机械蒸汽再压缩处理高盐有机废水进展

机械蒸汽再压缩处理高盐有机废水进展
机械蒸汽再压缩处理高盐有机废水进展

机械蒸汽再压缩处理高盐有机废水进展

发表时间:2019-04-28T16:13:15.313Z 来源:《基层建设》2019年第6期作者:陈泽海

[导读] 摘要:本文综述了高盐有机废水的危害及处理方法,分析了机械蒸汽再压缩技术(MVR)的原理、设备和优缺点,结合文献阐述了去除指标和达标排放的案例,着重介绍了MVR高盐有机废水的技术问题和解决方、能耗和成本,为工程指导和经济技术分析提供了参考。

天津泰研科技发展有限公司天津 300110

摘要:本文综述了高盐有机废水的危害及处理方法,分析了机械蒸汽再压缩技术(MVR)的原理、设备和优缺点,结合文献阐述了去除指标和达标排放的案例,着重介绍了MVR高盐有机废水的技术问题和解决方、能耗和成本,为工程指导和经济技术分析提供了参考。

关键词:机械蒸汽;再压缩;高盐有机废水

引言

含盐废水是指质量分数至少为1%总溶解固体(TDS为10OOOmg/L)的废水,高盐废水的TDS为35OOOmg/L质量分数为3.5%),部分高盐废水中TDS甚至高达100000-600OOOmg/L。高盐废水含有大量可溶性的无机盐,如Cl-,SO2-4、Na+和Ca2+,Mg2+等,部分工业有机高盐废水中还含有Cu2+,Zn2+,Pb2+,Cr2+,Cd2+等金属离子,是目前难处理的废水之一。高盐有机废水的化学耗氧量COD高达几千、几万甚至十几万mg/L,其中的高浓度无机盐和难降解有机物排放会造成严重的环境污染,对土壤及地表水、地下水造成破坏。

1 MVR简介

常见处理高盐废水的方法有化学法、生物法和物理法。化学法有离子交换、电解和微电解、高级氧化等。郑常春等各种高级氧化技术的投资成本低,但是运行成本普遍较高。生物法有好氧法和厌氧法。施帅帅等的研究发现当盐度增大时,生物法处理时会出现问题:处理时间加长,去除率明显下降。物理法有膜分离和蒸发,膜分离成本较高,目前应用广泛的脱盐技术是蒸发。机械蒸汽再压缩(MVR)是最新节能型的技术,自世界能源危机以来越来越受重视。2007年MVR技术引入中国后,已被广泛应用于乳品行业,食品加工和废水处理等领域。

天津科技大学探寻了MBR法在高盐废水处理中的应用,其主要研究目的是探寻梯度增加盐度的自然化污泥和稳定盐度投加嗜盐菌生物的强化驯化污泥对MBR(膜生物反应器)的影响。梯度加盐自然驯化的活性污泥适用于低负荷的含盐污水处理,而稳定盐度投加嗜盐菌生物强化驯化的活性污泥,适用于高负荷的含盐废水处理

1.1 基本原理

MVR技术在1917年发明,第一台MVR设备在奥地利被设计安装。其原理是料液经蒸发器蒸发产生二次蒸汽,经分离器分离后再经压缩机压缩,从而提高压力、升高温度、增加热烩,然后作为加热蒸汽循环使用的技术,充分利用了蒸发过程中产生二次蒸汽的冷凝潜热,从而减少蒸发浓缩过程对外界能源需求。蒸发器分离出来的二次蒸汽经压缩机压缩后,温度压力升高,热烩增大,然后进入加热室冷凝并释放潜热,受热的料液得到热量后汽化产生二次蒸汽经分离后进入压缩机,重复上述操作,完成液通过结晶罐结晶,最后经离心机去除各类盐。整个过程主要向压缩机提供电能,省去了蒸汽和冷却水的能源消耗。

1.2 主要设备

MVR的主要设备包括预热器、蒸汽压缩机、汽液分离器和蒸汽换热器等。(1)进入预热器的待蒸发溶液一般为20250C,在预热器中用列管式换热器将原料液预加热,管程内为物料、壳程内为蒸汽,壳程内配有多个折流板,增加扰动强化传热,采用强制循环轴流泵做动力,使物料循环蒸发,提高物料的流速以免换热管结垢。(2)蒸汽压缩机转速通常为980rmp-1450rmp为了提高系统内二次蒸汽热烩,由它压缩二次蒸汽,持续向系统提供蒸汽。压缩机有离心式压缩机和罗茨式压缩机两种,离心式压缩机属于叶片式风机,适合蒸发量较大但物料沸点升高不大的情况。茨式压缩机属于容积式风机,适用于蒸发量较小但沸点升高较大的情况。(3)汽液分离器主要用于将浓缩液体和蒸汽分离,在蒸发中还起到物料沉降和晶体生长的作用。(4)换热后原液通过进料泵装入蒸汽换热器,温差20℃以上并且与蒸汽压缩机产生的蒸汽进行换热,使其汽化蒸发,换热器的形式可根据原液的特性选择。

1.3 优缺点

(1)优点

系统只有在开车时需要少量蒸汽,当系统稳定运行后可以不需要蒸汽或仅需极少量的蒸汽用以补充热平衡。整个系统能耗主要是压缩机的电耗,运行费用大幅下降。整个系统只有一个加热室,不需要冷凝器,无需冷却水,节省了设备投资和动力消耗。结构简单,操作容易,占地面积小。用电代替蒸汽,节约能源折标煤40%-60%左右于热敏物料的蒸发,蒸发产品的结构不易被破坏。

(2)缺点

机械蒸汽再压缩整体设备较为昂贵,前期投资比较高,造价约为四效降膜蒸发器的1.8倍。整个系统运行受海拔高度影响,在高海拔地区耗电较为严重,增加了能耗。生产能力不足,蒸发不稳定,出料浓度的干物质含量不稳定。

2 MVR在高盐有机废水处理中的应用

2.1 技术问题和解决策略

尽管MVR已经发挥了很好的效果,但是运行中仍有许多技术问题对运行效果有所影响,比如物料物性对MVR的选择、沸点升高对蒸发的影响、结垢结焦问题等。目前的解决策略有:王帅等研究了物料的物性对MVR性能的影响,并根据不同物料的物性对MVR进行选择,对沸点温度升高较大的物料,一般采用MVR单效蒸发;高浓度物料需要使用强制循环或刮板蒸发器以防止物料流速太慢而结焦;热敏性物料要求停留在蒸发器内的时间短,若是蒸发的物料对温度的高低有相应需求则需考虑蒸发温度的高低、蒸发器的型式与流程。提高蒸发温度会使物料的沸点升高,从而影响蒸发器设计参数。物料中的少量有机物及盐导致料液的整体沸点升高,使得在MVR设计中要增加换热器的换热面积,而在设计蒸发量不变的情况下,还要增加压缩机的压缩比和减少系统总传热面积。马文杰等研究了处理MVR结垢的方法,分类分析垢样后,选择了化学除垢法。对碳酸钙垢用5%一10%的盐酸加缓蚀剂进行溶解去除;对硫酸钙垢先用碱处理,再用盐酸常温浸泡,除垢率可达100%;对于碳酸钙和硫酸钙混合垢,用酸和碱交替处理效果较好;1-2天后硅垢变得较为松软,再用盐酸加氟化钠进行。

