通信原理实验 自定义帧结构的帧形成及其传输 & 自定义帧结构的帧同步系统 实验报告

通信原理实验 自定义帧结构的帧形成及其传输 & 自定义帧结构的帧同步系统 实验报告
通信原理实验 自定义帧结构的帧形成及其传输 & 自定义帧结构的帧同步系统 实验报告

姓名:学号:班级:

第周星期第大节

实验名称:自定义帧结构的帧形成及其传输/自定义帧结构的帧同步系统

一、实验目的

1.加深对PCM30/32系统帧结构的理解。

2.加深对PCM30/32路帧同步系统及其工作过程的理解。

3.加深对PCM30/32系统话路、信令、帧同步的告警复用和分用过程的理解。

二、实验仪器

1.ZH5001A通信原理综合实验系统

2.20MHz双踪示波器

三、实验内容

(一)自定义帧结构的帧形成及其传输

1.发送传输帧结构观测

(1)(2)m序列输入的序列为全0

(3)调整开关信号。

(4)调整m序列

什么都不接是全0可以看清,接时,可以看清。接M_SEL1和两

可以观测到已经同步

?对应关系如下表:

4.解复接m序列数据输出观测

?发端m序列输入TPB01,收端分接模块m序列输出TPB05

接M_SEL0 & M_SEL1 接M_SEL0

接M_SEL1 全不接

(二)自定义帧结构的帧同步系统

1.帧同步过程观测

(1)输入全0码

(3)将开关信号设置为帧定位信号,将KB01拔出插入

2.在误码环境下的帧同步性能测试和数据传输的定性测试(1)通过设置,使信道的误码率为1*10^-1

(2)通过设置,使信道的误码率为1.6*10^-2

四、思考题

(一)自定义帧结构的帧形成及其传输

1.在第1步实验观测帧结构时?哪个时隙的信号不能观察清晰?哪个时隙的信号有可能清晰观察也有可能不清晰?

语音信号的帧观察不清,特殊序列码的帧可能观察清也可能观察不清。

2.在m序列数据为7位和15位的情况下,能否调整示波器使在同步的条件下观测完整的一个帧内m序列数据周期,为什么?

都不可以,因为1帧有8位数据,周期不一样。

(二)自定义帧结构的帧同步系统

1.本实验中,可通过哪些方法来判断帧失步?

?通过观察LED灯闪烁

?通过示波器观察帧同步指示测试点

2.将复接模块内开关信号跳线开关SWB01中的LED7~LED0设置为11100100码型,使其与帧定位信号一致,对复接模块会造成什么影响?

同步时会出现假同步,原因是复接模块可能会把开关信号当作帧同步信号。

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

Ethernet帧结构解析..

实验一Ethernet帧结构解析 一.需求分析 实验目的:(1)掌握Ethernet帧各个字段的含义与帧接收过程; (2)掌握Ethernet帧解析软件设计与编程方法; (3)掌握Ethernet帧CRC校验算法原理与软件实现方法。 实验任务:(1)捕捉任何主机发出的Ethernet 802.3格式的帧和DIX Ethernet V2(即Ethernet II)格式的帧并进行分析。 (2)捕捉并分析局域网上的所有ethernet broadcast帧进行分析。 (3)捕捉局域网上的所有ethernet multicast帧进行分析。 实验环境:安装好Windows 2000 Server操作系统+Ethereal的计算机 实验时间; 2节课 二.概要设计 1.原理概述: 以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD的媒体接入方法。几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。以太网帧是OSI参考模型数据链路层的封装,网络层的数据包被加上帧头和帧尾,构成可由数据链路层识别的数据帧。虽然帧头和帧尾所用的字节数是固定不变的,但根据被封装数据包大小的不同,以太网帧的长度也随之变化,变化的范围是64-1518字节(不包括8字节的前导字)。 帧格式Ethernet II和IEEE802.3的帧格式分别如下。 EthernetrII帧格式: ---------------------------------------------------------------------------------------------- | 前序| 目的地址| 源地址| 类型| 数据 | FCS | ---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte| IEEE802.3一般帧格式 ----------------------------------------------------------------------------------------------------------- | 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS | ----------------------------------------------------------------------------------------------------------- | 7 byte | 1 byte | 2/6 byte | 2/6 byte| 2 byte| 46~1500 byte | 4 byte | Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式 2程序流程图:

