微积分——期末考试模拟试卷以及答案

微积分——期末考试模拟试卷以及答案
微积分——期末考试模拟试卷以及答案

《微积分II 》练习题

一、 填空题

1.函数()

y x z +=

ln 1的定义域是_______________ 。

2

.函数(,)f x y =,则定义域为 。

3. 。

4.设(,)(1)arcsin f x y xy y =+-(,1)x f x = _______ 。

5.设222ln

y x e z x +=,则=)1,1(dz 。

6.函数y

x z =在(2,1)点处的全微分为_______________。 7.

22

()D

xyf x y dxdy +=??

。(其中D :由曲线221y x y ==与所围成)。 8. 改变积分次序

2

10

(,)x

x dx f x y dy ??

= _________ 。

9.微分方程'sin cos x y y x e -+=的通解是 。

10.微分方程

0=+'y y 满足初始条件10

==x y

的特解 。

11.计算_________________sin 2

1

23

1

=??-dy y dx x

12.微分方程02'"=+-y y 的通解是 。 13.差分方程02312=+-++t t t y y y 的通解是 。 14.计算极限.______________________)sin(4

2lim 0

0=+-→→xy xy y x

二、选择题

),(,),( 22=-=-y x f y x y

x

y x f 则

1.极限

).(2lim

2

2)

0,0(),(=+→y

x xy

y x

(A );0 (B );1 (C );2 (D )不存在。 2.二元函数z=f(x,y)在点),(00y x 处各偏导数存在是全微分存在的( ) (A )充分条件 (B )必要条件 (C )无关条件 (D )充要条件 3.设 f(x,y) 在点(a,b )处的偏导数存在,则=--+→x

b x a f b x a f x )

,(),(lim 0

( )

(A) 0 (B) ),2(b a f x ' (C) ),(b a f x ' (D) ),(2b a f x ' 4.若)y , (x f z =在点P (x ,y )处

x z ??,y

z ??都存在,则下列结论正确的是( )。 (A )),(y x f z =在P 点可微; (B )),(y x f z =在P 点连续;

(C )若x z ??,y

z

??在P 点连续,则=???y x z 2x y z ???2; (D )以上结论都不正确 5.交换?

?y

a

dx y x f dy 0

),((a 为常数)的次序后得( )

(A )?

?a

y

dy y x f dx 0

),( (B )?

?a

x a dy y x f dx ),(0

(C )??x

a

dy y x f dx 0

),( (D )??ya

a dy y x f dx

),(

6.二次积分??

??

--+2 1

2 0

1

0 2 0

),(),(2

x

x x dy y x f dx dy y x f dx 可交换积分次序的为( )

(A )?

?-2

2 0

),(x dx y x f dy ; (B )??

--+1

2 11 2),(y

y dx y x f dy ; (C )

?

?

--1

y

-2 11 2

),(y dx y x f dy ; (D )??

-2 0

2 0

2

),(x x dx y x f dy

7. D 是由x x y y =-==-=1111,,,所围成的区域,则2d D

σ??=( )

(A) 1; (B) 2 ; (C) 4 ; (D) 8

8.函数x

y=(c+x)e 是方程的222

0d y dy

y dx dx

-+=的( ) A. 通解 B. 特解 C. 解 D. 不是解

9. 方程0='+'''y y 的通解是( ).

(A)1cos sin C x x y +-=;

(B)321cos sin C x C x C y +-=;

(C)1cos sin C x x y ++=;

(D)1sin C x y

-=.

10.二元函数33)(3y x y x z

--+=的极值点是( ).

(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1).

11.

=

+→→2

2)

(lim 2

20

0y x y x y x ( ).

(A) 0 ; (B) 1 ; (C) 2 ; (D) e

.

三、解答题

1.求极限 (1).)sin(lim 22200y x y x y x +→→ (2)

(

(,)0,0lim x y → 2.求函数2ln(2);u u u x x y x y x

??=-???的偏导数;。 3.已知 2

242(3)

,x y

Z Z Z x y x y

+??=+??设求

和. 4.),(y x z z =由02=+--z xy

e z e

确定,求dz 。

6 . 求函数),

(x

y

xy f z =的一阶及二阶偏导数(其中f 具有一、二阶连续偏导数). 所确定的是由方程设333),(.5a xyz z y x z z =-=.