2.2 能耗和成本分析

MVR蒸发器以消耗电能为主,主要的运行成本来源于压缩机耗电,废水的单位处理量和不同的单位电价对成本也有相应的影响。MVR 处理高盐有机废水电费和成本如图2显示:蒸发一吨水平均耗电范围为24-50SOkWh。方健才报道处理氯化铵废水,单位处理量为3t/h,年处

化学试验室废液的处理方法

. 化学实验室废液的处理方法 1、实验室中经常有大量的废酸液。废液缸中废液可先用耐酸塑料网纱或玻璃纤维过滤,滤液加碱中和,调至pH=6—8后就可排出,少量滤渣可埋于地下。 2、对于回收较多的废铬酸洗液,可以用高锰酸钾氧化法使其再生,还可使用。少量的废液可加入废碱液或石灰使其生成Cr(OH)3沉淀,将沉淀埋于地下即可。 3、氰化物是剧毒物质,含氰废液必须认真处理。少量的含氰废液可加入NaOH 调至pH=10以上,再加入几克高锰酸钾使CN-氧化分解。量大的含氰废液碱液氯化法处理,先用碱调至pH=10以上,再加入次氯酸钠,使CN-氧化成氰酸盐,并进一步分解为CO2和N2。 4、含汞盐废液应先调pH至8—10后加适当过量的Na2S,使生成HgS沉淀,并加FeSO4与过量S2-生成FeS沉淀,从而吸附HgS共沉淀下来,静置后分离,再离心,过滤;清液含汞量可降至0.02mg/L以下排放。少量残渣可埋于地下,大量残渣可用焙烧法回收汞,但要注意一定要在通风橱内进行。 5、含重金属离子的废液,最有效和最经济的方法是加碱或加Na2S把重金属离子变成难溶性的氢氧化物或硫化物而沉积下来,从而过滤分离,少量残渣可埋于地下。 化学实验室废液废气处理办法 1、溶解法:在水或其它溶剂中溶解度特别大或比较小的气体, 用合适的溶剂把它们完全或大部分溶解掉。 2、燃烧法:部分有害的可燃性气体,在排放口点火燃烧,消除污染。例如,一氧化碳等。化学实验中废弃的有机溶剂,大部分可回 1 / 5 . 收利用,少部分可以燃烧处理掉,有些在燃烧时可能产生有害气体的废物,必须用配有洗涤有害废气的装置燃烧。 3、中和法:对于酸性或碱性较强的气体,用适当的碱或酸进行吸收。对于含酸或碱类物质的废液,如浓度较大时,可利用废酸或废碱相互中和,再用pH 试纸检验,若废液的pH值在5.8~8.6之间,如此废液中不含其它有害物质,则可加水稀释至含盐浓度在5%以 下排出。 4、吸附法:选用适当的吸附剂,消除一些有害气体的外逸和释放。对于毒害不大的气体或剂量小的气体,用木炭粉或脱脂棉。对于 难以燃烧的或可燃性的低浓度有机废液,用吸附性能良好的物质,让废液充分吸收后,与吸附剂一起焚烧。 5、稀释法:对于实验中产生的大量废液,其中无毒无害的,采用稀释的方法处理。 6、沉淀法:对于含有害金属离子的无机类废液,加入合适的试剂,使金属离子转化为难溶性的沉淀物,然后进行过滤,将滤出的沉 淀物妥善保存,检查滤液,确证其中不含有毒物质后,可排放。 化验室废液的处理办法

浅谈关于高盐废水处理

1、高盐一般是指高于1%的盐度,即盐度大于10g/L. 当水中含盐量在3%时候,微生物的增长会明显受到抑制。 一般控制Cl离子在1200mg/L以下,最好低于400~600mg/L。 2、对于活性污泥法和生物膜法,如果不考虑培养专性的嗜盐菌,盐对生物繁殖的抑止浓度是多少?耐冲击范围又大概在多少? 含盐污水的生物处理按照微生物的来源可以分两种处理技术,一种就是采用淡水微生物进行盐度驯化,另一种是接种筛选嗜盐微生物。盐对传统淡水微生物的抑制程度是不同的,换句话说就是不同功能的微生物的耐盐范围是不同的。现在研究的结果很有限,尤其对氮磷去除的研究少之又少。安全的范围对于有机物降解的异氧菌盐度应该低于15g/L.除磷盐度不能超过6g/L,脱氮盐度应该低于15g/l.但是强调一点这些盐度的范围以处理工艺、水质不同有很大不同。对好氧异氧菌的盐度冲击范围适盐度驯化系统的不同而不同。未驯化淡水处理系统大于在0~20g/L之间。具体见我在《中国给水排水》发的文章。 2、嗜盐菌(不知是否有)的嗜盐机理能否赐教? 一般有光能质子泵原理和吸钾排钠原理。 3、工艺 高含盐废水生物处理流程的选择高含盐废水生物处理流程与普通生物处理流程基本一样,主要包括调节池、曝气池、二沉池、污泥回流、剩余污泥脱水、投加营养盐等。(1)调节池。含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。 (2)曝气池。根据废水中含盐类型不同,曝气池选择也应有所不同。生物处理含CaCL2较高的废水,应采用传统曝气方式。钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。曝气强度也应大于普通生物处理,在10m3/(m2•h)左右,或用中心管来增加提升和搅拌能力。高含盐情况下氧的传递速度增加对高污泥浓度有利,只要菌胶团不解体,既使产生丝状菌,污泥也不会上浮流失。含磷营养盐应注意投加位置,以免产生的磷酸钙盐沉淀不仅影响使用效果,而且产生结垢易堵塞管线。在用SBR工艺处理高盐废水时,由于SBR是瀑气,沉淀一体,所以在设计的时候要充分考虑到沉淀时间,尤其是在处理含高浓度的钠盐的废水,含钠盐的废水沉淀效果差,故沉淀时间应该相应延长,再就是在为了减少滗水器对沉淀的污泥的干扰,滗水的深度也应该相应减小。在处理盐度波动较大的废水的时候,仍然需要设置调节池。 生物膜工艺是处理高盐度废水的理想工艺,如瀑气生物滤池工艺,接触氧化工艺曝气等,在处理钙盐含量高的废水时,要注意填料或者滤料的选择,在瀑气生物滤池中要设计较大的反冲洗强度和时间。接触氧化池的填料也宜采用空隙率较高的类型,填料的安装要考虑到易于拆卸和冲洗,防止废水处理过程中形成的碳酸钙堵塞填料。含NaCl较高的废水生物处理时,污泥灰分含量低于含CaCL2废水,而含盐废水密度大,在污泥膨胀或曝气池受到冲击污泥解体时,菌胶团比含CaCL2废水容易上浮流失,因此含NaCl较高的废水生物处理最好采用生物膜法。

