南京秦淮外国语学校数学旋转几何综合单元测试卷 (word版,含解析)

南京秦淮外国语学校数学旋转几何综合单元测试卷(word版,含

解析)

一、初三数学旋转易错题压轴题(难)

1.小明研究了这样一道几何题:如图1,在△ABC中,把AB点A顺时针旋转α (0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′.当α+β=180°时,请问

△AB′C′边B′C′上的中线AD与BC的数量关系是什么?以下是他的研究过程:

特例验证:

(1)①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;

②如图3,当∠BAC=90°,BC=8时,则AD长为.

猜想论证:

(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.

拓展应用

(3)如图4,在四边形ABCD,∠C=90°,∠A+∠B=120°,BC=12,CD=6,DA=63,在四边形内部是否存在点P,使△PDC与△PAB之间满足小明探究的问题中的边角关系?若存在,请画出点P的位置(保留作图痕迹,不需要说明)并直接写出△PDC的边DC上的中线PQ的长度;若不存在,说明理由.

【答案】(1)①1

2

;②4

(2) AD=1

2

BC,理由见解析

(3)存在,13

【解析】

【分析】

(1)①由已知条件可得AD⊥B′C′,由α+β=180°可得∠BAC+∠B′AC′=180°,已知∠BAC=60°,可

求得∠B′AC′=120°继而∠B′=∠C′=30°,可得AD=1

2

AB′=

1

2

BC

②当∠BAC=90°时,可得∠B′AC′=∠BAC=90°,△B′AC′是直角三角形,可证得

△BAC≌△B′AC′,推出对应边相等,已知BC=8求出AD的长.

(2)先做辅助线,延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:

因为B′D=DC′,AD=DM,对角线相互平分,可得四边形AC′MB′是平行四边形,得出对应边相等,由∠BAB′+∠CAC′=180°推得∠BAC=∠AB′M,可证明△BAC≌△AB′M,所以BC=AM,

AD=1

2 BC;

(3)先做辅助线,作线段BC的垂直平分线交BE于P,即为点P的位置;延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O

假设P点存在,再证明理由.

根据已知角可得出△DCM是直角三角形,∠MDC=30°,可得出CM3DM3

在;

∵CD=6,∠DCM=90°,∠MDC=30°,∠M=90°﹣∠MDC=60°,可求得EM=1

2

BM3

DE=EM﹣DM3﹣33

由已知DA3AE=DE

且BE⊥AD,可得PF是线段BC的垂直平分线,证得PA=PD

因为PB=PC,PF∥CD,可求得CF=1

2

BC3,利用线段长度可求得∠CDF=60°

利用全等三角形判定定理可证得△FCP≌△CFD(AAS),进而证得四边形CDPF是矩形,

得∠CDP=90°,∠ADP =60°,可得△ADP是等边三角形,求出DQ、DP,在Rt△PDQ中可求得PQ长度.

【详解】

(1)①∵△ABC是等边三角形

∴AB=BC=AC=AB′=AC′,∠BAC=60°

∵DB′=DC′

∴AD⊥B′C′

∵∠BAB′+∠CAC′=180°

∴∠BAC+∠B′AC′=180°

∴∠B′AC′=180°﹣∠BAC=180°﹣60°=120°

∴∠B′=∠C′=30°

∴AD=1

2

AB′=

1

2

BC

故答案:1 2

②∵∠BAB′+∠CAC′=180°

∵∠BAC=90°

∴∠B′AC′=∠BAC=90°

在△BAC和△B′AC′中,

'

'"90

"

AB AB

BAC B AC

AC AC

=

?

?

∠=∠=??

?=

?

∴△BAC≌△B′AC′(SAS)∴BC=B′C′

∵B′D=DC′

∴AD=1

2

B′C′=

1

2

BC=4

故答案:4

(2)AD与BC的数量关系:AD=1

2

BC;理由如下:

延长AD到M,使得AD=DM,连接B′M、C′M,如图1所示:∵B′D=DC′,AD=DM,

∴四边形AC′MB′是平行四边形,

∴∠B′AC′+∠AB′M=180°,AC′=B′M=AC,

∵∠BAB′+∠CAC′=180°,

∴∠BAC+∠B′AC′=180°,

∴∠BAC=∠AB′M,

在△BAC和△AB′M中,

'

'

'

AC B M

BAC AB M

AB AB

=

?