光传输实验报告

学校代码: 10128 学号:xxxxx 专题设计实验报告 题目:光纤通信实验 学生姓名:X X X X 专业:X X X X 班级:X X X X 指导教师:X X X 二〇二〇年五月

实验一SDH 网元基本配置 一、实验目的: 通过本实验,了解 SDH 光传输的原理和系统组成,了解 ZXMP S325 设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握 SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套 ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH 对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口: STM-1 是 SDH 的第一个等级,又叫基本同步传送模块,比特率为 155.520Mb/s;STM-N 是 SDH 第 N 个等级的同步传送模块,比特率是STM-1 的 N 倍(N=4n=1,4,16,- - -)。

光接口:采用国际统一标准规范。SDH 仅对电信号扰码,光口信号码型是加扰的 NRZ码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速 SDH----高速 SDH,字节间插; b) 低速 PDH-----SDH,同步复用和灵活的映射。 (3) 运行维护:用于运行维护(OAM)的开销多,OAM 功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送 PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5) SDH 复用映射示意图如图1-1所示 图1-1 SDH 复用映射示意图 (6) SDH 体制的缺陷 a)频带利用率低 b)指针调整机理复杂,并且产生指针调整抖动 c)软件的大量使用对系统安全性的影响 2、城域传输网的层次 基于 SDH 多业务节点设备满足如下图所示从核心层、汇聚层到接入层的所有应用,可为用户提供城域网整体解决方案。

药物化学复习资料(化学结构式)

异戊巴比妥 5-乙基-5-(3-甲基丁基)-2,4,6-(1H , 3H ,5H )嘧啶三酮 地西泮 1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮 唑吡坦 Zolpidem 苯妥英钠 5,5-二苯基-2,4- 咪唑烷二酮钠盐 卡马西平 酰胺咪嗪 卤加比 Progabide 盐酸氯丙嗪 N ,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺 盐酸盐 氟哌啶醇 氯氮平 盐酸丙咪嗪 N ,N-二甲基-10,11-二氢-5H-二苯并[b ,f] 氮杂卓-5-丙胺 盐酸盐 氟西汀 吗啡 Morphine 17-甲基-4, 5α-环氧-7, 8-二脱氢 吗啡喃 -3, 6α-二醇盐酸盐 三水合物 盐酸哌替啶 1-甲基-4-苯基-4-哌啶甲酸乙酯盐酸盐 盐酸美沙酮 喷他佐辛

咖啡因 Caffeine 1,3,7-三甲基-3,7- 二氢-1H - 嘌呤 -2,6-二酮一水合物 吡拉西坦 2-(2-氧代-吡咯烷-1-基)乙酰胺 氯贝胆碱 Bethanechol Chloride 毛果芸香碱 溴新斯的明 Neostigmine Bromide 多奈哌齐 硫酸阿托品 Atropine Sulphate 溴丙胺太林 哌仑西平 苯磺阿曲库铵 泮库溴铵 1,1'-[3α,17β-双-(乙酰氧基)-5α-雄甾烷 -2β,16β-二基]双-[1-甲基哌啶鎓]二溴化物 肾上腺素 Epinephrine 麻黄碱 Ephedrine 沙丁胺醇 Salbutamol

马来酸氯苯那敏 N ,N-二甲基-g-(4-氯苯基)-2-吡啶丙胺顺丁烯二酸盐,又名扑尔敏 氯雷他定 4-(8-氯-5,6-二氢-11H-苯并[5,6]-环庚烷[1,2-b]吡 盐酸西替利嗪 2-[4-[( 4-氯苯基)苯基甲基]-1-哌嗪基]乙氧基乙酸二盐酸盐 咪唑斯汀 Mizolastine 2-〔〔1-〔1-〔(4-氟苯基)甲基〕-1H-苯并咪唑-2-基〕哌啶基-4-基〕甲基氨基〕嘧啶-4(3H )-酮 盐酸普鲁卡因 Procaine Hydrochloride 4-氨基苯甲酸-2-(二乙氨基)乙酯盐酸盐 盐酸利多卡因 Lidocaine Hydrochloride N-(2,6-二甲苯基)-2-(二乙氨基)乙酰胺盐酸盐一水合物 盐酸达克罗宁 盐酸普萘洛尔Propranolol 1-异丙氨基-3-(1-萘氧基)-2-丙醇盐酸盐 硝苯地平Nifedipine 盐酸地尔硫卓DiltiazemHydrochloride HCl 硫酸喹尼丁(9S )-6 ′-甲氧基-脱氧辛可宁-9-醇硫酸盐二水合物 2 H 2SO 4 2H 2O 1 盐酸胺碘酮 (2-丁基-3-苯并呋喃基)[4-[2-(二乙氨基)乙氧基]-3,5-二碘苯基]甲酮盐酸盐