高盐废水处理方法及案例

高盐废水是指含盐量超过总含盐量1%的含盐废水,包括高盐生活废水和高盐工业废水,其主要来源于直接利用海水的工业生产、生活污水和食品加工厂、制药厂、化工厂等,若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水产生很大危害。 为了使高盐废水达标排放,目前常用MVR 蒸发或三效蒸发器达到目的,具体表现为:含盐废水进入蒸发装置,经过蒸发冷凝的浓缩结晶过程,分离为淡化水和浓缩晶浆废液,无机盐和部分有机物可结晶分离出来作为固废处理,淡化水可返回生产系统替代软化水加以利用。但实际应用中由于高盐废水中的有机物含量高,经常出现蒸发器堵塞、蒸盐效率低、蒸盐颜色深等问题,给企业的稳定运行造成困扰。 高盐废水吸附工艺,对蒸盐前的废水进行预处理,将废水中绝大部分的有机物吸附去除,提高后续蒸发系统运行的稳定性,并降低蒸盐的色度,固盐由危废变为固废,减少企业生产的运行费用,给高盐废水治理提供了一个有效的解决办法。 将废水预先过滤去除其中的悬浮和颗粒物质,然后进入吸附塔吸附,吸附塔中填充的特种吸附材料能将废水中的有机物吸附在材料表面,使出水COD 明显减低。吸附饱和后,再利用特定的脱附剂对吸附材料进行脱附处理,使吸附材料得以再生,如此不断循环进行。 吸附法的优点 1.深度去除废水中的有机物,降低吸附出水的COD 及色度,可保证出水蒸盐为白色,提高后续蒸发系统的稳定性; 吸附塔 过滤器 高盐废水 后续蒸发 氧化后返回生化系统 脱附液

2.采用特种改性的吸附材料,吸附容量大,设备投资少,运行费用低; 3.工艺流程简单,可实现全程自动化操作,操作维护方便。 4.可实现多层布置,占地面积小,安装周期短。 案例介绍 本新建高盐废水吸附处理设施,总设计废水处理规模为100m3/d,废水为厂内混合高盐废水,废水颜色深,蒸发为棕色,固废处理费用高。海普对该废水进行了定制化的工艺设计,废水设计指标如下表。 表1 废水设计参数表 指标水量(m3/d)颜色(mg/L) 吸附进水100 棕红色 吸附出水~100 淡黄色 出水蒸盐白色 图2 原水(左)、出水(右)外观图

二氧化氯催化氧化处理高浓度有机废水

常温常压二氧化氯催化氧化处理高浓度有机废水 随着现代工业的迅猛发展,各种废水的排放量逐年增加,且大都具有浓度高、生物降解性 差甚至有生物毒性等特点,国内外对此类高浓度难降解有机废水的综合治理都予以高度重视并 制定了更为严格的标准。目前,部分成分简单、生物降解性略好、浓度较低的废水都可通过传 统的工艺得到处理,而浓度高、难以生物降解的废水却很难得到彻底处理,且在经济上也存在 很大困难,如何去除或转化这类废水中的各种有毒物质,不仅是当前国内外水处理领域非常活 跃的研究方向,也是我国21世纪水问题中迫切需要解决的难题之一。 氧化方法是一种“破坏性”技术,具有广谱的去除毒害有机物效果,氧化法能将废水中的 有机污染物氧化或彻底去除。目前氧化方法有:化学氧化法、光化学氧化法、催化湿式氧化法、超临界水氧化法、光化学催化氧化法、生物氧化法等。 化学氧化法通过化学反应毒害有机物被氧化为微毒或无毒的物质,或者转化为容易与水分离的形态,由于氧化剂的不同可分为臭氧、过氧化氢、二氧化氯及高锰酸钾氧化等。湿式氧化 法是在高温高压下,利用氧化剂将废水中的有机物氧化为二氧化碳和水。超临界水氧化技术是 20世纪80年代中期由美国学者Modell提出的一种能够彻底破坏有机物结构的新型氧化技术, 其原理是在超临界水的状态下将废水中所含的有机物用氧化剂迅速分解成水、二氧化碳等简单 无害的小分子化合物。光化学氧化是通过氧化剂在光的辐射下,产生氧化能力较强的自由基而 进行的,根据氧化剂的种类不同,可分为UV/H2 02,u.u03及UV/H2 02 /03等系统。光催化氧化法主要是指UV/Fenton试剂法和半导体光催化氧化。光化学氧化和光催化氧化处理低浓度废水效果较好,工业化较复杂,实际工程应用不多。湿式氧化和催化湿式氧化,具有使高 浓度难降解有机物氧化或偶合,氧化效率高,分解速度快的优点,但是同时还具有催化剂费用 高,反应装置复杂,需要高温高压设备及配套设施,防腐困难等缺点,而且投资大。超临界水 氧化技术目前还处于实验室阶段,工业应用难度较大,而且投资大,运行成本高。 由于以上各种方法对于污染物处理条件的要求很苛刻和实际推广应用方面存在的局限性, 人们为开发不受上述问题影响的方法付出了许多努力。近年来,常温催化氧化技术受到了人们 的广泛关注。催化氧化法的研究核心是寻找性能优良,具有广谱催化作用的催化剂,提高催化 剂的催化效果,减少催化剂的损耗及中毒现象,使其能在工业废水处理中更好地发挥作用。催