?

∠=∠

?

?=

?

∴△BAC≌△AB′M(SAS),∴BC=AM,

∴AD=1

2 BC;

(3)存在;作BE⊥AD于E,作线段BC的垂直平分线交BE于P,即为点P的位置;理由如下:

延长AD交BC的延长线于M,线段BC的垂直平分线交BC于F,连接PA、PD、PC,作△PDC的中线PQ,连接DF交PC于O,如图4所示:

∴∠ADC=150°,

∴∠MDC=30°,

在Rt△DCM中,∵CD=6,∠DCM=90°,∠MDC=30°,

∴CM

DM

,∠M=90°﹣∠MDC=60°,

在Rt△BEM中,∵∠BEM=90°,BM=BC+CM

,∠MBE=90°﹣∠M=30°,

∴EM=1

2 BM

∴DE=EM﹣DM

∵DA

∴AE=DE,

∵BE⊥AD,

∴PA=PD,

∵PF是线段BC的垂直平分线,∴PB=PC,PF∥CD,

在Rt△CDF中,∵CD=6,CF=1

2 BC

∴tan∠CDF=CF

CD

=

6

∴∠CDF=60°,

∴∠MDF=∠MDC+∠CDF=30°+60°=90°,∴∠ADF=90°=∠AEB,

∴∠CBE=∠CFD,

∵∠CBE=∠PCF,

∴∠CFD=∠PCF=30°,

∵∠CFD+∠CDF=90°,∠PCF+∠CPF=90°,∴∠CPF=∠CDF=60°,

在△FCP和△CFD中,

CPF CDF

PCF CFD CF CF

∠=∠

?

?

∠=∠

?

?=

?

∴△FCP≌△CFD(AAS),

∴CD=PF,

∵CD∥PF,

∴四边形CDPF是矩形,

∴∠CDP=90°,

∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,

∴∠APD=60°,

∵∠BPF =∠CPF =90°﹣30°=60°, ∴∠BPC =120°, ∴∠APD +∠BPC =180°,

∴△PDC 与△PAB 之间满足小明探究的问题中的边角关系; 在Rt △PDQ 中,∵∠PDQ =90°,PD =DA =63,DN =1

2

CD =3, ∴PQ =22DQ DP +=223(63)+=313.

【点睛】

本题考查了三角形的边旋转的问题,旋转前后边长不变,根据已知角度变化,求得线段之间关系.在证明某点知否存在时,先假设这点存在,能求出相关线段或坐标,即证实存在性.

2.在△AOB 中,C ,D 分别是OA ,OB 边上的点,将△OCD 绕点O 顺时针旋转到△OC′D′. (1)如图1,若∠AOB=90°,OA=OB ,C ,D 分别为OA ,OB 的中点,证明:①AC′=BD′;②AC′⊥BD′;

(2)如图2,若△AOB 为任意三角形且∠AOB=θ,CD ∥AB ,AC′与BD′交于点E ,猜想∠AEB=θ是否成立?请说明理由.

【答案】(1)证明见解析; (2)成立,理由见解析 【解析】

试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS 证明△AOC′≌△BOD′,得出对应边相等即可;

②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;

(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式

,得出

,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相

等和三角形内角和定理即可得出∠AEB=θ. 试题解析:(1)证明:①∵△OCD 旋转到△OC′D′,

∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,

∵OA=OB,C、D为OA、OB的中点,

∴OC=OD,

∴OC′=OD′,

在△AOC′和△BOD′中,,

∴△AOC′≌△BOD′(SAS),

∴AC′=BD′;

②延长AC′交BD′于E,交BO于F,如图1所示:

∵△AOC′≌△BOD′,

∴∠OAC′=∠OBD′,

又∠AFO=∠BFE,∠OAC′+∠AFO=90°,

∴∠OBD′+∠BFE=90°,

∴∠BEA=90°,

∴AC′⊥BD′;

(2)解:∠AEB=θ成立,理由如下:如图2所示:

∵△OCD旋转到△OC′D′,

∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,

∵CD∥AB,

∴,

∴,

∴,

又∠AOC′=∠BOD′,

∴△AOC′∽△BOD′,

∴∠OAC′=∠OBD′,

又∠AFO=∠BFE,

∴∠AEB=∠AOB=θ.