单晶结构解析步骤

shelxtl open new name xp fmol kill $q proj select the good direction exit telp 0 -30 plotfile enter file name draw file name select file(ps file) black and white cell fmol kill $q matr 1=a 2=b 3=c pbox 5 15 pack select (space=keep, enter=del) fmol telp cell enter file name draw file name select file type(a=psfile) black and white(enter) plane xp read file name fmol mpln atom1 atom 2..... enter angle xp read file name fmol

mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... enter fmol kill link matr pbox pack undo c**? C**? telp cell xl 计算方法 在ins中任何地方插入 mpla 虚拟平面的原子个数(例如六个原子只有四个可能共平面,即输入4),后面连续输入可能共平面的4个原子,后面在输入其他两个平面外的原子。 例如c1 c2 c3 c4 c5 n1中,c1 c2 c4 c5 共平面 mpla 4 c1 c2 c4 c5 c3 n1 txt 运行xcif 选择t 两次回车 输入文件名.txt 选择def 回车直到选择q 理论加氢 在ins中输入 HFIX 要加氢的原子 保存ins 运行XL 打开RES 拷贝相应的数据到ins中即可。 CHEMICAL DRAW 选中画笔 点出两个点 按ESC 点选择键 选中画笔 鼠标移动至出现小手

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

光纤通信实验报告2012301200003

武汉大学电工电子信息学院实验报告 电子信息学院通信工程专业2015年 9 月17日 实验名称光纤通信的光传输指导教师易本顺 姓名徐佑宇年级2012级学号2012301200003成绩 一、预习部分 1.实验目的 2.实验基本原理 3.主要仪器设备(含必要的元器件、工具) 一、实验目的 1、通过光传输系统课程设计使学生熟悉常见的几种传输网络的特点及应用场 合; 2、了解ZXMP S325的具体硬件结构,加深对于光传输的理解; 3、掌握 ZXMP S325 的组网过程以及网管工具的使用,培养学生在传输组网工 程方面的实际应用技能。 二、实验设备 1、SDH设备:ZXMP S325; 2、实验用维护终端 三、实验原理 SDH技术是目前通信网络的主流技术,它以其突出的技术优势为网络提供优质、高效、可靠的通信业务,能够满足带宽数据及图像视频等多业务的传输需求,自愈功能强。 1、光传输原理及优势 SDH 全称同步数字体系(Synchronous Digital Hierarchy), SDH 规范了数字信号的帧结构、复用方式、传输速率等级、接口码型特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。这种传输网易于扩展,适于新电信业务的开展,并且使不同厂家生产的设备互通成为可能,这正是网络建设者长期以来追求的目标。 其优势主要体现在以下几个方面: (1)接口方面 ·电接口:STM-1是SDH的第一个等级,又叫基本传输模块,比特率为155.520Mb/s,STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N倍(N=4n=1,4,16...)·光接口:仅对电信号扰码,光口信号码型是加扰的NRZ码,采用世界统一的7级扰码。 (2)复用方式 低速SDH信号以字节间插方式复用进高速SDH帧结构中,位置均匀、有规律,是可预见的

