提高冷速(减小热输入)焊接热输入应控制在小于481KJ/cm当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800~500℃的冷却速度低于出现脆性混合组织的临界冷却速度,使热影响区韧性下降,所以需要避免不必要的提高预热温度,包括屋间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 4.3. 18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现

腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的溶合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化相继作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低含碳量,加入稳定化元素Ti、Nb;{2} 控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。 4.7何为“脆化现象”?铁素体不锈钢焊接时有哪些脆化现象,各发生在 什么温度区域?如何避免?答:“脆化现象”就是材料硬度高,但塑性 和韧性差。现象与避免措施:{1}高温脆性:在900~1000℃急冷至 室温,焊接接头HAZ的塑性和韧性下降。可重新加热到750~850℃, 便可恢复其塑性。{2}σ相脆化:在570~820℃之间加热,可析出σ相 。σ相析出与焊缝金属中的化学成分、组织、加热温度、保温时间以 及预先冷变形有关。加入Mn、Nb使σ相所需Cr的含量降低,Ni能使形成σ相所需温度提高。{3}475℃脆化:在400~500℃长期加热后可出 现475℃脆化。适当降低含Cr量,有利于减轻脆化,若出现475℃脆

焊接冶金学试题

(适用于材料成型与控制工程专业焊接模块) 一、概念或解释(每题2分共10分) 1、联生结晶: 2、熔合比: 3、焊条药皮重量系数: 4、金属焊接性: 5、电弧热焊: 二、选择填空(可以多个选择,每题1分,共15分) 1、焊接区内的气体主要来源于( ) 。 ①焊接材料②母材③焊条药皮 2、焊接时, 不与氮气发生作用的金属,即不能溶解氮又不形成氮化物的金属,可用N 作为保护气体, 这种金属是( ) 。 ①铜②铝③镍 3、焊接熔渣的作用有( ) ①机械保护作用②冶金处理作用③改善工艺性能 4、焊接熔池的结晶时, 熔池体积小,冷却速度大,焊缝中以( ) 为主。 ①柱状晶②等轴晶③平面晶

5、熔合区的化学不均匀性主要是体现于(

①凝固过渡层的形成 ②碳迁移过渡层的形成 ③合金分层现象 6、焊缝中的气孔和夹杂主要害处是 ( ) 。 ①焊缝有效截面下降 ②应力集中,疲劳强度下降 ③抗氧化性下降 气孔,使致 密性下降。 7、 打底焊道最易产生热裂纹 , 也最易产生冷裂纹 , 其主要原因是 ( ) 。 ①冷却速度快 ②应力集中 ③过热 8、 焊接结构钢用熔渣的成分是由 ( ) 等组成。 ①氧化物 ②氟化物 ③氯化物 ④硼酸盐 9、 焊接冷裂纹按产生原因可分为 ( ) 。 ①淬硬脆化裂纹 ②低塑性脆化裂纹 ③层状撕裂 ④应力腐蚀开裂 裂纹 10、 有利于改善焊缝抗热裂纹性能因素主要有 ( ) 。 ①细化晶粒 ②减少 S 、P ③结晶温度大 ④加入锰脱硫 11、 热扎、正火钢焊接时,过热区性能的变化取决于 ( ) 等因素。 ①高温停留时间 ②焊接线能量 ③钢材类型 ④冷裂倾向 12、 铸铁焊接时,影响半熔化区冷却速度的因素有: ( ) 。 ①焊接方法 ②预热温度 ③焊接热输入 ④铸件厚度 13、下列哪些钢种具有一定的热应变脆化倾向。 ( ①低碳钢 ②16Mn ③15 MnV 14、焊缝为铸铁型时,影响冷裂纹的因素有 ( ) 。 ①基体组织 ②石墨形状 ③焊补处刚度,体积及焊缝长短 ④深透性 ⑤延迟