,2y

x z

dz ???及求二元函数

7. 计算

dxdy xe D xy ?? ,其中 }01,10),{(≤≤-≤≤=y x y x D 8.计算dxdy e D

y x ??+-)

(22

,其中 .9:22≤+y x D

9.计算

()

??+D

dxdy y x

22

,其中D 是由21y x --=,直线1-=y ,1-=x 所围成的闭区域.

10.求微分方程

011=+-+dy x

y

y xdx 在初始条件1|0==x y 的特解。 11.求下列微分方程满足所给初始条件的特解.

,0)ln (ln =-+dx x y xdy x .1==e

x y

12.

13. 14.求差分方程02312=+-++t t t y y y 的通解。

15.求差分方程121=++t t y y 的通解。

16.求差分方程t y y t t 221=++的通解。

四、应用题

1、求函数()xy y x y x f 3,3

3

-+=的极值。

2、某厂家生产的一种产品在两个市场销售,售价分别为21,p p ,销售量分别为21,q q ,它们与价格的关系为112.024p q -=,2205.010p q -=,总成本函数为

)(403521q q C ++=,试问:厂家如何确定两个市场的售价,才能使获得的总利润最大?

最大利润为多少?

3 某厂准备生产甲、乙两种产品,已知甲、乙的产量分别为y x ,时,总成本为

()(

)2

2331.032400,y

xy x y x y x C +++++=(元),且售价分别为10元和9元。问

两种产品各生产多少时,该厂可获得最大利润?

.)(222的通解求微分方程dx x xy y dy x +-=.

4

2的通解求微分方程y x y x dx dy =-

《微积分II 》练习题答案

一、

填空题

1.1>+y x

2.{(,)0,0}x y y x x y ≤≥+>

3.

4. 1 ; 5 .=)1,1(dz 2

2

11(ln 2)2

2

e dx e dy ++ 6.dz=dx+2ln2dy 7. 0 8.dx y x

f dy y

y

??

10

),( ; 9.sin ()x y x c e -=+ 10. x e y -=

11.

)4cos 1(21- 12.4

1-

二、 选择题

1. D

2.B

3. D

4.D

5.B

6.B

7.D

8.C

9. B 10. A 11. B

三、解答题

1.(1)222

222)sin(0y x y x y x y x +≤+≤x y

x xy x 212

2≤+≤ ---------(4分) 且.0lim 0

=→x x ---------(5分)

所以 .0lim 2

2=++∞

→∞→y x y

x y x ---------(6分)

(2)当()(,)0,0x y →

10,0xy →→,

因此,

(

(

)

)(

)

)

(,)0,0(,)0,0(,)0,01lim

lim

lim

12x y x y x y xy xy

→→→+==

=

2、解:

ln(2)2u x x y x x y

?=-+?---------------(2’) 22u x y x y

?-=?- -----------------------------------(4’) 222

2(2)24(2)(2)u x y x y

y x x y x y ?--+==

??-- -------(6’)

.1

1),(2

x y y y x f -+=

3.解:v u Z =

223y x u += y x v 24+=

1-=??v vu u Z u u v

Z v ln =?? x x u 6=??, y y u 2=??, 4=??x

v

, 2=??y v )3ln()3(4)3)(24(622242212422y x y x y x y x x x v

v Z x u u Z x Z y x y x +++++=?????+?????=??+-+

)3ln()3(2)3)(24(222242212422y x y x y x y x y y

v v Z y u u Z y Z y x y x +++++=?????+?????=??+-+ 4、两边求全微分02)(=+---dz e dz xy d e

z xy

-------------- (3’) 02)(=+-+--dz e dz xdy ydx e

z xy

----------------------(4’)

2

)

(-+=-z

xy e xdy ydx e dz 层 -----------------------------------(6’)

6. 解 设,,x

y

v xy u =

= 则),(v u f z = -------------- (1分) 则

),()3(.533a d xyz z d =-由,

033332=---xydz xzdy yzdx dz z ,2

2dy xy

z xz

dx xy z yz dz -+-=

,2xy

z yz x z -=??.2xy z xz y z -=??2

22)()2())((xy z x y z z yz xy z y z y z --???--??+=y x z ???2222

2

2)()2())((xy z x xy z xz z yz xy z xy z xz y z ---?---+=.