考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.

3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

4.如图,在直角坐标系中,已知点A(-1,0)、B(0,2),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)点C的坐标为(,);

(2)若二次函数的图象经过点C.

①求二次函数的关系式;

②当-1≤x≤4时,直接写出函数值y对应的取值范围;Z_X_X_K]

③在此二次函数的图象上是否存在点P(点C除外),使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理

由.

【答案】(1) ∴点C的坐标为(-3,1) .

(2)①∵二次函数的图象经过点C(-3,1),

∴.解得

∴二次函数的关系式为

②当-1≤x≤4时,≤y≤8;

③过点C作CD⊥x轴,垂足为D,

i) 当A为直角顶点时,延长CA至点,使,则△是以AB为直角边的等腰直

角三角形,过点作⊥轴,

∵=,∠=∠,∠=∠=90°,

∴△≌△,∴AE=AD=2,=CD=1,

∴可求得的坐标为(1,-1),经检验点在二次函数的图象上;

ii)当B点为直角顶点时,过点B作直线L⊥BA,在直线L上分别取,得到以AB为直角边的等腰直角△和等腰直角△,作⊥y轴,同理可证

△≌△∴BF=OA=1,可得点的坐标为(2, 1),经检验点在二次函数的图象上.同理可得点的坐标为(-2, 3),经检验点不在二次函数的图象上

综上:二次函数的图象上存在点(1,-1),(2,1)两点,使得△和△

是以AB为直角边的等腰直角三角形.

【解析】

(1)根据旋转的性质得出C点坐标;

(2)①把C点代入求得二次函数的解析式;②利用二次函数的图象得出y的取值范围;

③分二种情况进行讨论.

5.如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.

(1)如图1,当点D在AB上,点E在AC上时

①证明:△BFC是等腰三角形;

②请判断线段CF,DF的关系?并说明理由;

(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.

【答案】(1)①证明见解析;②结论:CF=DF且CF⊥DF.理由见解析;(2)(1)中的结论仍然成立.理由见解析.

【解析】

【详解】

分析:(1)、根据“直角三角形斜边上的中线等于斜边的一半”可知CF=BF=EF,根据

∠CFD=2∠ABC,∠ACB=90°,∠ABC=45°得出∠CFD=90°,从而得出答案;(2)、延长DF至G使FG=DF,连接BG,CG,DC,首先证明△BFG和△EFD全等,然后再证明△BCG和

△ACD全等,从而得出GC=DC,∠BCG=∠ACD,∠DCG=∠ACB=90°,最后根据直角三角形斜中线的性质得出答案.

详解:(1)①证明:∵∠BCE=90°.EF=FB,∴CF=BF=EF,∴△BFC是等腰三角形.

②解:结论:CF=DF且CF⊥DF.理由如下:

∵∠ADE=90°,∴∠BDE=90°,又∵∠BCE=90°,点F是BE的中点,∴CF=DF=1

2

BE=BF,

∴∠1=∠3,∠2=∠4,∴∠5=∠1+∠3=2∠1,∠6=∠2+∠4=2∠2,

∴∠CFD=∠5+∠6=2(∠1+∠2)=2∠ABC,

又∵△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=45°,∴∠CFD=90°,

∴CF=DF且CF⊥DF.

(2)(1)中的结论仍然成立.理由如下:

如图,延长DF至G使FG=DF,连接BG,CG,DC,∵F是BE的中点,∴BF=EF,

又∵∠BFG=∠EFD,GF=DF,∴△BFG≌△EFD(SAS),∴∠FBG=∠FED,BG=ED,

∴BG∥DE,∵△ADE和△ACB都是等腰直角三角形,

∴DE=DA,∠DAE=∠DEA=45°,AC=BC,∠CAB=∠CBA=45°,

又∵∠CBG=∠EBG﹣∠EBA﹣∠ABC=∠DEF﹣(180°﹣∠AEB﹣∠EAB)﹣45°

=∠DEF﹣180°+∠AEB+∠EAB﹣45°=(∠DEF+∠AEB)+∠EAB﹣225°

=360°﹣∠DEA+∠EAB﹣225°=360°﹣45°+∠EAB﹣225°=90°+∠EAB,

而∠DAC=∠DAE+∠EAB+∠CAB=45°+∠EAB+45°=90°+∠EAB,

∴∠CBG=∠DAC,又∵BG=ED,DE=DA,∴BG=AD,又∵BC=AC,

∴△BCG≌△ACD(SAS),∴GC=DC,∠BCG=∠ACD,

∴∠DCG=∠DCB+∠BCG=∠DCB+∠ACD=∠ACB=90°,

∴△DCG是等腰直角三角形,又∵F是DG的中点,∴CF⊥DF且CF=DF.

