电磁场与电磁波总结---期末复习用

电磁场与电磁波总结---期末复习用
电磁场与电磁波总结---期末复习用

电磁场与电磁波总结

第一章

一、矢量代数 A ?

B =AB cos θ

A B

?=

AB

e AB sin θA

?

(B ?C ) = B

?

(C ?A ) =

C ?(A ?B )

()()()C A C C A B C B A ?-?=??

二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l

e e e d x y z

矢量面元=++S

e e e x y z d dxdy dzdx dxdy

体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y

2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ?

体积元dz d d dV

?ρρ=

单位矢量的关系?=??=e e e e e =e e e e z

z z ρ??ρ

ρ?

3. 球坐标系

矢量线元d l = e r d r + e θ r d θ+e ? r sin θd ?矢量面元d S = e r r 2sin θd θd ?

体积元?θθd drd r dV

sin 2=

单位矢量的关系?=??=e e e e e =e e e e r r

r θ?

θ??θ

三、矢量场的散度和旋度

1. 通量与散度

=??A S

S

d Φ0

lim

?→?=??=??A S A A S

v d div v

2. 环流量与旋度

=

??

A l l

d Γmax

n 0

rot =lim

?→???A l

A e l

S d S

3. 计算公式

????=

++????A y x z

A A A x y z

11()z

A A A z

?ρρρρρ?????=

++????A 22111()(sin )sin sin ????=

++????A r A r A A r r r r ?

θ

θθθθ?

x y z

?

??

??=

???e e e A x y z x y z

A A A 1z z z A A A ρ?

ρ?ρρ?ρ?????=

???e e e A 21sin sin r r z

r r A r A r A ρ?θθθ?θ???

??=???e e e A

4. 矢量场的高斯定理(散度定理)与斯托克斯定理

?=???

?A S A S

V d dV

?=?????A l A S l

S

d d

四、标量场的梯度 1. 方向导数与梯度标量函数u 的梯度是矢量,其方向为u 变化率最大的方向

00()()lim

?→-?=??l P u M u M u l

l 0

cos cos cos ????=

++????P u u u u

l

x y z

αβγ cos ??=?e l u u θgrad ????=

=+????e e e +e n x y z

u u u u

u n x y z

2. 计算公式

????=++???e e e x

y z u u u

u x y z 1????=++???e e e z u u u

u z

ρ

?ρρ?11sin ????=++???e e e r u u u

u r r r z

θ?

θθ 五、无散场与无旋场 1. 无散场()0????=A =??F A A 为无散场F 的矢量位

2. 无旋场()0???=u -u =?F u 为无旋场F 的标量位

六、拉普拉斯运算算子 1. 直角坐标系

2222

2222222

2222222222

22

222222222

????=++?=?+?+??????????????=++?=++?=++?????????A e e e x x y y z z

y y y x x x z z z x y z u u u u A A A x y z

A A A A A A A A A A A A x y z x y z x y z

,,

2. 圆柱坐标系

222

22

22222

2222

111212???????=++ ??????????????=?--+?-++? ? ??????

?A e e e z z u u u

u z

A A A A A A A ?ρρρρ???ρρρρρ?ρρ?ρρ?

3. 球坐标系

22

222222

111sin sin sin ??????????=+

+ ? ??????????u u u

u r r r r r r θθθ?θ? ???

?

????+-??+?+???

?

????--??+?+???

? ????-??---?=??θθθ?θ?θθθθ?θθθθ????θθθ?θθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 2

22222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 2

2cot 22e e e A 七、亥姆霍兹定理

如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和

边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-?+??F r r A r φ

其中

1()()4''??'=

'-?F r r r r V dV φπ1

()

()4''??'='-?F r A r r r V dV π

第二章

一、麦克斯韦方程组 1. 静电场 真空中:

00

1

d =

=

V

q

dV ρεε??

?

S

E S (高斯定理)0

??=

E ρε(高斯定理微分形式)

d 0?=?

l

E l 0??=E (无旋场) 场强计算:3

'

1'()(')'4'

V dV ρπε-=

-?

r r E r r r r

介质中:

d ?=?