)()

2(3

22224xy z y x xyz z z ---=x v v z x u u z x z ?????+?????=??,2v u f x

y yf -=22x

z ??v f x y

32+??? ??-=uv uu f x y yf 2??? ??-vv vu f x y yf 22x y -vv uv uu v f x y f x y f y f x y x

z 42

22232

222+-+=??z

?2?

?

??++uv uu f xf y 1v f 21-

.12?

??+-vv vu f xf y

7.解:dxdy x x

I D

??=sin ?

?

=x

dy x

x

dx 0

1

sin ----------------------( 2分 ) ?

?=1

0sin dx x y x

x

-------------( 3分 ) ?

=

10

sin xdx ----------------------( 4分

8.解:

e

e x dx e dx e dy xe dx dxdy xe x x xy xy D

xy 1

)()1()(1

01

010

1

1

1

=+=-===----??????(5’) 9.解:85

5623442122

1

2

16

2342

2

2

12

2

2=??????-++=??????=??????=--+-+?????y y y y dy y x dy xydx xydxdy y y D

y y

10. 解:

????-+-=D

r

D

y

x rdrd e dxdy e

θ2

2)2

( ---------------------------( 2分 ) ??

-=3

020

2

rdr e

d r π

θ --------------------------------( 3分)

?

--=

π

θ20

03

)2

1(2d e r ---------------------------( 4分 )

).1(9

--=e π -------------------------------------( 5分 )

11. 解:()πθθππ

ππ8342

321

42

12

2

32

2

=???

? ??==+?

????d r rdr r d dxdy y x

D

12.

.132vv uu v u f x

y xyf f x f -+-

=u

f =

2

3

2

3

x 0232

3

232

3

(1)(1)(1

)(1)11112

3

2

35

y 0C 56

y 11151123623323250x xdx y y dy

x xdx

y ydy x x C

y y x x y y y y x x =17,将原始变形得到:两边积分得到:即:(4)将=代入上式,即得:=

()

从而在初始条件:=的特解为:等价于:-7()

13.将方程标准化为,1

ln 1x

y x x y =+

'于是 ???

? ?

?+=?

??-

C dx e x e y x x dx

x x dx

ln ln 1??

? ??+=?-C dx e x

e x x ln ln ln ln 1.ln 2

1ln 12??

? ??+=C x x 由初始条件,1==e x y 得,2

1

=C 故所求特解为.ln 1ln 21??? ??+=x x y

14.解:原方程可改写成

代入原方程得

分离变量得

两端积分得

则原方程通解为

15.解:这是一个贝努利方程。

,得两端除以y ,1412

x y x dx dy y =-,21

1y y z ==-

令dx

dz ,21dx dy y =,2122x z x dx dz =-得???

? ??+??=∴?

-C dx e x e z dx x dx x 2

2221??? ??+=?

C dx x 212,22??? ??+=C x x ,22??? ??+=∴C x x z .2

2

4??

? ??+=C x x y 即1

22+-=x

y

x y dx dy 有设,x y u =,ux y =dx du x

u dx dy +=dx du x u +,12+-=u u 122+-=u u dx du x 即x dx u du =-2)1(cx u ln 11=--,

回代将x y

u =.ln cx y x x =-

四、应用题

1、解 2233,

33x y f x y f y x ''=-=-, ----------- (2’)

由0='='y x f f 得驻点 ()()0,0,1,1----------- (3’)

6,6,3xx yy xy

f x f y f ''''''===- ----------- (4’) ∴在()0,0点,092>=-=?AC B ,无极值----------- (6’)

在()1,1点,2

270,

60B AC A ?=-=-<=>, 故()1

1,1-=f 为极大值---------- (8’)

2、总收益)05.010()2.024(22112211p p p p q p q p R -+-=+= --------------(2’)