点睛:主要考查了旋转的性质,等腰三角形和全等三角形的判定,及勾股定理的运用.要掌握等腰三角形和全等三角形的性质及其判定定理并会灵活应用是解题的关键.

6.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.

(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;

(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;

(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

【答案】(1)△FGH是等边三角形;(2)61

2

;(3)△FGH的周长最大值为

3

2

(a+b),最小值为3

2

(a﹣b).

【解析】

试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、

(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;

(3)首先证明△GFH的周长=3GF=3

2

BD,求出BD的最大值和最小值即可解决问题;

试题解析:解:(1)结论:△FGH是等边三角形.理由如下:

如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.

∵△ABC和△ADE均为等边三角形,

∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=

∠AEC,∵EG=GB,EF=FD,∴FG=1

2

BD,GF∥BD,∵DF=EF,DH=HC,∴FH=

1

2

EC,FH∥EC

,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°

∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.

(2)如图2中,连接AF、EC.

易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF22

21

-3,在Rt△ABF中,

BF22

AB AF

-6,∴BD=CE=BF﹣DF61,∴FH=1

2

EC=

61

2

(3)存在.理由如下.

由(1)可知,△GFH是等边三角形,GF=1

2

BD,∴△GFH的周长=3GF=

3

2

BD,在△ABD

中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为

3 2(a+b),最小值为3

2

(a﹣b).

点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.

7.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.

(1)连接AE,求证:△AEF是等腰三角形;

猜想与发现:

(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.

结论1:DM、MN的数量关系是;

结论2:DM、MN的位置关系是;

拓展与探究:

(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.

【解析】

试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出

MN∥AE,MN=1

2

AE,利用三角形全等证出AE=AF,而DM=

1

2

AF,从而得到DM,MN数量

相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.

试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,

∴△ABE ≌△ADF ,∴AE=AF ,∴△AEF 是等腰三角形;(2)DM 、MN 的数量关系是相等,DM 、MN 的位置关系是垂直;∵在Rt △ADF 中DM 是斜边AF 的中线,∴AF=2DM ,∵MN 是△AEF 的中位线,∴AE=2MN ,∵AE=AF ,∴DM=MN ;∵∠DMF=∠DAF+∠ADM ,AM=MD ,∵∠FMN=∠FAE ,∠DAF=∠BAE ,∴∠ADM=∠DAF=∠BAE ,

∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM ⊥MN ;(3)(2)中的两个结论还成立,连接AE ,交MD 于点G ,∵点M 为AF 的中点,点N 为EF 的中点,∴MN ∥AE ,MN=

1

2

AE ,由已知得,AB=AD=BC=CD ,∠B=∠ADF ,CE=CF ,又∵BC+CE=CD+CF ,即BE=DF ,∴△ABE ≌△ADF ,∴AE=AF ,在Rt △ADF 中,∵点M 为AF 的中点,∴DM=

1

2

AF ,∴DM=MN ,∵△ABE ≌△ADF ,∴∠1=∠2,∵AB ∥DF ,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM ,∴∠MAD=∠5,

∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN ∥AE ,∴∠DMN=∠DGE=90°,∴DM ⊥MN .所以(2)中的两个结论还成立.

考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.

8.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:

如图1,在ABC ?中,6AC = ,3BC =.30ACB ∠=?,试判断ABC ?是否是“等高底”三角形,请说明理由. (2)问题探究:

如图2, ABC ?是“等高底”三角形,BC 是“等底”,作ABC ?关于BC 所在直线的对称图形得到A BC '?,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC

BC

的值. (3)应用拓展:

如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ?的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 2倍.将ABC ?绕点C 按顺时针方向旋转45?得到

A B C ?'',A C '所在直线交2l 于点D .求CD 的值.