高浓度有机废水处理技术

高浓度有机废水处理技术 朱艳霞 摘要:对国内外目前高浓度有机废水的主要处理技术进行综述, 主要包括物化、化学、生物处理技术并分析了各种方法和工 艺的优缺点及其研究现状。重点对生物处理技术中MBR、A-B工艺、UASB、SBR工艺进行重点研究、归纳总结其优缺点,并提 出应用几种处理技术连用的方法来处理高浓度有机废水,用综合治理的理念既要大力发展处理技术, 还要从源头防治, 以减 轻污染。 关键字:有机废水;高浓度;处理技术;前景 1 水资源状况 当前,水资源是世界各国普遍面临急需解决的问题之一。据联合国世界资源研究所研究报道,世界水资在质和量的方面都面临着比其它资源和比以往都更为严峻的局面。据统计全球2006年全球工业用水量为2.07万亿立方米,而这一现象世界各地状况极不相同,需求量与有限的可以用水资源极不适应,并且全世界每年排向自然水体的工业和生活废水为4200亿立方米,造成35%以上的淡水资源受到污染,因而治理水体污染将尤为重要。在一定意义上说世界各地经济发展的快慢将依据可利用水资源的状况而确定。 我国的水资源也面临严重的污染问题。大量工业废水不达标外排,绝大部分生活污水不经处理直接排放,广大农村地区不合理使用化肥、农药等农用化学物质,对地表水影响日趋严重。全国大部分城市和地区的淡水资源己受到水质恶化和水生态系统被破坏的威胁。由于全国80%左右的污水未经任何处理直接排入水域,造成全国1/3以上的河段受到污染,90%以上的城市水域污染严重,近50%的重点城镇水源地不符合饮用水标准。我国城市水资源质量也较差,大部分城市和地区地下水位连续下降,形成了不同规模的地下水降落漏斗,形势相当严峻。造成水资源受到严重污染的根本原因是大量生产生活废水未经处理或虽经处理但未达标。这些未得充分利用的废水即污染环境,又浪费资源,迫切需要进行资源化利用。水中的各种污染物中,有机污染物,尤其是高浓度的有机污染物,不仅在水中存在时间长、迁移范围广,而且危害大、处理难度大,一直是环保领域的一个重要研究课题。 2 高浓度有机废水 2.1 高浓度有机废水来源 高浓度有机废水一般是指由造纸、皮革及食品等行业排出的COD 在2 000 mg/ L 以上的废水。这些废 水中含有大量的碳水化合物、脂肪、蛋白质、纤维素等有机物,如果直接排放,会造成严重污染。高浓度有 机废水按其性质来源可分为三大类: [1] (1) 易于生物降解的高浓度有机废水; (2) 有机物可以降解,但含有害物质的废水; (3) 难生物降解的和有害的高浓度有机废水。

废液处理方法()

2).硫化物共沉淀法 [操作步骤] ①废液中重金属的浓度要用水稀释至1%以下。 ②加入Na2S或NaHS溶液,并充分搅拌。 ③加入NaOH溶液,调整pH值至9.0~9.5。 ④加入FeCl3溶液,调节pH值至8.0以上,然后放置一夜。 ⑤用倾析法过滤沉淀,检查滤液确实不含重金属。 ⑥再检查滤液有无S2-离子。如果含有S2-离子时,用H2O2将其氧化,中和后即可排放。 [分析方法] 定性分析用检测箱进行,或用二苯基硫巴腙(即双硫腙)溶液,检查有无产生颜色。定量分析则用二苯基硫巴腙吸光光度法或原子吸收光谱分析法(见JIS K 0102)。 [备注] 除上述的处理方法外,还有碳酸盐法(可用含碳酸钠的碱灰浆)、离子交换树脂法及吸附法(用活性炭)等。 4.8 含重金属的有机类废液 处理方法 先将妨碍处理重金属的有机物质,用氧化、吸附等适当的处理方法把它除去。然后才把它作无机类废液处理。 1).焚烧法 将含大量有机溶剂废液及有机物的溶液,进行焚烧处理,保管好残渣。 2).氧化分解法 参照含有机汞废液的处理方法。

3).活性炭吸附法 调整pH值至5左右,加入活性炭粉末,经常加以搅拌,经2~3小时后进行过滤(此法适用于处理稀溶液)。 4.9 含钡废液 处理方法 在废液中加入Na2SO4溶液,过滤生成的沉淀后,即可排放。 4.10 含硼废液 处理方法 把废液浓缩,或者用阴离子交换树脂吸附。对含有重金属的废液,按含重金属废液的处理方法进行处理。 4.11 含氟废液 处理方法 于废液中加入消化石灰乳,至废液充分呈碱性为止,并加以充分搅拌,放置一夜后进行过滤。滤液作含碱废液处理。此法不能把氟含量降到8ppm以下。要进一步降低氟的浓度时,需用阴离子交换树脂进行处理。 4.12 含氧化剂、还原剂的废液 注意事项 1).原则上将含氧化剂、还原剂的废液分别收集。但当把它们混合没有危险性时,也可以把它们收集在一起。 2).含铬酸盐时可作为含Cr(Ⅵ)的废液处理。 3).含重金属物质时,可作为含重金属的废液处理。 4).不含有害物质而其浓度在1%以下的废液,把它中和后即可排放。

湿式催化氧化法处理工业废水

环境保护科学第27卷总第103期2∞1年2月 湿式催化氧化法处理工业废水 ndustrialWastewaterTreatmentwithWettingCatalyticOxidizeMethod 委英半月雨虹(大连市沙河口区环境监洲站大连116021) 鹿政理(大连市环境科学设计研究院) 摘要舟培了有机虞水催化氧化处茬的进展情况庭科研^果. 关■铜穑化曩化催化剂有机废水 A嗨t哺ctTh亡scient讯c弛sHrchanddevelopmentono‘gaIIicwastewatertre^tmentby∞tal”证oxidi钟w强intro-ducedinthepaper. Keyword8cataI”lcoxIdatI佣CataIy8tOr口anIcwastewat钾 1前育 湿式氧化法是将溶解和悬浮在废水中的有机物及还原性无机物通过液相氧化的方法促进氧化降解或水解来降低水中CoD和BOD含量的化学处理方法。由于反应时需加热刭适宜温度以及需在密封容器内进行,故有时也称此法为水热分解法。 湿式催化氧化法是湿式氧化法的发展方向,国外在催化剂的筛选、评价、回收、再生等方面开展了大量的研究工作,并开发建立了一系列的工业规模生产装置。 使用本方法处理工业废水时,需要在较高的温度(约200~250℃)和较高的压力(约50~70大气压)下以水为介质对有机物进行氧化降解的,所以选择适当的耐压反应容器(反应釜)是实验的主要条件之一。设备投资费用较大,要求较高是本法主要不足之一,而运转费用低。处理效率高是本法得以推广的原因. 2研究动态 自从80年代以来一些主要国家如美、德、日等国先后对此工艺及设备进行了系统研究,日本1985年起京都大学、公害资源研究所、大阪工业试验所以及大阪煤气工程公司等单位均参加该项研 收藕日期2000~03—22 —22一究.其主要研究项目有: (1)高浓度悬浮有机物的催化剂的研制及耐用性试验,对高浓度coD及氨类的古悬浮物较步的废水进行长期连续性试验。已进入实用阶段,使用的值化剂为球形或无定型颗粒}对古悬浮钉多的高浓度cOD工业废水研制蜂窝状催化荆,对其成型方法、强度、活性、耐用性等进行研究。 (2)在中试装置内用蜂窝状催化剂以及空塔条件下,研究难分解组分的分解特性。 (3)对湿式催化氧化处理后的工业废水进行膜分离和厌氯处理试验。 湿式催化氧化工艺从设备结构来看主要有固定床和流化床两种,同定床又分气相和液相两种。气相固定床催化氧化工艺是在反应器内进行气液分离。优点是反应压力较低,可避免设备堵塞,转化率较高,一般可达90%以上。液相同定床催化氧化工艺简单,操作方便,使用压力较高,催化剂分离回收有一定困难.漉化床催化氧化工艺可以使催化剂与废水混合均匀,增加反应物与催化剂的接触,设备利用事高I其催化剂的分离回收方法有离子交换法和液相旋流分离法。为了充分利用反应热,使用两殷换热器和气液分离反应器。 通常中问试验的流程见图1。  万方数据