总利润

1395

1205.0322.0)(4035)05.010()2.024(222

12

1

212211-+-+-=+---+-=-=p p p p q q p p p p C R L ------(4’)

324.011+-=??p p L , 121.022

+-=??p p L

,-------------------------------(5’) 令

02

1=??=??p L

p L , 解得120,8021==p p ---------------------------------(6’) . 即(80,120)为唯一驻点。 --------------------------------(7’) 由问题的实际意义知最大利润一定在区域{}

0,0),(2121>>p p p p 内部取得,而函数在该区域内只有唯一驻点,因此该驻点即为最大值点。从而当120,8021==p p 时,利润最大,最大利润为605 -------------------------------(8’)

3.设水箱的长为,xm 宽为,ym 则其高应为./2xym 此水箱所用材料的面积

A ???

?

???+?+=xy x xy y xy 222???? ??++=y x xy 222).0,0(>>y x 此为目标函数.下面求使这函数取得最小值的点).,(y x 令,0222=??? ??-=x y A x .0222=???? ?

?-=y x A y 解这方程组,得唯一的驻点,23=x .23=y 根据题意可断定,该驻点即为所求最小值点. 因此当水箱的长为m 32、宽为m 32、高为=?33

2

22m 32时,水箱所用的材料最省.

4.3cos 20

2

22

2

2

2

3.1))(1

a rdr r a

d dxdy y x

a V a D

πθθπ

π

=

=

+=

?

?

??-

5.解:设),(y x 是抛物线2

x y =上的任一点,它到直线02=--y x 的距离平方是:

2

)2()22

(

2

2

2

--=--=y x y x d ,

于是问题转化为在约束条件2

x y =下,求目标函数2

)2(2

2

--=

y x d 的最小

值。

构造)(2

)2(),,(22

x y y x y x L ----=

λλ 则:由?????=-==---==+--=0

020222

x y L y x L x y x L y x λλλ解得41

,21==y x 是唯一驻点,由题知,最小值点必

在此点取得,最近距离为:8

2

7=d 。 6. 总收益为()y x y x R 910,+=

利润为()()()(

)2

2

331.068400,,,y

xy x y x y x C y x R y x L ++-++-=-=

y x L y x L y x 3.01.06,1.03.08--='--='

由0='='y x L L 得5.12,5.22==y x

3.0,008.03.0,1.0,3.02

<-=<-=-=?∴-=''-=''-=''A AC B L L L yy xy xx 函数达到极大

微积分复习题题库超全

习题 1—2 1.确定下列函数的定义域: (1)91 2 -=x y ; (2)x y a arcsin log =; (3)x y πsin 2 = ; (4))32(log 213-+-=x x y a ;(5))4(log 2 1 arccos 2x x y a -+-= 2.求函数 ?????=≠=) 0(0 )0(1sin x x x y 的定义域和值域。 3.下列各题中,函数)(x f 和)(x g 是否相同? (1)2)(,)(x x g x x f ==; (2)2 sin 21)(,cos )(2π -==x g x x f ; (3)1)(,1 1 )(2-=+-= x x g x x x f ; (4)0)(,)(x x g x x x f == 。 4.设x x f sin )(=证明: ?? ? ?? +=-+2cos 2sin 2)()(x x x x f x x f ??? 5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定b a ,的值。 6.下列函数中哪些是偶函数?哪些是奇函数?哪些是既非奇函数又非偶函数? (1))1(22x x y -= (2)3 23x x y -=; (3)2211x x y +-=; (4))1)(1(+-=x x x y ; (5)1cos sin +-=x x y (6)2 x x a a y -+=。 7.设)(x f 为定义在),(∞+-∞上的任意函数,证明: (1))()()(1x f x f x F -+= 偶函数; (2))()()(2x f x f x F --=为奇函数。 8.证明:定义在),(∞+-∞上的任意函数可表示为一个奇函数与一个偶函数的和。 9.设)(x f 定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增,证明:)(x f 在)0,(L -上也单增。 10.下列各函数中哪些是周期函数?对于周期函数,指出其周期: (1))2cos(-=x y (2)x y 4cos =; (3)x y πsin 1+=; (4)x x y cos =; (5)x y 2sin = (6)x x y tan 3sin +=。 11.下列各组函数中哪些不能构成复合函数?把能构成复合函数的写成复合函数,并指出其定义域。 (1)t x x y sin ,3== (2)2,x u a y u ==; (3)23,log 2+==x u u y a ; (4)2sin ,-==x u u y (5)3,x u u y == (6)2,log 2-==x u u y a 。 12.下列函数是由哪些简单函数复合而成的? (1)321)1(++=x y (2)2 )1(3+=x y ;