药物化学复习大纲

药物化学教学大纲 Medicinal Chemistry (供自考生使用) 前言 药物化学是一门以化学为基础来研究药物的专门学科。其内容包括:发现与发明新药;合成化学药物;研究和改进药物合成工艺;阐明药物化学性质;研究药物分子与机体细胞(生物大分子)之间相互作用规律等。它是药学领域中重要的带头学科。 药物化学的教学目的应该使学生能有效利用现有化学药物,在常用药物的结构、名称、性质、鉴别、制备、构效关系及新药研究的方法等各个方面获得系统的理论知识和必要的操作技能,从而能合理地调制配方,制备优质药剂,做好药品检验和保管工作,同时对药物研究和新药发展有一定的了解。 本课程需要有机化学、分析化学相关知识作基础;药物化学的知识为学生进一步学习天然药物化学、药理学、药物分析及药学专业课程打下基础。 本大纲与人民卫生出版社出版,郑虎主编的普通高等教育“十一五”国家级规划教材第五版《药物化学》配套使用,适用于自考生的教学。大纲所列教学内容可通过课堂讲授、计算机多媒体、自学、讨论、实验、实习等方式进行教学。划横线部分为要求学生重点掌握的内容,其他为一般熟悉和一般了解内容。总学时为80学时。 绪论 目的要求 了解药物的通用名、化学名、商品名的含义和要求。 教学内容 1、药物化学的定义。 2、药物化学的研究内容及任务。

3、药物化学发展史。 4、化学药物的命名。 中枢神经系统药物 目的要求 掌握异戊巴比妥的结构、性质、构效关系、合成和用途;盐酸吗啡的结构、性质和构效关系。 熟悉地西泮的结构、代谢和构效关系;苯妥英钠的结构、性质和用途。 了解镇静催眠药的结构类型;盐酸氯丙嗪的性质和构效关系;咖啡因的结构和性质。 教学内容 1、镇静催眠药。异戊巴比妥的结构、化学名、理化性质、合成、体内代谢及临床应用;巴比妥类药物构效关系;地西泮的结构、化学名、理化性质、体内代谢及应用;吩噻嗪药物的构效关系;酒石酸唑吡坦的结构及应用。 2、抗癫痫药。苯妥英钠的结构、化学名、理化性质、体内代谢及应用;卡马西平、卤加比的结构及应用。 3、抗精神病药。盐酸氯丙嗪的结构、化学名、理化性质、体内代谢及应用,氟哌啶醇的化学名及应用,氯氮平的结构及用途。 4、抗抑郁药。盐酸丙咪嗪、盐酸氟西汀的结构及应用。 5、镇痛药。吗啡的结构、化学名、理化性质、构效关系、结构改造、体内代谢、临床应用及其毒副作用;盐酸哌替啶的结构、化学名、理化性质、体内代谢及临床应用;盐酸美沙酮、喷他佐辛的结构及用途。 6、中枢兴奋药。咖啡因、可可碱、茶碱的结构及应用。 外周神经系统用药 目的要求 掌握硫酸阿托品的结构、性质和构效关系;盐酸普鲁卡因的结构、性质、合成和结构改造。 熟悉溴新斯的明的结构、性质和作用机制;盐酸利多卡因的结构和构效关系。 了解拟肾上腺素药的结构特点;肾上腺素的性质和代谢;盐酸麻黄碱的性质;马来酸氯苯那敏的结构、性质和用途。 教学内容 1、胆碱受体激动剂。氯贝胆碱的结构、化学名及应用;拟胆碱药的构效关系;毛果芸香碱的结构和应用。 2、乙酰胆碱酯酶抑制剂。溴新斯的明的结构、化学名、理化性质、作用机制、体内代谢及临床应用。 3、M受体拮抗剂。硫酸阿托品的结构、理化性质、构效关系及应用;溴丙胺太林的结构和应用。 4、N受体拮抗剂。苯磺酸阿曲库铵、泮库溴铵的结构及应用。 5、肾上腺素受体激动剂。肾上腺素的结构、化学名、理化性质、体内代谢及临床应用。去甲肾上腺素、异丙肾上腺素的结构及应用。盐酸麻黄碱、盐酸伪麻黄碱、沙丁胺醇的结构、化学名、性质及用途。 6、组胺H1受体拮抗剂。马来酸氯苯那敏的结构、化学名、理化性质、体内代谢及应用。盐酸西替利嗪、咪唑斯汀的结构及应用。 7、局部麻醉药。盐酸普鲁卡因的结构、化学名、理化性质、合成、结构改造、体内代谢及应用。盐酸利多卡因的结构、化学名、理化性质、构效关系、合成及应用。盐酸达克罗宁的结构、通用名及用途。局部麻醉药的构效关系。