废水处理方法及措施

废水处理方法及措施 废水处理方法及措施 1处理方法 1.1含N、S及卤素类的有机废液处理 此类废液包含的物质:吡啶、喹啉、甲基吡啶、氨基酸、酰胺、二甲基甲酰胺、二硫化碳、硫醇、烷基硫、硫脲、硫酰胺、噻吩、二甲亚砜、氯仿、四氯化碳、氯乙烯类、氯苯类、酰卤化物和含N、S、卤素的染料、农药、颜料及其中间体等等。 对其可燃性物质,用焚烧法处理。但必须采取措施除去由燃烧而产生的有害气体(如SO2、HCl、NO2、二恶英等)。对多氯联苯之类物质,因难以燃烧而有一部分直接被排出,要加以注意。 对难于燃烧的物质及低浓度的废液,用溶剂萃取法、吸附法及水解法进行处理。但对氨基酸等易被微生物分解的物质,经用水稀释后,即可排放。 1.2含酸、碱、氧化剂、还原剂的废液处理 此类废液包括:含有硫酸、盐酸、硝酸等酸类和氢氧化钠、碳酸钠、氨等碱类,以及过氧化氢等过氧化物类氧化剂与硫化物、联氨等还原剂的有机类废液。 首先,按无机类废液的处理方法,把它分别加以中和。然后,若有机类物质浓度大时,用焚烧法处理(保管好残渣)。能分离出有机层和水层时,将有机层焚烧,对水层或其浓度低的废液,则用吸附法、溶剂萃取法或氧化分解法进行处理。但是,对其易被微生物分解的物质,用水稀释后,即可排放。 此类废液包括:苯、已烷、二甲苯、甲苯、煤油、轻油、重油、润滑油、切削油、机器油、动植物性油脂及液体和固体脂肪酸等物质的废液。 对其可燃性物质,用焚烧法处理。对其难于燃烧的物质及低浓度的废液,则用溶剂萃取法或吸附法处理。对含机油之类的废液,含有重金属时,要保管好焚烧残渣。 1.3含石油、动植物性油脂的废液处理 此处理方式与含酸、碱、氧化剂、还原剂的废液处理方式相同。 1.4含有机磷的废液处理

实验室废液处理方法

实验室废液处理方法 我们实验室主要产生的废液为无机废液,主要为以下几种: 一、废酸废碱:乙酸,草酸,硼酸,盐酸,硫酸,氢氟酸,氢氧化钠,氢氧化钾 (1)直接稀释法.适用于浓度较低的酸碱类废液或浓度略高于《污水综合排放标准》中规定的二级标准的废液,可用此法。 (2)化学处理法.含剧毒强腐蚀性物质的废液,污染物浓度远远高于《污水综合排放标准》二级标准的废液,可采用此法处理.多适用于无机废酸、废碱的处理。 (3)回收利用法.对有机废液的处理多采用蒸馏回收利用的方法.酸性废液、碱性废液的处理方法多采用酸碱综合法或直接稀释法.各实验室产生的废酸、废碱除可再利用的以外,可进行酸碱中和生成无毒性盐类溶液,然后再排放至下水管.浓度高的酸碱废液,平时分开贮存、定期混合再进行中和处理.中和后的酸、碱废液pH在6.5~8.5问,达到排放标准后方可排放.另外清洗玻璃器皿等仪器的废液,因经大量水洗涮,浓度小,可 直接排放至下水管。 二、盐溶液 金属盐废液:氯化锌,柠檬酸钠,氯化钠,氯化镍,氟化钠,硝酸铁,氯化钾,,氯化铁,硫酸亚铁铵,硝酸亚铁,硫酸镍,钼酸铵,硫酸亚铁,硫酸钴 化学法 化学法主要包括化学沉淀法和电解法,主要适用于含较高浓度重金属离子废水的处理,化学法是目前国内外处理含重金属废水的主要方法 1化学沉淀法 化学沉淀法的原理是通过化学反应使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物,通过过滤和分离使沉淀物从水溶液中去除,包括中和沉淀法、硫化物沉淀法、铁氧体共沉淀法。由于受沉淀剂和环境条件的影响,沉淀法往往出水浓度达不到要求,需作进一步处理,产生的沉淀物必须很好地处理与处置,否则会造成二次污染。 2电解法 电解法是利用金属的电化学性质,金属离子在电解时能够从相对高浓度的溶液中分离出来,然后加以利用。电解法主要用于电镀废水的处理,这种方法的缺点是水中的重金属离子浓度不能降的很低。所以,电解法不适于处理较低浓度的含重金属离子的废水物理处理法