D S S

q

d 0?=?

l

E l ??=D ρ0??=E

极化:0=+D E P εe 00(1)=+==D E E E r χεεεε

电介质中高斯定律的微分形式

表明电介质内任一点电位移矢量的散度等于该点自由电荷体

密度,即D 的通量源是自由电荷,电位移线始于正自由电荷终于负自由电荷。

极化电荷面密度==?P e PS

n n P ρ极化电荷体密度=-??P P ρ

2. 恒定电场 电荷守恒定律:?

?

-=-

=?V

s

dv dt

d dt dq ds J ρ0???+

=?J t

ρ 传导电流:=J

E σ

恒定电场方程:

d 0?=?

J S S

0??=J

3. 恒定磁场 真空中:

0 d ?=?

B l l

I μ(安培环路定理) d 0?=?S

B S

0??=B J μ0??=B

磁感应强度:0

3

()( )

()

d 4π ''?-'=

'

-?J r r r B r r r V

V μ 介质中:

d ?=?

H l l

I

d 0?=?

S

B S ??=H J 0??=B 磁化:0

=

-B

H M μm 00(1)=+B H =H =H r χμμμμ

4. 电磁感应定律

() d d in l

C d

v B dl dt ?=-

????

??S

E l B S +)(法拉第电磁感应定律???=-

?B E t

5.位移电流

时变条件下电流连续性防程:

???=+

?D H J t

位移电流:d

=

D

J d dt

6. Maxwell Equations 及各式意义

d ()d d d d d 0??

?=+????

???=-????

?

?=??

?=?????????D H J S B E S D S B S l

S l S

S V S

l t

l t V d ρ 0??

??=+???

????=-?

??

??=????=?

D H J B

E D B t t ρ

二、边界条件

1. 一般形式

12121212()0()()()0

n n S

n S

n σρ?-=?-=→∞?-=?-=()e E E e H H J e D D e B B

2. 理想导体界面和理想介质界面

111100?=??

?=??

?=???=?e E e H J e D e B n n S n S n ρ12121212()0

()0

()0()0

?-=??

?-=??

?-=???-=?e E E e H H e D D e B B n n n n 第三章

一、静电场分析 1. 位函数方程与边界条件 位函数方程:?=-?E

1

()

()d 4πV V ρ?ε'

'=

'-?

r r |r r |

220?=-

?=ρφφε

电位的边界条件:12

12

12=??

???-=-????s n

n φφφφεερ11

1=??

??=-???s const n

φφερ(媒质2为导体) 2. 电容

2211

??===

??????D S E S E l E l

S S d d q C U d d ε

电磁场与电磁波试题

?电磁场?试卷1 一、单项选择题 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+-,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 3. 一个回路的自感为回路的_______与回路电流之比。 4. 空气中的电场强度5sin(2)x E e t z πβ=-V/m ,则位移电流密度d J = 。 5. 安培环路定律的微分形式是 ,它说明磁场的旋涡源是 。 6. 麦克斯韦方程组的微分形式是 , , , 。 三、简答题(本大题共2小题,每小题5分,共10分) 1.写出电荷守恒定律的数学表达式,说明它揭示的物理意义。 2.写出坡印廷定理的微分形式,说明它揭示的物理意义。 四、计算题(本大题) 1.假设在半径为a 的球体内均匀分布着密度为0ρ的电荷,试求任意点的电场强度。 2.一个同心球电容器的内、外半径为a 、b ,其间媒质的电导率为σ,求该电容器的漏电电导。 3.已知空气媒质的无源区域中,电场强度100cos()z x E e e t z αωβ-=-,其中βα,为常数,求磁场强度。 0ε0ε