最长的一帧

最长的一帧 王锐(array) 这是一篇有关OpenSceneGraph源代码的拙劣教程,没有任何能赏心悦目的小例子,也不会贡献出什么企业级的绝密的商业代码,标题也只是个噱头(坏了,没人看了^_^)。 本文写作的目的说来很简单,无非就是想要深入地了解一下,OSG在一帧时间,也就是仿真循环的一个画面当中都做了什么。 对OSG有所了解之后,我们也许可以很快地回答这个问题,正如下面的代码所示:while (!viewer.done()) viewer.frame(); 就这样,用一个循环结构来反复地执行frame()函数,直到done()函数的返回值为true 为止。每一次执行frame()函数就相当于完成了OSG场景渲染的一帧,配置较好的计算机可以达到每秒钟一二百帧的速率,而通常仿真程序顺利运行的最低帧速在15~25帧/秒即可。 很好,看来笔者的机器运行frame()函数通常只需要8~10ms左右,比一眨眼的工夫都要短。那么本文就到此结束吗? 答案当然是否定的,恰恰相反,这篇繁琐且可能错误百出的文字,其目的正是要深入frame()函数,再深入函数中调用的函数……一直挖掘下去,直到我们期待的瑰宝出现;当然也可能是一无所获,只是乐在其中。 这样的探索要到什么时候结束呢?从这短短的10毫秒中引申出来的,无比冗长的一帧,又是多么丰富抑或无聊的内容呢?现在笔者也不知道,也许直到最后也不会明了,不过相信深入源代码的过程就是一种享受,希望读者您也可以同我一起享受这份辛苦与快乐。 源代码版本:OpenSceneGraph 2.6.0;操作系统环境假设为Win32平台。为了保证教程的篇幅不致被过多程序代码所占据,文中会适当地改写和缩编所列出的代码,仅保证其执行效果不变,因此可能与实际源文件的内容有所区别。 由于作者水平和精力所限,本文暂时仅对单视景器(即使用osgViewer::Viewer类)的情形作出介绍。 转载请注明作者和https://www.360docs.net/doc/bf10931908.html, 本文在写作过程中将会用到一些专有名词,它们可能与读者阅读的其它文章中所述有所差异,现列举如下: 场景图形-SceneGraph;场景子树-Subgraph;节点-Node;摄像机-Camera;渲染器-Renderer;窗口-Window;视口-Viewport;场景-Scene;视图-View;视景器-Viewer;漫游器-Manipulator;访问器-Visitor;回调-Callback;事件-Event;更新-Update;筛选-Cull;绘制-Draw。 第一日 好了,在开始第一天的行程之前,请先打开您最惯用的编程工具吧:VisualStudio?CodeBlocks?UltraEdit?SourceInsight?Emacs?Vim?或者只是附件里那个制作低劣的记事本……总之请打开它们,打开OpenSceneGraph-2.6.0的源代码文件夹,打开

光纤传输损耗测试-实验报告

光纤传输损耗测试-实验报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成

2016 年05 月日 预习报告 一、实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、实验仪器 20MHz双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、实验原理 αλ,其含义为单位长度光纤引起的光纤在波长λ处的衰减系数为()

光功率衰减,单位是dB/km 。当长度为L 时, 10()()lg (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G.650、G.651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。 偏置电路 注入系统 光源 滤模器 包层模 剥除器 被测光纤 检测器 放大器电平测量 图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条件)由于插入被测光纤引起的功率损耗。显然,功率 1 P 、 2 P 的测量 没有截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。

晶体结构解析的过程XP

晶体结构解析的过程 (2010-06-10 16:49:31) 转载 分类:晶体解析 标签: 杂谈 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。

得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol

通信原理实验 自定义帧结构的帧形成及其传输 自定义帧结构的帧同步系统 实验报告

姓名:学号:班级: 第周星期第大节实验名称:自定义帧结构的帧形成及其传输/自定义帧结构的帧同步系统 一、实验目的 1.加深对PCM30/32系统帧结构的理解。 2.加深对PCM30/32路帧同步系统及其工作过程的理解。 3.加深对PCM30/32系统话路、信令、帧同步的告警复用和分用过程的理解。 二、实验仪器 1.ZH5001A通信原理综合实验系统 2.20MHz双踪示波器 三、实验内容 (一)自定义帧结构的帧形成及其传输 1.发送传输帧结构观测 (1)(2) m序列输入的序列为全0 所找的帧在图上标注了。 (3)调整开关信号。 箭头所指为改变的开关信号。