金属焊接性复习总结

第一章: 1. 金属焊接性:金属能否适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。它的内涵:1、是否适合焊接加工?--金属在焊接加工中是否容易形成缺陷2、焊后使用可靠性?--性能焊成的接头在一定的使用条件下可靠使用的能力。 2.影响金属焊接性的因素:1、材料本身因素—母材和焊接材料的成分及性能2、工艺条件—焊接方法、工艺措施;3、结构因素—刚度、应力集中、多轴应力;4、使用条件—工作温度、负荷条件、工作环境。3.金属的焊接性的分析方法:(一)从金属特性分析金属焊接性1、利用金属本身的化学成分分析(1)碳当量法:指将各种元素按相当于若干含碳量折合并叠加起来求得所谓碳当量(CE和Ccq),用其来估计冷裂倾向的大小。CE=C+Mn/6+Ni+Cu/15+Cr+Mo+V/ (2)焊接冷裂纹敏感指数Pc=C+Si/30+Mn/20+Ni/60+Cr/20+Mo/15+V/10+5B+δ/600+H/60(%)式中δ—板厚(mm)H—焊缝中扩散氢含量(ml/100g). 2、利用金属本身的物理性能分析: 3、利用金属本身的化学性能分析4、利用合金相图分析(二)从焊接工艺条件分析焊接性: 1、热源特点2、保护方法3、热循环控制4、其他工艺因素 4. 选择或制定焊接性试验方法的原则: 1、焊接性试验的条件尽量与实际焊接时的条件相一致。 2、焊接性试验的结果要稳定可靠,具有较好的再现性。 3、注意试验方法的经济性。 5.焊接性试验的内容:(一)焊缝金属抗热裂的能力(二)焊缝及热影响区金属抗冷裂纹的能力(三)焊接接头抗脆性转变的能力(四)焊接接头的使用性能 6. 常用焊接性试验方法: (一)斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 (二) 插销试验:此法是测定钢材焊接热影响区冷裂纹敏感性的一种定量试验方法。测定加载16~24 h而不断裂的最大应力σcr (三)压板对接焊接裂纹试验法 (四)可调拘束裂纹试验法 第二章: 1.合金结构钢:在碳素结构钢的基础上添加一定数量的合金元素来达到所需要求的钢材。包括:结构钢、碳素结构钢、合金结构钢。 2.高强钢:可分为三种类型:热轧及正火钢、低碳调质钢、中碳调质钢。 3.专用钢:除通常的力学性能外,还必须要求特殊性能主要用于一些特殊的条件下工作的机械零件和工程结构,如耐高温、低温和耐腐蚀。大致可分为:珠光体耐热钢、低温钢、低合金耐蚀钢。 4.钢的强韧化: 固溶强化(置换固溶、间隙固溶)细晶强化第二相强化位错强化: 5.钢的相变:成分和工艺(温度、时间)影响奥氏体的稳定性,通过控制冷却速度和第二次处理得到组织。※热轧及正火钢 1、热轧钢 供货状态:热轧态 性能特点:强度最低σs294~392MPa,具有满意的综合力学性能和加工工艺性能,价格便宜 成分特点:热轧钢属于C- Mn 或Mn-Si系的钢种,有时用一些V、Nb等代替部分Mn。 基本成分:C≤0.2%,Si≤0.55,Mn≤1.5% 强化机制:主要以固溶强化为主 典型钢种:Q345(16Mn)、14MnNb、Q294(09MnV) 2、正火钢 (1 )正火态供货的钢 性能特点:最低强度σs343~450MPa,具有比热轧钢更高的强度和塑韧性 成分特点:0.15~0.2%C,在C-Mn、Mn-Si系的基础上加入一些碳化物和氮化物生成元素V、N b、Ti等 强化机制:在固溶强化的基础上,通过沉淀强化和细化晶粒来进一步提高强度和保证韧性 典型钢种:Q390(15MnTi、15MnVN)等。