电磁场与电磁波学习心得

电磁场与电磁波学习心得 在开始学习“电磁场与电磁波”之前,当我听到其学科名称的时候就产生了一种高深莫测的感觉,觉得电磁场应该是比较难的。但是出于对知识的渴望我怀着一颗求知的心投入了这个“新奇的”知识海洋。 当接触了“电磁场与电磁波”并开始学习的时候这种所谓的惧怕感还是依旧存在。每当读到某个科学家经过了反复的实验从而发现了一个著名的定理或是公式的时候我都非常向往,无疑这些名人事迹提高了我的学习兴趣。但是每当看到一个个繁杂的公式与难于理解的论证的时候,这都让我感到这门课程的难度之高。然而每当专心下来仔细思考,一点一点的从基础公式去推演论证的时候,我又能感受到其在科学与生活方面的独特魅力。 纵观电磁波发展史,人们很早就接触到电和磁的现象,并知道磁棒有南北两极。在18世纪,发现电荷有两种:正电荷和负电荷。不论是电荷还是磁极都是同性相斥,异性相吸,作用力的方向在电荷之间或磁极之间的连接线上,力的大小和它们之间的距离的平方成反比。但长期以来,人们只是发现了电和磁的现象,并没有发现电和磁之间的联系。后来奥斯特、安培、法拉第等人的研究又使人类又电磁波的认识进步了一个阶梯,19世纪中叶伟大的理论物理学家麦克斯韦总结了前人关于电磁学的研究成果,建立了完整的电磁场理论。这使得人们对电磁波的有了相对成熟的认识。 可以说电磁场理论是工科电类专业的一门重要的技术基础课。它在物理电磁学的基础上,进一步研究了宏观电磁现象的基本规律和分析方法,是深入理解和分析工程实际中电磁问题所必须掌握的基本知识。它的地位我觉得就像英语中的语法,用来分析句子和文章的成分结构,没有它我们只能死记硬背一些公式与结论,而利用了电磁理论就能很容易的分析一些实质性的问题从而有更加深刻的体会。很多实际工程问题只有通过电磁场才能揭示其本质。对电磁场的学习使我认识很多物理现象的本质。电磁场由相互依存的电磁和磁场的总和构成的一种物理场。电场随时间变化时产生磁场,磁场随时间变化时又产生电场,两者互为因果,形成电磁场。电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。

电磁场与电磁波设计报告

电磁场与电磁波设计报告 题目:电磁场与电磁波设计报告 系别: 班级: 姓名: 指导老师:

目录: 静电场的基本概念------------------------------------------3 恒定磁场的基本概念----------------------------------------5 时变磁场的基本概念----------------------------------------6 电场和磁场之间的关系--------------------------------------7 电磁场应用之变频电磁场处理油田水防垢技术------------------8 背景---------------------------------------------------8 原理结构图--------------------------------------------11 除垢、防垢工作原理------------------------------------12 电磁场处理对溶液电导率的影响--------------------------13 电磁场对溶液表面张力的影响----------------------------13 电磁场处理对溶液pH值的影响---------------------------14 实验结果分析------------------------------------------16 从水分子的结构方面---------------------------------16 电磁场诱导微晶的形成-------------------------------18

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

电磁场与电磁波(杨儒贵_第一版)课后思考题答案

电磁场与波课后思考题 2-1 电场强度的定义是什么如何用电场线描述电场强度的大小及方向 电场对某点单位正电荷的作用力称为该点的电场强度,以E 表示。 用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。 电场线的疏密程度可以显示电场强度的大小。 2-2给出电位与电场强度的关系式,说明电位的物理意义。 静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路径移至无限远处过程中电场力作的功。 ! 2-3什么是等位面 电位相等的曲面称为等位面。 2-5给出电流和电流密度的定义。 电流是电荷的有规则运动形成的。单位时间内穿过某一截面的电荷量称为电流。 分为传导电流和运流电流两种。 传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。 运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。 电流密度:是一个矢量,以J 表示。电流密度的方向为正电荷的运动方向,其大小为单 位时间内垂直穿过单位面积的电荷量。 2-10运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同 & 运动电荷受到的磁场力始终与电荷的运动方向垂直,磁场力只能改变其运动方向,磁场 与运动电荷之间没有能量交换。 当电流元的电流方向与磁感应强度B 平行时,受力为零;当电流元的方向与B 垂直时, 受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。 当电流环的磁矩方向与磁感应强度B 的方向平行时,受到的力矩为零;当两者垂直时, 受到的力矩最大 2-11什么是安培环路定理试述磁通连续性原理。 为真空磁导率,70 10π4-?=μ (H/m),I 为闭合曲线包围的电流。 安培环路定理表明:真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的 电流与真空磁导率的乘积。 真空中恒定磁场通过任意闭合面的磁通为0。 ^ 磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。 2-12什么是感应电动势和感应磁通 ? -?=E S J I d d ?=t q I d d = B v q ?=F B l I F ?=d ISB B Il IlBl Fl T ====2)(B S I T ?=S I =m B T ?=m I l B l ? =? 0 d μ ? =?S S B 0d t l E l d d d Φ -=??