催化氧化法处理有机废水催化剂的选择应用

?防治技术? 催化氧化法处理有机废水催化剂的选择应用 李启良,陈建林 (南京大学环境学院,江苏南京 210093) 摘 要:催化氧化法是处理难降解有机废水的一项重要的新技术。在对化学氧化法的不断改进中,逐步发展出湿式催化氧化法、光催化氧化法、均相催化氧化法和多相催化氧化法。不同的氧化方法所用的催化剂不相同,有机化合物的种类和结构不同,催化剂与氧化剂之间存在匹配问题,因此对催化剂要进行筛选评价。 关键词:废水处理;催化氧化;催化剂 中图分类号:X703.5;O643.36 文献标识码:A 文章编号:1004-695X(2003)02-0034-03 R evie w on Selection of C atalysis in C atalytic Oxidation LI Qi2liang,CHE N Jian2lin (School o f the Environmental,Nanjing Univer sity,Nanjing,Jiangsu210093,China) Abstract:The treatment of organic wastewater with catalytic oxidation methods is a totally new technology.The paper introduces the progress in the selection of catalysts in the treatment of organic wastewater with four basic catalytic oxidation methods(wet catalytic oxida2 tion,photo catalytic oxidation,hom ogeneous catalytic oxidation and heterogeneous catalytic oxidation).The different kinds and different compositions of organic wastewater should be treated with different catalytic oxidation method,s o it is necessary to study on catalysts match2 ing with different oxidants in treating with specific organic wastewater. K ey w ords:Wastewater treatment;Catalytic oxidation;Catalysts review 对有机化工行业每天排放大量有机废水的处理中,催化氧化法具有独有的优势而成为研究的重点。该法不仅可以改善废水的可生化降解性,在物化和生化处理之间架设了一座桥梁,而且可以作为单独处理工艺来应用,是废水处理的一项新技术,国内外已进行了广泛深入的研究。其中,研究较多的是寻找新型、高效、稳定性好、成本低廉的催化剂。 在对化学氧化法不断改进的过程中,逐步发展了湿式催化氧化等方法[1]。不同的氧化方法应用的催化剂不相同,而且由于氧化催化剂具有选择性,有机化合物的结构和种类不同以及催化剂与氧化剂存在匹配问题,因此要对催化剂进行筛选评价。催化剂一般分为光敏化半导体材料、过渡金属盐及其氧化物和复合氧化物四大类(表1)。在形态上可分为均相和非均相两种;从催化剂的组成又分贵金属和非贵金属两种。作者将分别作评述,并简介催化作用的机理。 1 湿式催化氧化催化剂 湿式催化氧化技术始于20世纪70年代。它 表1 催化氧化法常用催化剂[2] 类 别催化剂 金属盐 PCl2,RuCl3,RbCl3,IrCl4,K2PtO4,NaAuCl4,NH4ReO4, AgNO3,Na2CrO7,Cu(NO3)2,CuS O4,C oCl2,NiS O4, FeS O4,MnS O4,ZnS O4,SnCl2,Na2CO3,Cu(OH)2, Cu(Ⅱ),CuCl2,FeCl2,CuS O4-(NH4)2S O4,MnCl2, Cu(BF4)2,Mn(AC)2 氧化物 W O3,V2O5,M oO3,Z rO4,T aO2,Nb2O5,H fO2ΠOsO4,CuO, Cu2O,C o2O3,NiO,Mn2O3,CeO2,SnO2,Fe2O3 复合 氧化物 CuO-Al2O3,MnO2-Al2O3,CuO-S iO2,CuO-ZnO- Al2O3,RuO2-CeO2,RuO2-Al2O3,RuO2-Z rO2,RuO2 -T iO2,Mn2O3-CeO2,Rh2O-CeO2,PtO-CeO2,IrO2- CeO2,PdO-T iO2,C o3O4-BiO(OH),C o3O4-CeO2, C o3O4-BiO(OH)-CeO2,C o3O4-BiO(OH)-Ln2O3, CuO-ZnO,“OG”,SnO2-Sb2O4,SnO3-M oO3,Fe2O3- Sb2O4,SnO2-FeO3,Fe2O3-Cr2O3,Fe2O3-P2O5,Cu- Mn-Fe氧化物,Cu-Mn氧化物,Cu-Mn-Zn氧化 物,C o-Mn-Zn氧化物,C o-Cu氧化物,Cu-Mn-C o 氧化物 光敏化 半导体T iO2,ZnO,CdS,W O3,Fe2O3 是在高温高压和催化剂作用下,使氧化剂迅速反应分解出活性基团(自由基),进而氧化分解有机物, 最终产物为C O 2 ,H2O及N2等无害物质。其技术的关键是研制高氧化活性、高稳定性的催化剂。 收稿日期:2002-12-13;修订日期:2003-02-18 作者简介:李启良(1973—),男,湖北黄岗人,南京大学在读硕士研究生,主要研究废水处理技术与资源化。 43 第16卷 第2期污染防治技术2003年6月

高含盐废水处理方法

高含盐废水处理方法 生物处理是目前废水处理最常用的方法之一,它具有应用范围广、适应性强等特点。化工废水如染料、农药、医药中间体等含盐较高的废水则给生物处理带来一定的难度。这类废水含盐较高,污染严重,必须处理才能排放。况且,此类废水成分复杂,不具备回收价值,采用其他处理方法成本较高,因此生物处理仍是首选的方法。无机盐类在微生物生长过程中起着促进酶反应,维持膜平衡和调节渗透压的重要作用。但盐浓度过高,会对微生物的生长产生抑制作用,主要抑制原因在于①盐浓度过高时渗透压高,使微生物细胞脱水引起细胞原生质分离; ②高含盐情况下因盐析作用而使脱氢酶活性降低;③高氯离子浓度对细菌有毒害作用;④由水的密度增加,活性污泥容易上浮流失。为此,高含盐废水的生物处理需要进行稀释,通常在低浓度下(盐浓度小于1%)运行,造成水资源的浪费,处理设施庞大、投资增加,运行费用提高。随着水资源的日趋紧张,国家出台的保护水资源各项法规和收费的实施,给高含盐废水处理的企业带来了负担。 许多研究表明,生物方法可以处理高含盐废水。但由低盐到高盐,微生物有一个适应期。从淡水环境到高盐环境时,由于盐的变化可能引起微生物代谢途径的改变,菌种选择的结果使适应高盐的菌种较少,只有当微生物经培养驯化后,才能产生适应高盐的菌种,以耐受一定的盐浓度。 我们曾对含CaCl2和NaCl的废水生物处理进行过专门研究,取得了较好的结果,以下介绍高含盐废水生物处理的研究和经验。 1 污泥的来源与驯化 盐1%以下能很好生长的微生物为非好盐微生物,而在1%~2%以上均能生存增殖的微生物为耐盐微生物。高含盐废水生物处理关键是要驯化出耐盐微生物。 我们分别选用普通污水处理厂的活性污泥和高含盐废水排放沟边土壤中耐盐微生物进行试验将普通污泥倒入含CaCl21%左右的曝气池中,经过半个月驯化,镜检微生物菌胶团结 构紧密,原生动物有钟虫、豆形虫、浮游虫等,多而活跃。经逐步驯化至耐盐为3%。将含盐废水排放的沟边土壤与废水混合搅拌后,取悬浮液倒入曝气池,镜检菌胶团结构良好,色泽透明有大量的豆形虫,非常活跃。用实际工业废水在不同盐浓度下经过3个月试验,两种方法培养的微生物试验结果分别见表1和表2。