金属焊接性复习

1、工艺焊接性的影响因素? 答:1、材料因素:母材和焊接材料;2、工艺因素:焊接方法、焊接工艺措施 3、结构设计因素 4、使用条件 2、哪些焊接性试验测冷裂纹,哪些测热裂纹? 答:热裂纹:1、可调拘束度裂纹试验方法2、压板对接(FISCO)焊接裂纹试验3、鱼骨状裂纹试验法4、刚性固定对接裂纹试验4、窗形拘束裂纹试验 冷裂纹:1、斜Y坡口对接裂纹试验2、插销试验3、刚性固定对接裂纹试验4、窗形拘束裂纹试验 3、斜Y坡口对接裂纹试验和插鞘试验适用范围是什么? 答:斜Y坡口对接裂纹试验适用范围:1、评定低合金结构钢焊缝以及HAZ的冷裂倾向 2、确定防止冷裂纹的临界预热温度 插鞘试验适用范围:1、主要用来考核材料的氢致延迟裂纹敏感性 – 2、也可用来考核再热裂纹和层状撕裂等的敏感性 4、制定焊接性试验方法的原则? 答:1、应尽量使试验条件与实际焊接条件一致(一致性) 2、试验结果应稳定可靠,具有较好的再现性(可靠性) 3、应注意试验方法的经济性(经济性) 5、热轧钢、调质钢的强化机理? 答:热轧钢是固溶强化(Si、Mn);调质钢是热处理(淬火+回火)强化 6、热轧钢的典型牌号、使用状态? 答:典型钢种:16Mn,组织:细晶铁素体+珠光体 15MnV V细化晶粒和沉淀强化(392MPa) 使用状态:一般在热轧状态下使用,但在特殊情况下(要求↑冲击韧性或板厚),在正火状态下使用。 7、评定钢材层状撕裂敏感性主要指标:S含量、Z向断面收缩率 8、分析热轧及正火钢的焊接裂纹倾向。 热裂纹: 热轧及正火钢由于含碳量低(≤0.2%),含Mn量较高,Mn/S一般能达到防止发生热裂纹的要求,具有较好的抗热裂性能。但个别情况下,当材料成分不合格或因严重偏析使局部碳、硫含量偏高时,Mn/S比就可

常用金属焊接性之高温合金的钎焊复习过程

常用金属焊接性之高温合金的钎焊 高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。 一:钎焊性 高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。铝和钛对氧的亲和力比铬大得多,加热时极易氧化。因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。对薄的工件来说是很不利的。所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。 无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。沉淀强化合金固溶处理后还必须进行时效处理,已达到弥散强化的目的。因此钎焊热循环应尽可能与合金的热处理相匹配,即钎焊温度尽量与热处理的加热温度相一致,以保证合金元素的充分溶解。钎焊温度过低不能使合金元素完全溶解;钎焊温度过高将使母材的晶粒长大,这些均对母材