电磁场与电磁波学科发展历程

电磁场与电磁波学科发展历程 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下: 1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。 1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解

电磁场与电磁波基础知识总结

第一章 一、矢量代数 A ?B =AB cos θ A B ?= AB e AB sin θ A ?(B ?C ) = B ?(C ?A ) = C ?(A ?B ) ()()()C A C C A B C B A ?-?=?? 二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++l e e e d x y z 矢量面元=++S e e e x y z d dxdy dzdx dxdy 体积元d V = dx dy dz 单位矢量的关系?=e e e x y z ?=e e e y z x ?=e e e z x y 2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρ?ρρ?l 矢量面元=+e e z dS d dz d d ρρ?ρρ? 体积元dz d d dV ?ρρ= 单位矢量的关系?=??=e e e e e =e e e e z z z ρ??ρ ρ? 3. 球坐标系 矢量线元d l = e r d r + e θ r d θ + e ? r sin θ d ? 矢量面元d S = e r r 2sin θ d θ d ? 体积元 ?θθd d r r dV sin 2= 单位矢量的关系?=??=e e e e e =e e e e r r r θ? θ??θ 三、矢量场的散度和旋度 1. 通量与散度 =?? A S S d Φ 0 lim ?→?=??=??A S A A S v d div v 2. 环流量与旋度 =??A l l d Γ max n rot =lim ?→???A l A e l S d S 3. 计算公式 ????= ++????A y x z A A A x y z 11()z A A A z ?ρρρρρ?????= ++????A 22111()(s i n )s i n s i n ????= ++????A r A r A A r r r r ? θ θθθθ? x y z ? ????= ???e e e A x y z x y z A A A 1z z z A A A ρ?ρ?ρρ?ρ? ?? ??= ???e e e A

电磁场与电磁波运用

电磁场与电磁波在生活中的应用 【摘要】:磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有 500 年前的 50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’就是因缺磁而’造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”“磁穴疗法”是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 【关键词】:磁疗磁疗保健生物电磁学电磁对抗电磁环境运用发展 引言:生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。电磁对抗主要是运用在军事方面,利用电磁波的特性制造出一系列的战争武器或战略武器。主要涉及各种频段的电磁波的运用。 【正文】: 一、电磁学在医疗上的应用 生物电磁学在医疗上的应用,简称磁疗。是 20 世纪九十年代才广泛兴起的一种自然疗法,用磁能作用于人体,通过磁的一系列生物与生物电磁学效应达到调整人体生理活动、实现身体保健和治疗疾病的目的。确切地说,磁疗是一种物理能量疗法。由于磁疗安全、方便、简捷、省时、无毒副作用、疗效肯定受到人们的认可和喜爱,被世界卫生组织推荐为最有前途的绿色疗法。从严格意义上说,磁疗还未真正地走进现代生命科学的殿堂,尚处于研究、探索、试用阶段,属于生命科学中一门崭新的边缘学科。本文所述的磁生物与生物电磁生理学效应是对近十年来人们使用磁性保健产品临床效果的总结和理性思考,也是第一次提出“磁生物与生物电磁生理学效应”这一概念,有关人体这一弱电磁生物体与磁场相互作用的具体细节及其量化表述有待进一步实验结果的充实。 在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引起的磁暴等,除对电气设备、飞机、建筑物等可能造成直接破坏外,还会在广大地区产生严重电磁干扰。另一类是人工电磁辐射,主要是微波设备产生的辐射,微波辐射能使人体组织温度升高,严重时造成植物神经功能紊乱。但是对电磁辐射,要正确认识,而且要科学防护。事实上,电磁波也如同大气和水资源一样,只有当人们规划、使用不当时才会造成危害。一定量的辐射对人体是有益的,医疗上的烤电、理疗等方法都是利用适量电磁波来治病健身 生物电磁场保健 将人体置于姜氏场导舱内接受载有青春信息的植物幼苗发射的生物电磁波。结果发现:人体红细胞膜的渗透脆性降低,韧性增强;甲状腺素、性激素分泌增加;免疫功能提高;肾上腺皮质激素分泌无明显变化。提示:植物幼苗电磁波有助于红细胞功能的发挥,促进机