高盐废水处理方案

在脱盐技术上最佳的方法无疑可以考虑膜法和渗透之类的方法,处理效果比较好,但同时造价和运行成本太高,处理成本会给企业造成很大的经济负担,膜污染和膜清洗的问题也比较复杂,对企业并不真正实用,所以不用考虑。所以采用生化工艺来处理。 当然生物的方法处理高盐废水肯定有一系列的问题,比如盐浓度过高会对微生物的生长产生极大的抑制作用。主要由于盐浓度过高时渗透压高使微生物细胞脱水引起细胞原生质分离,另外高含盐情况下因盐析作用而使脱氢酶活性降低,同时高氯离子浓度对细菌也有毒害作用。这些都是高盐废水利用生物方法处理的难点,但高盐废水通过预处理可以降低含盐量,再通过一些工艺提高废水的可生化性,同时再通过培养驯化,得到适应高盐浓度的菌种来处理废水。 方案分析: 1、减压蒸馏器:高盐废水降低含盐量的方法一个是稀释法,另外就是蒸馏脱盐的方法,由于是高盐废水,所以采用稀释法达到可生化的水质要耗用大量的水资源,这对企业来说是不合适的,所以不予采用,所以我们采用蒸馏脱盐的方法来降低废水的含盐量,但蒸馏的时候需要燃料,这也是成本,所以为降低成本考虑用减压蒸馏的方式,通过降低水的沸点来降低燃料的成本,通过最小的处理成本最大可能的达到脱盐的目的。 2、铁碳微电解池:在废水中加入铁屑和铁碳粉末组成腐蚀电池,电极反应生成的产物具有较高的化学活性,新产生的铁表面及反应中产生的大量的Fe2+和原子H具有高化学活性,能改变废水中许多有机物的结构和特性使有机物发生断链、开环等作用,反应生成的Fe2+参与溶液中的氧化还原反应,生成Fe3+,反应后期溶液pH 值升高,Fe3+逐渐水解生成聚合度大的Fe(OH)3胶体絮凝剂,可以有效地吸附、凝聚水中的污染物,从而增强对废水的净化效果,所以铁碳微电解法能有效地去除农药废水中的污染物,消减有机物的毒性,提高废水的可生化性。 3、调节池:含盐废水调节池考虑的主要因素是废水盐浓度的变化,应重点考虑水中盐浓度的变化和如何进行调整,如如何应付低含盐水量的减少或过高含盐来水的冲击。可以考虑在调节池进、出口设电导仪和电动阀,加强对盐浓度变化的监测和控制,通过生活污水和生产污水来调节使盐浓度的波动控制在后期的耐盐菌生理活性可承受的范围。 4、水解酸化池:当水中有机物为复杂结构时,通常采用水解酸化池,通过水解酸化菌利用H2O电离的H+和-OH将有机物分子中的C-C打开,可以将长链水解为短链、支链成直链、环状结构成直链或支链,这其间水解菌是利用了水解断键的有机物中共价键能量完成了生命的活动形式,另将生活污水加入到水解酸化池中, 能够确保微生物生长的有效碳源, 同时能降低废水的毒性,提高废水的可生化性。然后在通过接种和驯化两个阶段对水解酸化池进行调试,最后使水解酸化菌适应高盐废水的环境保持活性,并提高废水的可生化性,设计时要考虑污水中有机物的性质,确定水解的工艺设计,水解停留时间、搅拌方式、循环方式、设计负荷、后级配套工艺等。

有机废水常用处理工艺

一、概述 有机废水一般是指由造纸、皮革及食品等行业排出的在2000mg/L以上废水。有机废水就是以有机污染物为主的废水,有机废水易造成水质富营养化,危害比较大。这些废水中含有大量的碳水化合物、脂肪、蛋白、纤维素等有机物,如果直接排放,会造成严重污染。有机废水按其性质来源可分为三大类:易于生物降解有机废水;有机物可以降解,但含有害物质的废水;含有难降解生物和有害的有机废水。 二、有机废水水质特点: 有机物浓度高。COD一般在2000mg/以上,有的甚至高达几万乃至几十万mg/L;色度高,有异味。有些废水散发出刺鼻恶臭,给周围环境造成不良影响。具有强酸强碱性。工业产生的有机废水中,酸、碱类众多,往往具有强酸或强碱性。不易生物降解有机废水中所含的有机污染物结构复杂;成分复杂,含有毒性物质废水中有机物以芳香族化合物和杂环化合物居,还多含有硫化物、氮化物、重金属和有毒有机物。废水生化性差,且对微生物有毒性,难以用一般的生化方法处理。 三、处理工艺 1、吸附法 吸附剂的种类很多,有活性炭、大孔树脂、活性白土、硅藻土等。有机废水中常用的吸附剂有活性炭和大孔树脂。虽然活性炭具有较高高吸附性,但由于再生困难、费用高而在国内较少使用。 2、萃取法 萃取法具有效率高、操作简单、投资较少等特点。特别是基于可逆络合反应的萃取分离方法,对极性有机稀溶液的分离具有高效性和高选择性。溶剂萃取法利用难溶或不溶于水的有机溶剂与废水接触,萃取废水中的非极性有机物,再对负载后的萃取剂进一步处理。近年来为了避免有机溶剂对环境的污染,又开发了超临界二氧化碳萃取。该法简单易行,适于处理有回收价值的有机物,但只能用于非极性有机物,被萃取的有机物和萃取后的废水需要进一步处理,有机溶剂还可能造成二次污染。萃取只是一个污染物的物理转移过程,而非真正的降解。 3、浓缩法 浓缩法是利用某些污染物溶解度较小的特点,将大部分水蒸发使污染物浓缩并分离析出的方法。浓缩法操作简单,工艺成熟,并能实现有用物质的部分回收,适合于处理含盐有机废水。该法的缺点是能耗高,如有废热可用或降低能耗,则该法是可行的。 4、焚烧法 焚烧法利用燃料油、煤等助燃剂将有机废水单独或者和其他废物混合燃烧,焚烧炉可采用各种炉型。效率高,速度快,可以一步将有害废水中有机物彻底转化为二氧化碳和水。但设备投资大,处理成本高。 5、Fenton氧化法 Fenton试剂具有很强的氧化能力,因此Fen2ton氧化法在处理废水有机物过程中发挥了巨大的作用。但由于体系中含有大量的Fe2+离子,H2O2的利用率不高,使有机物降解不完全。 6、电化学氧化法

高浓度含盐废水生化处理

高浓度含盐废水处理 水处理技术:1 高盐废水产生途径 1.1海水代用排放的废水 所谓海水代用就是将海水不进行淡化处理而直接替代某些场合使用的淡水资源。 在工业上,海水可以广泛的用作锅炉冷却水,应用到热电、核电、石化、冶金、钢铁厂等行业上。发达国家年海水冷却水用量已经超过了1000亿m3。目前我国海水的年利用量为60多亿m3。青岛电厂1936年就开始将海水作为工业冷却水,至今已经有60多年的历史。目前,青岛市电力、化工、纺织等行业的12家临海企业,年用海水8.37亿m3。天津年利用海水达到18亿m3。此外,秦皇岛热电厂、黄道热电厂和上海石化总厂等70多家临海火力发电、核电、化工、石化等企业均已不同的方式直接利用海水。对于印染、建材、制碱、橡胶以及海产品加工等行业,海水还可以作为工业的生产用水。 城市生活用水。在城市生活中,海水可以替代淡水作为冲厕水。目前香港海水冲厕的普及率高达70%以上,未来计划普及率提高到100%,并因此成为世界上唯一以海水作为冲厕水的城市。而在大连、天津、青岛、烟台等城市的个别单位,也有采用海水冲厕的实践,但规模较小。 1.2工业生产废水 一些行业,如印染、造纸、化工和农药等,在生产中产生高含盐量的有机废水。 1.3 其他高盐废水 船舶压舱水 废水最小化生产中产生的污水 大型船舰上产生的生活污水 2 无机盐对微生物的抑制原理 2.1 抑制原理含盐废水主要毒物是无机毒物,即高浓度的无机盐。有毒物质对废水生物处理的影响与毒物的类型和浓度有关,一般随着浓度升高可分为刺激作用、抑制作用和毒害作用三大类。高浓度无机盐对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。①微生物在等渗透压下生长良好。微生物在质量为5~8.5g/L的NaCI溶液中,红血球在质量为9g/L的NaCI溶液中形态和大小不变,并生长良好;②在低渗透压(ρ(NaCI)=0.1g/L)下,溶液水分子大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂,导致微生物死亡;③在高渗透压(ρ(NaCI)=200g/L)下,微生物体内水分子大量渗到体外,使细胞发生质壁分离。 2.2 淡水微生物在不同盐度下的存活率不同生活在淡水环境下或者淡水处理构筑物中的微生物接种到高盐环境下,仅有部分微生物存活。这是盐度对微生物的一种选择。将淡水微生物的存活率定义为100%,当盐度超过20g/L,其存活率低于40%。因此,当盐度超过20g/,一般认为用不同淡水微生物无法进行处理。 3 适盐微生物的分类与利用 耐盐微生物:能耐受一定浓度的盐溶液,但在无盐条件下生长最好,其生长也不需要大量无机盐。 嗜盐微生物:指在高盐条件下可以生长的细菌,其生长离不开高盐环境。按照最佳生长盐度范围可以分为三类。