微积分 上 下 模拟试卷和答案

北京语言大学网络教育学院 《微积分(上、下)》模拟试卷一 注意: 1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。请监考老师负责监督。 2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。 3.本试卷满分100分,答题时间为90分钟。 4.本试卷试题为客观题,请按要求填涂答题卡,所有答案必须填涂在答题卡上,答在试题卷上不给分。 一、【单项选择题】(本大题共20小题,每小题4分,共80分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。 1、设函数()f x 的定义域是[]0,4 ,则函数1)f 的定义域是( ) 2、数列n n n )211(lim + ∞ →的极限为( )。 [A] e 4 [B] e 2 [C] e [D] e 3 3 、函数y = )。 [A] ()2 1,,y x x =+∈-∞+∞ [B] [ )21,0,y x x =+∈+∞ [C] (] 21,,0y x x =+∈-∞ [D] 不存在 4、1 arctan y x =, 则dy =( )。 [A] (1,1)- [B] (1,0)- [C](0,1) [D] [1,25] [A] 2 1dx x + [B] 2 1dx x -+ [C] 22 1x dx x + [D] () 22 1dx x x +

5、x x x x sin cos 1lim 0?-→=( ) 6、设,ln x y =则'y =( )。 [A] [B] 1 x ; [C] 不存在 [D] 7、函数433 4 +-=x x y 的二阶导数是( )。 [A] 2x [B] 2 1218x x - [C] 3 2 49x x - [D] x 12 8、21lim 1x x x →∞ ?? -= ??? ( ) 9、已知()03f x '=-,则()() 000 3lim x f x x f x x x ?→+?--?=?( ) 10、函数1()()2 x x f x e e -=+的极小值点是( ) 11、函数()ln z x y =--的定义域为( ) [A] (){},0x y x y +< [B] (){},0x y x y +≠ [C] (){},0x y x y +> [D] (){},,x y x y -∞<<+∞-∞<<+∞ 12、幂级数1 n n x n ∞ =∑的收敛域是( ) [A] -1 [B] 0 [C] 1/2 [D] 不存在 [A] 2 e - [B] e [C]2e [D] 1 [A] 12 [B] -12 [C]3 [D] -3 [A] 1 [B] -1 [C]0 [D] 不存在

微积分期末测试题及复习资料

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④ 1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-??? ? ③(0,+∞) ④(-∞,+∞) 4.设2()()lim 1() x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) 1.sin lim sin x x x x x →∞-=+____________. 2.31lim(1)x x x +→∞+=____________. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=?,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求dy dx . 5.设111 1,11n n n x x x x --==++,求lim n x x →∞.

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

高等数学下册模拟试题2及答案.

高等数学(下)模拟试卷二 一.填空题(每空3分,共15分) z= 的定义域为;(1 )函数 xy (2)已知函数z=e,则在(2,1)处的全微分dz=; (3)交换积分次序, ? e1 dx? lnx0 f(x,y)dy 2 =; )点B(1,1)间的一段弧, 则(4)已知L是抛物线y=x上点O(0,0与之 ? = (5)已知微分方程y''-2y'+y=0,则其通解为 . 二.选择题(每空3分,共15分) ?x+y+3z=0? (1)设直线L为?x-y-z=0,平面π为x-y-z+1=0,则L与π的夹角为();πππ A. 0 B. 2 C. 3 D. 4 ?z=33 z=f(x,y)z-3xyz=a(2)设是由方程确定,则?x(); yzyzxzxy2222 A. xy-z B. z-xy C. xy-z D. z-xy (3)微分方程y''-5y'+6y=xe的特解y的形式为y=(); A.(ax+b)e B.(ax+b)xe C.(ax+b)+ce D.(ax+b)+cxe (4)已知Ω是由球面x+y+z=a

三次积分为(); A 2 2 2 2 2x 2x 2x 2x 2x * * dv???所围成的闭区域, 将在球面坐标系下化成Ω ? 2π0 π2 dθ?sin?d??rdr a 2 B. ? 2π0 π20 dθ?d??rdr a a0 C. ? 2π0 dθ?d??rdr 0∞ πa D. ?