电磁场与电磁波发展史教学总结

电磁场与电磁波发展 史

电磁场与电磁波发展史 这学期,我们学习了《电磁场与电磁波》这门课程,课程虽已结束,但在学习过程中获得的知识却会让我们每个人受益终身。每一门学科都有一个发展完善的过程,我将用自己查阅到的资料与自己的理解简单介绍一下电磁场与电磁波的发展史。 电磁学是研究电磁现象的规律的学科,其中,在电磁学里,电磁场(elect- -romagnetic field)是一种由带电物体产生的一种物理场;电磁波(electromagnetic wave)(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。关于电磁现象的观察记录,可以追溯到公元前6世纪希腊学者泰勒斯(Thales),他观察到用布摩擦过的琥珀能吸引轻微物体,英文中“电”的语源就来自希腊文“琥珀”一词。在我国,最早是在公元前4到3世纪战国时期《韩非子》中关于司南(一种用天然磁石做成的指向工具)和《吕氏春秋》中有关“慈石召铁”的记载。由此可见,电磁现象很早就已经被发现。然而真正对电磁现象的系统研究则要等到十六世纪以后,并且静电学的研究要晚于静磁学,这是由于难以找到一个能产生稳定静电场的方法,这种情况一直持续到1660年摩擦起电机被发明出来。十八世纪以前,人们一直采用这类摩擦起电机来产生研究静电场,代表人物如本杰明·富兰克林。人们在这一时期主要了解到了静电力的同性相斥、异性相吸的特性、静电感应现象以及电荷守恒原理。后来,人们曾将静电力与在当时已享有盛誉的万有引力定律做类比,发现彼此在理论和实验上都有很多相似之处,包括实验观测到带电球壳内部的球体

电磁场与电磁波论文

电磁场与电磁波论文 院系:电子信息学院 班级:电气11003班 学号:201005792 序号:33 姓名:张友强

电磁场与电磁波的应用 摘要: 磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 关键词:磁疗、电磁生物体、生物磁场、磁疗保健 电磁场与电磁波简介: 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。。生物电磁学与工程电磁场与微波技术的不同主要体现在:1、后者的作用对象是具有个体差异的生命物质;2、后者的作用对象是根据人为需要而选取并加工的电磁媒质或单元而前者的作用要让测量系统服从于作用对象。生物电磁学的研究内容主要设计五个方面:1、电磁场(波)的生物学效应,研究在电磁场(波)作用下生物系统产生了什么;2、生物学效应机理,研究在电磁场(波)作用下为什么会产生什么;3、生物电磁剂量学,研究在什么条件下会产生什么;4、生物组织的电磁特性,研究在电磁场(波)作用下产生什么的生物学本质;5、生物学效应的作用,研究产生的效应做什么和如何做。 正文: (一)在生产、生活上的应用 静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。在所有的例子中带电粒子偏转都是通过两个平行板之间的电位差来实的。 1.磁悬浮列车 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁场与电磁波公式总结

电磁场与电磁波复习 第一部分 知识点归纳 第一章 矢量分析 1、三种常用的坐标系 (1)直角坐标系 微分线元:dz a dy a dx a R d z y x → → → → ++= 面积元:?????===dxdy dS dxdz dS dydz dS z y x ,体积元:dxdydz d =τ (2)柱坐标系 长度元:?????===dz dl rd dl dr dl z r ??,面积元??? ??======rdrdz dl dl dS drdz dl dl dS dz rd dl dl dS z z z r z r ????,体积元:dz rdrd d ?τ= (3)球坐标系 长度元:?????===?θθ?θd r dl rd dl dr dl r sin ,面积元:??? ??======θ ?θ? θθθ??θθ?rdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元: ?θθτd drd r d sin 2= 2、三种坐标系的坐标变量之间的关系 (1)直角坐标系与柱坐标系的关系 ?? ? ? ? ??==+=?????===z z x y y x r z z r y r x arctan ,sin cos 2 2??? (2)直角坐标系与球坐标系的关系 ? ?? ? ?? ??? =++=++=?????===z y z y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 2 22 2 22?θθ?θ?θ (3)柱坐标系与球坐标系的关系 ?? ? ? ???=+=+=?????===??θθ??θ2 2 '2 2''arccos ,cos sin z r z z r r r z r r 3、梯度