高盐、高有机物废水处理

高盐生产废水的处理 废水主要来源是酸水、碱水和大量的有机物,每天产生酸性废水50方,氯根含量,TOC为1850mg/l,产生碱性废水40方TOC为2000mg/l。弱碱性冲洗水120方,氯根为1351mg/l,TOC为230mg/l。综合这两种水合在一起,氯根大约在11000mg/l,TOC大约在1000mg/l。 这种污水难以进行生化处理,必须经过预处理后再生化方法进行处理,处理方案如下: 1、对于浸酸和浸碱非别进行预处理。根据间歇性处理的原理,对于浓酸废水和浓碱废水分别见一个容积20方的初沉池,池中加设格栅。初沉池中的底泥和格栅前杂质送干化池。 2、在初沉池后建设一个50方的混凝反应池,将隔除大颗粒杂质泥沙的酸、碱水加入混凝反应池进行中和混凝。混凝药剂絮凝剂采用酰胺或者壳聚糖溶液。 3、混凝池中的底物及时放入酸性水初沉池,上部溶液在经过沉淀后自流通过滤网,隔离的固形物清理到干化池。 4、清水进入生物反应池(酸化和曝气)生化后经过砂滤池后,部分回用于生产,剩余部分排放。 循环以耐腐蚀泵为动力;滤网要目数高的。共需要池子 酸水初沉池()20)气浮机(20)酸化池(50)

cass反应池(150) 碱水初沉池(20) 4.工艺流程说明 甲壳素废水首先经过细筛网隔除废水中的悬浮物和杂物后流入调节池,同时均衡水质水量,然后用泵打入反应池,加入PAC搅拌形成絮体后进入絮凝沉淀池进行固液分离溢流入PW处理装置进行生物降解,处理后的水回用或排放。 细筛网隔除的悬浮物集中于垃圾框内,经过一段时间渗水后装入垃圾袋外运;PW处理装置产生的剩余污泥排放入污泥消化浓储池,上清液回流至调节池再处理,消化浓缩后的污泥定期由环卫槽车外运。 5.各主要设施和设备的说明 5.1调节池 为了使后续处理稳定运行,针对工厂废水排放不均匀的特点,均衡水质水量。废水进调节池前通过细筛网隔除废水中的悬浮物和杂物,调节池的调节时间为24小时,采用穿孔管空气搅拌。池内搅拌气量为1m3空气/分钟?100m3池容积。调节池为半地下式钢筋絮凝土结构,内涂防腐涂料。 5.2加PAC系统 加PAC系统包括配药槽和加药管。配药槽是用来配制存放5%的PAC溶液,容积0.4m3,数量2只,轮流使用。 5.3反应池 调节池内的废水用泵打入反应池,在水泵吸水管内通过加药管加入

有机废水处理方法和技术

有机废水处理方法和技术 在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示。莱特莱德的电氧化设备适用于城市污泥和石油、化工、医药、造纸、废污水、印染(燃料)等行业的各类高浓度有机废水处理。 有机废水处理方法 物化处理技术 1、物化法:物化法常作为一种预处理的手段应用于有机废水处理,预处理的目的是通过回收废水中的有用成分,或对一些难生物降解物进行处理,从而达到去除有机物,提高生化性,降低生化处理负荷,提高处理效率。 2、萃取法:特别是基于可逆络合反应的萃取分离方法,对极性有机稀溶液的分离具有高效性和选择性,在难降解有机废水的处理方面具有广阔的应用前景。 3、处理方法氧化-吸附法:高浓度废水稀释后用煤粉进行初步混凝、吸附处理,然后用Fenton试剂催化氧化和酸性凝聚,再用煤粉混凝、吸附。经此法处理的废水,色度和COD可分别去除100%、90%,具有较好的处理效果。吸附后的煤粉用于燃烧,无二次污染,比使用活性炭作吸附剂更经济。 4、浓缩法:浓缩法是利用某些污染物溶解度较小的特点,将大部分水蒸发使污染物浓缩并分离析出的方法。浓缩法操作简,工艺成熟,并能实现有用物质的部分回收,适合于处理含盐有机废水。 5、超声波降解:采用超声波降解水体中有机污染物,尤其是难降解有机污染物,是20世纪90年代兴起的新型水污染控制技术。 Fenton法概述 1894年,法国人H,J,HFenton发现采用Fe2++H2O2体系能氧化多种有机物。后人为纪念他将亚铁盐和过氧化氢的组合称为Fenton试剂,它能有效氧化去除传统废水处理技术无法去除的难降解有机物,其实是H2O2在Fe2+的催化作用下生成具有高反应活性的羟基自由(?OH)。?OH可与大多数有机物作用使其降解。随着研究的深入,又把紫外光(UV)、草酸盐(C2O42-)等引入Fenton试剂中,使其催化氧化能力大大增强。从广义上说,Fenton法是利用催化剂、或光辐射、或电化学作用,通过H2O2产生羟基自由基(?OH)处理有机物的技术。近年来,越来越多的研究者把Fenton试剂同别的处理方法结合起来,如生物处理法、超声波法、混凝法、沉淀法,活性炭法等,从发展历程来看,Fenton法基本上是沿着光化学,电化学和其它方法联用三条路线向前发展的。 标准Fenton法 Fenton试剂的实质是二价铁离子(Fe2+)和过氧化氢之间的链反应催化生成OH自由基,具有较强的氧化能力,其氧化电位仅次于氟,高达2.80V,另外羟基自由基具有很高的电负性和亲电性,其电子亲和能

相关文档
最新文档