(4)调整m序列 什么都不接是全0可以看清,接时,可以看清。接M_SEL1和两2.发送帧同步指示的观测 可以观测到已经同步 3.解复接开关信号输出的观测 4.解复接m序列数据输出观测 接M_SEL0 & M_SEL1 接M_SEL0 接M_SEL1 全不接 只要接M_SEL0接收就看不清,全1(M_SEL0)和全0(都不接)都可以

(二)自定义帧结构的帧同步系统 1.帧同步过程观测 (1)输入全0码 可以同步 可以同步 (3)将开关信号设置为帧定位信号,将KB01拔出插入 左边是假同步,右边是真同步。说明开关序列边位帧同步序列以后会影响

2.在误码环境下的帧同步性能测试和数据传输的定性测试(1)通过设置,使信道的误码率为1*10^-1 无法同步,同时观察LED灯,发现LED灯闪烁无规律。 (2)通过设置,使信道的误码率为1.6*10^-2 仍旧不能同步。 (3)通过设置,使信道的误码率为4*10^-3 在误码率较小的情况下,可以同步。

光纤通信实验报告汇总

南京工程学院 通信工程学院 实验报告 课程名称光纤通信_________ 实验项目名称光纤通信实验_______ 实验学生班级通信(卓越)131_____ 实验学生姓名吴振飞_____ _____ 实验学生学号 208130429_________ 实验时间2016.6.15___ 实验地点信息楼C413_______ 实验成绩评定 ______________________ 指导教师签字 ______________________ 2016年 6月 19日

目录 实验一半导体激光器P-I特性测试实验 (1) 一、实验目的 (1) 二、实验仪器 (1) 三、实验原理 (1) 四、实验内容 (2) 五、实验步骤 (2) 六、注意事项 (2) 七、思考题 (3) 实验二光电探测器特性测试实验 (3) 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) 四、实验内容 (4) 五、实验步骤 (4) 六、注意事项 (4) 实验三电话光纤传输系统实验 (4) 一、实验目的 (4) 二、实验内容 (5) 三、预备知识 (5) 四、实验仪器 (5) 五、实验原理 (5) 六、注意事项 (6) 七、实验步骤 (6) 九、思考题 (6)

实验一半导体激光器P-I特性测试实验 一、实验目的 学习半导体激光器发光原理和光纤通信中激光光源工作原理;了解半导体激光器平均输出光功率与注入驱动电流的关系;掌握半导体激光器 P(平均发送光功率) -I(注入电流) 曲线的测试方法。 二、实验仪器 1、ZYE4301G 型光纤通信原理实验箱 1 台 2、光功率计1 台 3、FC/PC-FC/PC 单模光跳线 1 根 4、万用表(自带) 1 台 5、连接导线 20 根 三、实验原理 半导体激光二极管(LD) 或简称半导体激光器,它通过受激辐射发光,(处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。) 是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW) 辐射,而且输出光发散角窄(垂直发散角为 30~50°,水平发散角为 0~30° ),与单模光纤的耦合效率高(约 30%~50%),辐射光谱线窄(Δλ =0.1~1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz) 直接调制,非常适合于作高速长距离光纤通信系统的光源。 对于线性度良好的半导体激光器,其输出功率可以表示为ηω (1-1) Pe=)(2thDIIq ?η其中intintaaamirmirD+=ηη,这里的量子效率ηint,表征注入电子通过受激辐射转化为光子的比例。在高于阈值区域,大多数半导体激光器的ηint接近于 1。 1-1 式表明,激光输出功率决定于内量子效率和光腔损耗,并随着电流而增大,当注入电流I>Ith时,输出功率与I成线性关系。其增大的速率即P-I曲线的斜率,称为斜率效率 dPη2DeqdIηω= (1-2) P-I特性是选择半导体激光器的重要依据。在选择时,应选阈值电流Ith尽可能小, Ith对应P值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,而且不易产生光信号失真。并且要求P-I曲线的斜率适当。斜率太小,则要求驱动信号太大,给驱动电路带来麻烦; 斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,半导体激光器可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即激活介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。将开始出现净增益的条件称为阈值条件。一般用注入电流值来标定阈值条件,也即阈值电流Ith,当输入电流小于Ith时,其输出光为非相干的荧光,类似于LED发出的光,当电流大于Ith