金属焊接性试题

金属焊接性试题 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、名词解释 1.工艺焊接性:在一定工艺焊接条件下,能否获得优质、无缺陷的焊接接头的能力。 2.碳当量:把钢中包括碳在内的合金元素对淬硬、冷裂及脆化等的影响折合成碳的相 当含量。 3.晶间腐蚀:是起源于金属表面沿金属晶界发生的有选择的深入金属内部的腐蚀。 4.高温脆性:指钢在变形温度为~时所出现的高温塑形急剧下降的现象。 5.焊接性:金属材料对焊接加工的适应性和使用的可靠性。 6.半热焊:正焊前将铸件整体或局部预热到300℃~400℃,在焊补过程中保持这一温 度,并在焊后采取缓冷措施的工艺方法称为热焊。 7.σ相脆性:指不论母材还是焊缝,在ω(Cr)>21%,并且在520~820℃之间长期加热 形成的硬而脆的铁铬金属间化合物。 8.调质钢:含碳量在的中碳钢。 9.刀状腐蚀:简称刀蚀,它是焊接接头中特有的一种晶间腐蚀,只发生在含有Ti、Nb 等稳定化元素的奥氏体不锈钢焊接接头中。腐蚀部位沿熔合线发展,处于HAZ的过热区,由于区域很窄,形状有如刀削缺口,故称为刀状腐蚀。 10.使用焊接性:焊接接头或整体结构满足技术条件中所规定的使用性能的程度。 11.不锈钢:指主加元素铬的质量分数ω(Cr)>12%的钢。 12.奥氏体不锈钢:是指在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约%时,具有稳定的奥氏体组织。 13.沉淀硬化不锈钢:在不锈钢中单独或复合添加硬化元素,通过适当的热处理获得高 强度、高韧性并具有良好耐蚀性的一类不锈钢。 14.固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后 快速冷却,以得到过饱和固溶体的热处理工艺。 15. 475℃脆性:铁素体钢在ω(Cr)≥%,并在温度400~500℃长期加热后,常常出现 强度升高而韧性下降的现象。 16.耐热钢:在高温下具有较高的强度和良好的化学稳定性的合金钢。它包括抗氧化钢 (或称高温不起皮钢)和热强钢两类。 17.应力腐蚀开裂:在拉伸应力与腐蚀介质的共同作用下产生的断裂。 18.热裂纹:是指焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间产生 的焊接裂纹。 19.冷裂纹:指的是焊接接头冷却到较低温度时产生的焊接裂纹。 20.热焊:正焊前将铸件整体或局部预热到600℃~700℃,在焊补过程中保持这一温度, 并在焊后采取缓冷措施的工艺方法称为热焊。 21.高强度钢:屈服点≥295、抗拉强度≥390的钢。 22.热影响区:在焊接热循环作用下,焊缝两侧处于固态的母材发生明显的组织和性能 变化的区域,称为焊接热影响区。 二、填空 1.焊接性是金属材料的一种工艺性能,除了受材料本身性质影响外,还受到工艺条件、(结构条件)和(使用条件)的影响。 2.中、高碳钢焊后若(冷却)速度较快,则可能在焊缝和热影响区形成(马氏体)组织,导致裂纹倾向增大。 3.一根45钢,Φ75mm机轴,采用焊接方法连接,焊接接头处就、开坡口,预热温度为(200℃),采用(E5015)焊条。

金属焊接性总结

1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 7.常用焊接性试验方法 A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小雨20%时。用于一般焊接结构是安全的) 三合金结构钢的焊接 低碳调质钢的焊接性分析 低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求。低碳调质钢碳的质量分数不超过0.18%,焊接性能远优于中碳调质钢。由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。 焊缝强韧性匹配: 焊缝强度匹配系数S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一,(σb)w为焊缝强度,(σb)b为母材强度。当(σb)w/(σb)b>1时,为高强匹配;=1为等强匹配。<1为低强匹配低碳调质钢热影响区获得细小的低碳马氏体(ML)组织或下贝氏体(B L)组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织(B L)的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与B L混合生成时,原奥氏体晶粒被先析出的B L有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B L混合组织有效晶粒最为细小。 Ni是发展低温钢的一个重要元素。为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如1.5Ni钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等。这类钢的热处理条件为正火、正火+回火和淬火+回火等。 ○1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显。○2另一个问题是回火脆性,要控制焊后回火温度和冷却速度。 低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点。 9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差。这除了与铸态焊缝组

金属焊接性

金属焊接性 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

2012太原科技大学期末考试试题 金属焊接性:是金属是否能适应焊接加工而形成完整的,具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行能力。 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 1.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 中碳调质钢的焊接有冷裂纹,热裂纹热影响区性能的变化(脆化,软化)等问题。 特殊性能的低合金钢分为低温刚,耐候钢,低合金耐蚀钢三类。 珠光体耐热钢提高高温强度的途径是碳含量低,合金元素少(不超过3%-5%)热膨胀系数小导热性好,并有良好的冷热加工性,加入Cr,Mo,W,V,等主要强化铁素体,提高钢的高温强度。 不锈钢空冷后室温组织分为铁素体钢,奥氏体钢,马氏体钢,奥氏体-铁素体双相钢,沉淀硬化型或时效硬化型钢。 耐热钢的脆化形式淬火脆化,回火脆化,时效脆化,二次淬火脆化或高铬铁素体钢的晶粒长大脆化,及铬镍奥氏体钢沿晶界析出碳化物脆化,475℃脆化和σ相脆化。珠光体耐热钢以Cr,Mo,W,V,为主加元素的中低合金钢。 铝及铝合金焊接时会出现氢气孔,还存在强的氧化能力,热导率和比热容大,热裂纹倾向大,容易形成气孔,焊接接头容易软化,合金元素蒸发和烧损,焊接接头的耐腐蚀性低于母材,固态和液态无色泽变化等问题。