电磁场与电磁波

电磁场与电磁波实验问卷答案 一、频谱特性测量演示实验问卷 1.ESPI 测试接收机所测频率范围为: 9KHz—3GHz 2.ESPI 测试接收机的RF输入端口最大射频信号: 30dbm,最大直流: 50v 3.是否直观的观测到电磁波的存在?(回答是/否)否 4.演示实验可以测到的空间信号有哪些,频段分别为: 广播:531K~1602KHz GSM900:上行:890~915 MHz 下行:935~960 MHz GSM1800:上行:1710~1755 MHz 下行:1805~1850 MHz WCDMA:上行:1920~1980MHz 下行:2110~2170MHz CDMA2000:上行:1920~1980MHz 下行:2110~2170MHz TD-SCDMA:2010~2025MHz 5.课堂演示的模拟电视和数字电视频谱图:如何判断是模拟还是数字电视? 模拟信号以残留边带调幅方式频分复用传输,有明确的载波频率,不同频道的图像有不同的载波频率。模拟信号频谱为:每8MHz带宽即一个频道内,能量集中分布在图像载频上,在该载频附近有一个跳动的峰,为彩色副载波所在,再远一点(在8MHz内)还有一个峰,为伴音副载波的峰。 数字信号:一个数字频道的已调信号像一个抬高了的噪声平台, 均匀地平铺于整个带宽之内, 它的能量是均匀分布在整个限定带宽内的。 6.课堂演示GSM900上下行频谱图,CDMA下行频谱图,3G下行频谱图:GSM900上行:

GSM900下行: CDMA下行频谱图:

3G下行频谱图: 7.该频谱仪能检测的频谱范围,是否能观察到WIFI、电磁炉、蓝牙等频谱?(请分别说明,并指出其频率) 可以该频谱仪能检测的频谱范围为9KHz—3GHz 所以,能够观察到:WIFI:2.4G 电磁炉:20KHz—30KHz 蓝牙:2.4G

电磁场与电磁波学习感悟

浅谈麦克斯韦方程组与电磁学感悟 概述 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与磁场的四个基本方程。方程组的微分形式,通常称为麦克斯韦方程。在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 历史背景与提出过程 1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 法拉第用直观、形象、自然的语言表述的物理观念发表之后,由于没有严密的数学论证,仅有少数理论物理学家对它表示欢迎,而大多数都认为缺乏理论的严谨性。麦克斯韦非常钦佩法拉第的思想,把法拉第天才的观念用清晰准确的数学形式表示出来,使之更具有深刻性和普遍性。 麦克斯韦与法拉第不同,他是一位极优秀的数学家,具有很高的数学天赋,早年的兴趣主要在纯数学方面,他是英国著名数学家霍普金斯(W,H“妙ins)的研究生,在这位数学家的指导下,不到三年就基本上掌握了当时所有先进的数学方法,成为一名有为的青年数学家,并且,麦克斯韦在他的直接影响下,很注重数学的应用,这一点对日后完成电磁场理论无疑是很关键的。 麦克斯韦本着为法拉第观念提供数学方法的思想,认真分析了法拉第的场和力线,同时考察了诺伊曼(F.E.Neumann,1795一1595)和韦伯(w.E.Weber,1804一1891)所发展起来的超距作用的电磁理论,发现“其假设中所包含着的机制上的困难”决定从“另一方面寻找对事实的解释”。他继承了法拉第的场观念和近距作用J思想,于1855年发表了其电磁学的第一篇重要论文一一《论法拉第的力线》。采用几何观点,类比流体力学理论,对法拉第的场作了精确的数学处理,将这一物理观念表示为清晰的几何图象,对电磁感应作了定量表述,导出了电流周围磁力线与磁力的关系,建立了描述电流和磁力线的一些物理量之间定量关系的微分方程,可以说这是把法拉第的物理成功地翻译成了数学,用数学方程描述法拉第力线。虽然还没有解决物理现象的

电磁场与电磁波复习要点

电磁场与电磁波期末考试知识点要求 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。 梯度:x y z u u u u x y z ????= ++???e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。 y x z A A A x y z ?????=++???A 散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: () () V S dV d ??=???? ??A A S ò, x y z y y x x z z x y z x y z A A A A A A x y z y z z x x y A A A ??????????? ??????= =-+-+- ? ? ????????????????e e e A e e e 旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。 斯托克斯定理: () () S L d d ???=??? ?A S A l ? 数学恒等式:()0u ???=,()0????=A 3、理解亥姆霍兹定理的重要意义: 若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。u =??-?A F