2π0 dθ?sin?d??r2dr π 2n-1n x∑ n 2(5)已知幂级数n=1,则其收敛半径 (). 2 B. 1 C. 2 D. 三.计算题(每题8分,共48分) 1、求过A(0,2,4)且与两平面π1:x+2z=1和π2:y-3z=2平行的直线方程 . ?z?z x+y 2、已知z=f(sinxcosy,e),求?x,?y . 22 D={(x,y)x+y≤1,0≤y≤x},利用极坐标计算3、设 ??arctan D y dxdyx . 22 f(x,y)=x+5y-6x+10y+6的极值. 4、求函数 5、利用格林公式计算 ? L (exsiny-2y)dx+(excosy-2)dy ,其中

微积分(上)期末考试试题(B)

微积分(上)期末考试试题(B)

对外经济贸易大学 2003-2004学年第一学期 《微积分》(上)期末考试试卷(B) 课程课序号CMP101??(1~14) 学号:___________ 姓名:___________ 班级:___________ 成绩:___________ 题号 一 二 三 四 五 六 总分 成 绩 一、 选择题 (选出每小题的正确答案,每小题2分,共计8分) 1. 下列极限正确的是 _________。 (A )1 0lim 20x x + →= (B ) 10lim 20 x x - →= (C )1lim(1) x x e x →∞ -=- (D ) 01lim (1)1x x x +→+= 2.若()(),f x x a x x φφφ=-≠其中()为连续函数,且(a )0,() f x 在 x a =点_________。 (A ) 不连续 (B ) 连续 (C )可导 (D ) 不可导

3. 设f (x )有二阶连续导数,且 2 () (0)0,lim 1,_______x f x f x →'''==则。 () 0()A x f x =是的极大值点 ()0(0)B f (,)是f(x)的拐点 ()0()C x f x =是的极小值点 ())0D f x x =(在处是否取极值不确定 4.下列函数中满足罗尔定理条件的是 。 ()ln(2) [0,1] A f x x x =-() 2 01()0 1 x x B f x x ?≤<=? =?() ()sin sin [0,] C f x x x x π=+() 2 1 ()1[1,1] D f x x =- -() 5.若()(),f x x φ''=则下列各式 成立。 () ()()0A f x x φ-= () ()()B f x x C φ-= () ()()C d f x d x φ=?? () ()()d d D f x dx x dx dx dx φ=?? 二、 填空题(每小题3分,共18分) 1. 设0 (2) ()0(0)0,lim 1sin x f x f x x f x →-===-在处可导,且,那么曲线() y f x =在原点处的切线方程是__________。 2.设函数f (x )可导,则2 (4)(2)lim 2 x f x f x →--=-_________。 3.设ln ,()x xf x dx x '=?为f(x)的一个原函数那么 。 4 . 设 2121,2ln 3x x y a x bx x a b ===++均是的极值点,则、的值为 。 5. 设某商品的需求量Q是价格P的函数