焊接冶金学题

一.名词解释 1.焊接:被焊工件的材质(同质或异质),通过加热或加压或二者并用,并且 用或不用填充材料,使工件的材质达到原子间的结合而形成永久性的连接的工艺过程。 2.熔合比:在焊缝金属中局部融化的母材所占的比例称为熔合比。 3.交互结晶:熔合区附近加热到半融化状态基本金属的晶粒表面,非自发形核 就依附在这个表面上,并以柱状晶的形态向焊缝中心生长,形成所谓交互结晶。 4.焊缝扩散氢:由于氢原子和离子的半径很小,这一部分氢可以在焊缝金属的 晶格中自由扩散,故称扩散氢。 5.拘束度:单位长度焊缝,在根部间隙产生单位长度的弹性位移所需的力。 6.熔敷系数:真正反映焊接生产率的指标。g/(A*H)在熔焊过程中,单位电流, 单位时间内,焊芯熔敷在焊件上的金属量。 7.熔敷比表面积:熔滴的表面积Ag与其质量pVg之比。 8.应力腐蚀:金属材料在腐蚀介质和拉伸应力的共同作用下产生的一种延迟破 坏现象,称为应力腐蚀。 9.层状撕裂:大型厚壁结构,在焊接过程中会沿钢板的厚度方向出现较大的拉 伸应力,如果钢中有较多的杂质,那么沿钢板轧制方向出现一种台阶状的裂纹,称为层状撕裂。 10.再热裂纹:焊后再加热,为了消除应力退火或在高温工作时500-700摄氏度 产生的裂纹。 11.热影响区:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区 域。 12.热循环曲线:焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达 到峰值后,又由高而低随时间的变化称为焊接热循环。 13.焊接线能量:热源功率q与焊接速度v之比。 14.热裂纹:是在焊接高温时晶沿界断裂产生的。冷裂纹:是焊后冷至较低温度 产生的。 二.简答 1.氢对焊接质量有哪些影响?控制焊缝含氢量的主要措施是什么? a.氢脆,氢在室温附近使钢的塑性严重下降。 b.白点,碳钢和低合金钢焊缝, 如含氢量高常常在拉伸或弯曲断面上出现银白色局部脆断点。c.形成气孔,熔池吸收大量的氢,凝固时由于溶解度突然下降,使氢处于饱和状态,会产生氢气且不溶于液态金属,形成气泡产生气孔。d.氢促使产生冷裂纹。措施: a.限制焊接材料中的氢含量,制造低氢和超低氢型焊接材料和焊剂时,应尽 量选用不含或含氢量少的材料。b.清除焊件和焊丝表面上的铁锈,油污,吸附水等杂质。c.冶金处理:在药皮中加入氟化物,控制焊接材料的氧化还原势,在药皮或焊芯中加入微量的稀土和稀散元素,控制焊接工艺参数,焊后除氢处理。 2.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? a在碳钢焊缝中氮是有害的杂质,是促使焊缝产生气孔的主要原因。b氮是提高低碳钢和低合金钢焊缝金属强度,降低塑性和韧性的元素。c氮是促使焊缝金属时效脆化的元素。措施:a焊接区保护的影响,液态金属脱氮比较困难,所以控制氮的主要措施是加强保护,防止空气和金属作用。b焊接参

金属材料焊接性知识要点

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬度有什么影响 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