静电场和恒定磁场 1、 理解静电场与电位的关系,Q P u d =??E l ,()()u =-?E r r 2、 理解静电场的通量和散度的意义, d d d 0V S V S V ρ??=???=?????D S E l ?? ,0V ρ??=?? ??=?D E 静电场是有散无旋场,电荷分布是静电场的散度源。 3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题; 唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的 镜像法:利用唯一性定理解静电场的间接方法。关键在于在求解区域之外寻找虚拟电荷,使求解区域内的实际电荷与虚拟电荷共同产生的场满足实际边界上复杂的电荷分布或电位边界条件,又能满足求解区域内的微分方程。 点电荷对无限大接地导体平板的镜像: 当两半无限大相交导体平面之间的夹角为α时,n =3600/α,n 为整数,则需镜像电荷数为n -1. 4、 理解恒定磁场的环量和旋度的意义, 0L d d I ??=?? ?=??????S B S H l òò , 0 V ??=?? ??=? B H J 表明磁场是无散有旋场,电流是激发磁场的旋涡源。 5、 理解矢量磁位的意义,并能根据矢量磁位计算磁场。 B=?×A ,(库仑规范:0??=A ) XY 平面 X )

电磁场和电磁波的应用

本科生学年论文(课程设计)题目:电磁场与电磁波的应用 学院物理科学与技术学院 学科门类理学 专业应用物理 学号2012437019 姓名郭天凯 指导教师闫正 2015年11月18日

电磁场与电磁波的应用 摘要 随着社会的不断进步与发展,科学技术的不断改革创新,电磁场与电磁波已经应用于社会生活的方方面面,受到了越来越多人的高度重视和关注。电子通信产品的随处可见,手机通信,微波通讯以及无线电视等;电磁波极化在雷达信号滤波、检测、增强、抗干扰和目标鉴别/识别等方面的应用;电磁场在金属材料加工、合成与制备中的应用;电磁波随钻遥测技术在钻井中的应用;电磁场的生物效应在电磁治疗方面的应用等都离不开电磁成与电磁波。本文将进一步对电磁场与电磁波在通讯、科技开发、工业生产、生物科学、材料科学等方面的应用展开分析和探讨。 关键词:电磁场;电磁波;极化;电子通信技术;电磁波的应用

目录 1 电磁场与电磁波的概况 (1) 2 电磁场与电磁波在通讯方面的应用 (2) 2.1 在无线电广播中的应用 (2) 2.2 在电视广播中的应用 (2) 2.3 在移动通信中的应用 (2) 2.4 在卫星通信中的应用 (2) 3 电磁波极化的应用 (3) 3.1 利用极化实现最佳发射和接收 (3) 3.2 利用极化技术提高通信容量 (3) 3.3 极化在雷达目标识别、检测和成像中的应用 (3) 3.4 极化在抗干扰中的应用 (4) 4 电磁波随钻遥测技术在钻井中的应用 (5) 4.1 采用数据融合技术,优化产品性能,提高传输深度 (5) 4.2 采用广播芯片技术,提高信息传输能力 (5) 5 在生物医学中的应用 (6) 5.1 电磁场的生物效应及其发展 (6) 5.2 电磁场作用的机理 (6) 6 电磁场在材料科学中的应用 (7) 7 结束语 (7) 参考文献 (8)