各种不同以太网帧格式

各种不同以太网帧格式 利用抓包软件的来抓包的人,可能经常会被一些不同的Frame Header搞糊涂,为何用的Frame的Header是这样的,而另外的又不一样。这是因为在Ethernet中存在几种不同的帧格式,下面我就简单介绍一下几种不同的帧格式及他们的差异。 一、Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准; 1982 DEC,Intel,Xerox又制订了Ehternet II的标准; 1982 IEEE开始研究Ethernet的国际标准802.3; 1983迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式; 1985 IEEE推出IEEE 802.3规范; 后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP 格式。 (其中早期的Ethernet I已经完全被其他帧格式取代了所以现在Ethernet只能见到后面几种Ethernet的帧格式现在大部分的网络设备都支持这几种Ethernet 的帧格式如:cisco的路由器在设定Ethernet接口时可以指定不同的以太网的帧格式:arpa,sap,snap,novell-ether) 二、各种不同的帧格式 下面介绍一下各个帧格式 Ethernet II 是DIX以太网联盟推出的,它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于表示装在这个Frame、里面数据的类型),以上为Frame Header,接下来是46--1500 字节的数据,和4字节的帧校验) Novell Ethernet 它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,后面接着的两个字节为0xFFFF用于标示这个帧是Novell Ether类型的Frame,由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

实验一 以太网数据帧的构成

【实验一以太网数据帧的构成】 【实验目的】 1、掌握以太网帧的构成,了解各个字段的含义; 2、能够识别不同的MAC地址并理解MAC地址的作用; 3、掌握网络协议分析器的基本使用方法; 4、掌握协议仿真编辑器的基本使用方法; 【实验学时】 4学时; 【实验类型】 验证型; 【实验内容】 1、学习协议仿真编辑器的五个组成部分及其功能; 2、学习网络协议分析器的各组成部分及其功能; 3、学会使用协议仿真编辑器编辑以太网帧,包括单帧和多帧; 4、学会分析以太网帧的MAC首部; 5、理解MAC地址的作用; 6、理解MAC首部中的LLC-PDU长度/类型字段的功能; 7、学会观察并分析地址本中的MAC地址; 8、了解LLC-PDU的内容; 【实验原理】 局域网(LAN)是在一个小的范围内,将分散的独立计算机系统互联起来,实现资源的共享和数据通信。局域网的技术要素包括了体系结构和标准、传输媒体、拓扑结构、数据编码、媒体访问控制和逻辑链路控制等,其中主要的技术是传输媒体、拓扑结构和媒体访问控制方法。局域网的主要的特点是:地理分布范围小、数据传输速率高、误码率低和协议简单等。 1、三个主要技术 ⑴传输媒体:双绞线、同轴电缆、光缆、无线。 ⑵拓扑结构:总线型拓扑、星型拓扑和环型拓扑。 ⑶媒体访问控制方法:载波监听多路访问/冲突检测(CSMA/CD)技术。 2、IEEE 802标准的局域网参考模型 IEEE 802参考模型包括了OSI/RM最低两层(物理层和数据链路层)的功能。OSI/RM的数据链路层功能,在局域网参考模型中被分成媒体访问控制MAC(Medium Access Control)和逻辑链路控制LLC(Logical Link Control)两个子层。由于局域网采用的媒体有多种,对应的媒体访问控制方法也有多种,为了使数据帧的传送独立于所采用的物理媒体和媒体访问控制方法,IEEE 802 标准特意把LLC 独立出来形成单独子层,使LLC子层与媒体无关,仅让MAC子层依赖于物理媒体和媒

光纤传输实验报告

音频信号光纤传输 实验目的: 1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。 2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。 3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。 实验仪器 TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器 实验原理 光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。 1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。目前商用光纤制作工艺多为渐变折射率芯层光纤。 从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。 一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。光纤的工作基础是光的全反射。由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。 附:光的全反射原理 根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。由于在临界状态下, 2 2π θ= ,代入上式,则??? ? ??=12 c n n arcsin θ ,称为全反射临界角。 光波在光纤中传输,可以用两种不同的理论来解释。一种是电磁理论,或称模式理论;另一种是几何光学理论,或称为射线理论。 1、光信号的发送(示意图) 系统低频响应不大于20赫兹,取决电阻、电容网络。 图1 图

相关文档
最新文档