焊接冶金学习题及答案

一.名词解释 1. 焊接:被焊工件的材质(同质或异质),通过加热或加压或二者并用,并且用或不用填充材 料,使工件的材质达到原子间的结合而形成永久性的连接的工艺过程。 2. 熔合比:在焊缝金属中局部融化的母材所占的比例称为熔合比。 3. 交互结晶:熔合区附近加热到半融化状态基本金属的晶粒表而,非自发晶核就依附在这个表 而上,并以柱状晶的形态向焊缝中心生长,形成所谓交互结晶。 4. 焊缝扩散氢:由于氢原子和离子的半径很小,这一部分氢可以在焊缝金属的晶格中自由扩 散,故称扩散氢。 5. 拘束度:单位长度焊缝,在根部间隙产生单位长度的弹性位移所需的力。 6. 熔敷系数:真正反映焊接生产率的指标。 7. 熔敷比表面积:熔滴的表而积Ag与其质量pVg之比。 8. 应力腐蚀:焊接构件,如容器,管道等在腐蚀介质和拉伸应力的共同作用下产生的一种延迟 破坏现象,称为应力腐蚀裂纹。 9. 层状撕裂:大型厚壁结构,在焊接过程中会沿钢板的厚度方向岀现较大的拉伸应力,如果钢 中有较多的杂质,那么沿钢板轧制方向出现一种台阶状的裂纹,称为层状撕裂。 10. 在热裂纹:厚板焊接结构,并采用含有某些沉淀强化合金元素的钢材,在进行消除应力热处 理或在一泄温度下服役的过程中,任焊接热影响区粗晶部位发生的裂纹为在热裂纹。 11. 热影响区:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区域。 12. 热循环曲线:焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到峰值后,又 由高而低随时间的变化称为焊接热循环。 13. 焊接线能量:热源功率q与焊接速度v之比。 二简答 1. 氢对焊接质量有哪些影响?控制焊缝含氢量的主要描施是什么? a.氢脆,氢在室温附近使钢的塑性严重下降, b.白点,碳钢和低合金钢焊缝,如含氢量高常常在拉伸或弯曲断而上岀现银白色局部脆断点。 c.形成气孔,熔池吸收大量的氢,凝固时由于溶解度突然下降,使氢处于饱和状态,会产生氢气且不溶于液态金属,形成气泡产生气孔。 d.氢促使产生冷裂纹。措施:a.限制焊接材料中的氢含量,制造低氢和超低氢型焊接材料和焊剂时,应尽量选用不含或含氢量少的。b.清除焊件和焊丝表而上的铁锈,油污,吸附水等杂质。c.冶金处理:在药皮中加入氟化物,控制焊接材料的氧化还原势,在药皮或焊芯中加入微量的稀土和稀散元素,控制焊接工艺参数,焊后氢处理。 2. CO2保护焊焊接低合金时,应采用什么焊丝?为什么? H08Mn2SiA,如果焊丝中Mn, Si含虽:不足,起脱氧作用会很差,致使熔池结晶后产生CO气孔。因此CO2气体保护焊焊丝必须含有较髙含量的Mn Si等脱氧元素,H08Mn2SiA焊丝具有良好的焊接工艺性能和力学性能,适用于低合金钢。 3. 为什么酸性焊条用猛铁作为脱氧剂,而碱性焊条用硅铁,镭铁和钛铁作为脱氧剂? 在酸性渣中含有较多的SiO2和TiO2,他们与脱氧产物MnO生成复合物MnO. SiO2和MnO.TiO乙从而使Y MnO减小,因此脱氧效果较好。相反,在碱性渣中Y MnO较大,不利于镒脱氧,且硬度越大,锹脱氧越差,由于这个原因一般酸性焊条用锈铁做脱氧,而碱性焊条不单独用镭铁脱氧。 4. 综合分析熔渣中的CaF2对焊接化学冶金中所起的作用? :造渣。药皮中的CaF2高温可分解出氟,或者与水玻璃等化合物形成NaF、KF,再与含氢物质形成不溶于金属的HF。这样就使焊缝中的含氢量极低。所获得焊缝金属的塑性、韧性好,具有良好的抗裂性,使用于焊接搁置那个重要的焊接结构和大多数的合金钢。 5. 综合分析碱性焊条药皮中CaF2所起的作用及对焊缝性能的影响? 可发生反应:CaF2+2H二Ca+2HF, CaF2+H20二CaO+2HF,反映过的产物HF是比较稳泄的气体,

相关文档
最新文档