(完整word版)电磁波知识点总结

高中物理选修3-4——电磁波知识点总结 一、电磁波的发现 1、电磁场理论的核心之一:变化的磁场产生电场 在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:(1)均匀变化的磁场产生稳定电场 (2)非均匀变化的磁场产生变化电场 2、电磁场理论的核心之二:变化的电场产生磁场 麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场 ◎理解:(1)均匀变化的电场产生稳定磁场 (2)非均匀变化的电场产生变化磁场 3、麦克斯韦电磁场理论的理解: 恒定的电场不产生磁场 恒定的磁场不产生电场 均匀变化的电场在周围空间产生恒定的磁场 均匀变化的磁场在周围空间产生恒定的电场 振荡电场产生同频率的振荡磁场 振荡磁场产生同频率的振荡电场 4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场 5、电磁波:电磁场由发生区域向远处的传播就是电磁波. 6、电磁波的特点: (1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直 (2)电磁波可以在真空中传播,速度和光速相同.v=λf (3)电磁波具有波的特性 7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象.,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。 二、电磁振荡 1.LC回路振荡电流的产生:先给电容器充电,把能以电场能的形式储存在电容器中。 (1)闭合电路,电容器C通过电感线圈L开始放电。由于线圈中产生的自感电动势的阻碍作用。放电开始瞬时电路中电流为零,磁场能为零,极板上电荷量最大。随后,电路中电流加大,磁场能加大,电场能减少,直到电容器C两端电压为零。放电结束,电流达到最大、磁场能最多。 (2)由于电感线圈L中自感电动势的阻碍作用电流不会立即消失,保持原来电流方向,对电容器反方向充电,磁场能减少,电场能增多。充电流由大到小,充电结束时,电流为零。接着电容器又开始放电,重复(1)、(2)过程,但电流方向与(1)时的电流方向相反。2、有效的向外发射电磁波的条件:(1)要有足够高的振荡频率,因为频率越高,发射电磁波的本领越大。(2)振荡电路的电场和磁场必须分散到尽可能大的空间,才有可能有效的将电磁场的能量传播出去。

电磁场与电磁波答案()

《电磁场与电磁波》答案(4) 一、判断题(每题2分,共20分) 说明:请在题右侧的括号中作出标记,正确打√,错误打× 1.在静电场中介质的极化强度完全是由外场的强度决定的。 2.电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。 3.两列频率和传播方向相同、振动方向彼此垂直的直线极化波,合成后 的波也必为直线极化波。 4.在所有各向同性的电介质中,静电场的电位满足泊松方程2ρ?ε?=-。 5.在静电场中导体内电场强度总是为零,而在恒定电场中一般导体内的电场强度不为零,只有理想导体内的电场强度为零。 6.理想媒质和损耗媒质中的均匀平面波都是TEM 波。 7.对于静电场问题,保持场域内电荷分布不变而任意改变场域外的电荷分布,不会导致场域内的电场的改变。 8.位移电流是一种假设,因此它不能象真实电流一样产生磁效应。 9.静电场中所有导体都是等位体,恒定电场中一般导体不是等位体。 10.在恒定磁场中,磁介质的磁化强度总是与磁场强度方向一致。 二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中) 1. 判断下列矢量哪一个可能是静电场( A )。 A .369x y z E xe ye ze =++ B .369x y z E ye ze ze =++ C .369x y z E ze xe ye =++ D .369x y z E xye yze zxe =++ 2. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。( B ) A .0 B .-4 C .-2 D .-5 [ ×]1 [ √]2 [ ×]3 [ ×]4 [ √]5 [ √]6 [ ×]7 [ ×]8 [ √]9 [ ×]10

电磁场与电磁波知识点

电磁场与电磁波知识点 (一) 矢量分析和场论基础 1、理解标量场与矢量场的概念; 场是描述物理量在空间区域的分布和变化规律的函数。 点积 cos A B AB 结果为标量 x x y y z z A e A e A e A ,x x y y z z B e B e B e B ++x x y y z z A B A B A B A B P4 1.2.4 叉积 sin n A B e AB 结果为矢量 x y z x y z x y z e e e A B A A A B B B P4 1.2.5 矢量A 在矢量B 的投影 B A e B B e B 2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(直角坐标系)。 (,,)u u x y z 梯度:x y z u u u u x y z e e e , 结果为矢量 P12 1.3.7 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

方向导数: u 沿方向l 的方向导数 P11 x x y y z z l e l e l e l 大小 l 单位矢量 =l x y z l l e e e e l 方向导数 ()l u u e l 通量 S A dS 结果为标量 P16 1.4.5 通量的意义 判断闭合曲面内的通量源 P17 散度:单位空间体积中的通量源,有时也简称为通量密度, x x y y z z A e A e A e A y x z A A A x y z A P19 1.4.8 散度定理(高斯定理)的意义 高斯定理: () () V S dV d A A S , P19 1.4.12 环流(环量) = C A dl 结果为标量 P20 1.5.1 环量的意义 描述矢量场的漩涡源 P21 旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。 P21 x y z y y x x z z x y z x y z A A A A A A x y z y z z x x y A A A e e e A e e e P23 1.5.7 斯托克斯定理: () () S L d d A S A l P24 1.5.12

相关文档
最新文档