【答案】(1)证明见解析;(2)

13

2

AC

BC

=(3)CD的值为

2

10

3

,22,2

【解析】

分析:(1)过点A作AD⊥直线CB于点D,可以得到AD=BC=3,即可得到结论;

(2)根据ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC与ΔABC关于直线BC对称,得到∠ADC=90°,由重心的性质,得到BC=2BD.设BD=x,则AD=BC=2x,CD=3x,由勾股定理得AC=13x,即可得到结论;

(3)分两种情况讨论即可:①当AB=2BC时,再分两种情况讨论;

②当AC=2BC时,再分两种情况讨论即可.

详解:(1)是.理由如下:

如图1,过点A作AD⊥直线CB于点D,

∴ΔADC为直角三角形,∠ADC=90°.

∵ ∠ACB=30°,AC=6,∴ AD=1

2

AC=3,

∴ AD=BC=3,

即ΔABC是“等高底”三角形.

(2)如图2,∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ ΔA′BC与ΔABC关于直线BC对称,∴ ∠ADC=90°.

∵点B是ΔAA′C的重心,∴ BC=2BD.

设BD=x,则AD=BC=2x,∴CD=3x,

∴由勾股定理得AC=13x,

1313 AC x

BC

==.

(3)①当AB=2BC时,

Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.

∵“等高底” ΔABC的“等底”为BC,l1//l2,

l1与l2之间的距离为2,AB=2BC,

∴BC=AE=2,AB=22,

∴BE=2,即EC=4,∴AC= 25.

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45°.设DF=CF=x.

∵l1//l2,∴∠ACE=∠DAF,∴

1

2

DF AE

AF CE

==,即AF=2x.

∴AC=3x=25,可得x=2

5

3

,∴CD=2x=

2

10

3

Ⅱ.如图4,此时ΔABC是等腰直角三角形,

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,

∴ΔACD是等腰直角三角形,

∴CD=2AC=22.

②当AC=2BC时,

Ⅰ.如图5,此时△ABC是等腰直角三角形.

∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.

Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,

∴AC2BC2AE,∴∠ACE=45°,

∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,

∴A′C∥l2,即直线A′ C与l2无交点.

综上所述:CD的值为2

10

3

,22,2.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

9.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.

(1)如图1,求证:△CDE是等边三角形.

(2)设OD=t,

①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.

②求t为何值时,△DEB是直角三角形(直接写出结果即可).

【答案】(1)见解析;(2)①见解析;②t=2或14.

【解析】

【分析】

(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;

(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到

C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;

②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.

【详解】

(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形;

(2)①存在,当6<t<10时,

由旋转的性质得,BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,

由(1)知,△CDE是等边三角形,

∴DE=CD,

∴C△DBE=CD+4,

由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,

此时,CD=,

∴△BDE的最小周长=CD+4=;

②存在,∵当点D与点B重合时,D,B,E不能构成三角形,

∴当点D与点B重合时,不符合题意;

当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,

∴∠BED=90°,

由(1)可知,△CDE是等边三角形,

∴∠DEB=60°,

∴∠CEB=30°,

∵∠CEB=∠CDA,

∴∠CDA=30°,

∵∠CAB=60°,

∴∠ACD=∠ADC=30°,

∴DA=CA=4,

∴OD=OA﹣DA=6﹣4=2,

∴t=2;

当6<t<10时,由∠DBE=120°>90°,

∴此时不存在;

当t>10时,由旋转的性质可知,∠DBE=60°,

又由(1)知∠CDE=60°,

∴∠BDE=∠CDE+∠BDC=60°+∠BDC,

而∠BDC>0°,

∴∠BDE>60°,

∴只能∠BDE=90°,

从而∠BCD=30°,

∴BD=BC=4,

∴OD=14,

∴t=14,

综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.

【点睛】

本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.

10.(操作发现)

(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接

AF,EF.

①求∠EAF的度数;

②DE与EF相等吗?请说明理由;

(类比探究)

(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出

∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;

(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;

②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.

试题解析:解:(1)①∵△ABC是等边三角形,

∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.

在△ACF和△BCD中,

∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;

②DE=EF.理由如下:

∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;

(2)①∵△ABC是等腰直角三角形,

∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD 中,

∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;

②AE2+DB2=DE2,理由如下:

∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF.在Rt△AEF中,

AE2+AF2=EF2,又∵AF=DB,∴AE2+DB2=DE2.

相关文档
最新文档