清华大学微积分试题库完整

(3343).微分方程0cos tan =-+'x x y y 的通解为 x C x y cos )(+=。 (4455).过点)0,2 1(且满足关系式11arcsin 2 =-+ 'x y x y 的曲线方程为 21arcsin - =x x y 。 (4507).微分方程03='+''y y x 的通解为 2 2 1x C C y + =。 (4508).设)(),(),(321x y x y x y 是线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,且 C x y x y x y x y ≠--) ()() ()(1312,则该微分方程的通解为 )())()((())()((1132121x y x y x y C x y x y C y +-+-=。 (3081).设x e x y x y -++=+=22213,3是某二阶线性非齐次微分方程的两个特解,且相 应齐次方程的一个解为x y =3,则该微分方程的通解为x e C x C x y -+++=212 3。 (4725).设出微分方程x e xe x y y y x x 2cos 32++=-'-''-的一个特解形式 )2sin 2cos ()(*x F x E e e D Cx x B Ax y x x +++++=-。 (4476).微分方程x e y y y =+'-''22的通解为 )sin cos 1(21x C x C e y x ++=。 (4474).微分方程x e y y 24=-''的通解为 x x e x C e C y 222141??? ? ? ++=-。 (4477).函数x C x C y 2s i n 2c o s 21+=满足的二阶线性常系数齐次微分方程为04=+''y y 。 (4532).若连续函数)(x f 满足关系式 2ln )2 ()(20 +=? x dt t f x f ,则=)(x f 2ln 2x e 。 (6808).设曲线积分 ?--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶 连续导数,且0)0(=f ,则)(x f 等于[ ] (A) )(2 1x x e e --。 (B) )(21 x x e e --。

大学微积分模拟试卷

一、单项选择题(本大题分5小题,每小题2分,共10分) (在每个小题四个备选答案中选出一个正确答案,填在括号内。) 1.当0→x 时,与x 相比较下列变量中是高阶无穷小量的是 ( ) A .x sin B . x C . 1-x e D . x cos 1- 2.函数)(x f y =在点0x x =处连续且取得极大值,则)(x f 在0x 处必有 ( ) (A )0)(0='x f (B )0)(0<''x f (C )0)(0='x f 且0)(0<''x f (D )0)(0='x f 或不存在 3.2 2 11 011lim x x x e e +-→的极限为 ( ) (A )1 (B )-1 (C )1或-1 (D )不存在 补充:2=x 是函数x x f -=21 arctan )(的 ( ) A. 连续点 B. 可去间断点 C. 跳跃间断点 D. 无穷间断点 4.已知函数)(x f 在1=x 处可导,且导数为2,则=--→x f x f x 2) 1()31(lim 0( ) (A )3 (B )-3 (C )-6 (D )6 5.已知某商品的需求函数为5P e Q -=,当3=P 时,下列解释正确的是( ) (A )价格上升1%,需求增加0.6% (B )价格上升1%,需求减少0.6% (C )价格上升1%,需求增加60% (D )价格上升1%,需求减少60% 二、填空题(将正确答案填在横线上) (本大题分5小题,每小题2分,共10分) 1.函数)1(arcsin )(+=x x x x f 的连续区间为 2.x x x e e x -→-0lim 的值等于 3.已知21212lim e x x x k x =? ?? ??-+∞→,则=k 4.)99()2)(1()(+++=x x x x x f ,则=)()100(x f x x sin -与3ax 是等价无穷小,则=a 三、计算题(必须有解题过程) (本大题分12小题,每小题5分,共60分) 1.求极限x x x 2cot ) 2(lim 2ππ -→ 2.x x x ln 1 )(cot lim +→

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

AP 微积分BC 选择题样卷一

AP Calculus Practice Exam BC Version - Section I - Part A Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1) Given Find dy/dx. a) b) c) d) e) 2) Give the volume of the solid generated by revolving the region bounded by the graph of y = ln(x), the x-axis, the lines x = 1 and x = e, about the y-axis. a) b) c) d) e) 3) The graph of the derivative of f is shown below.

Find the area bounded between the graph of f and the x-axis over the interval [-2,1], given that f(0) = 1. a) b) c) d) e) 4) Determine dy/dt, given that and a) b) c) d) e) 5) The function is invertible. Give the slope of the normal line to the graph of f -1 at x = 3. a) b) c) d)

e) 6) Determine a) b) c) d) e) 7) Give the polar representation for the circle of radius 2 centered at ( 0 , 2 ). a) b) c) d) e) 8) Determine a) b) c) d) e)

微积分上期末考试试题A卷附答案

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分) 1.1 lim 2x x - →=_________。 (A ) - (B ) + (C ) 0 (D ) 不存在 2.当0x →时,()x x f x x += 的极限为 _________。 (A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。 0()()() lim ()x f a x f a A f a x - ?→+?-'=?0()(0) ()lim (0) x f tx f B tf x →-'= 0000()()()lim 2()t f x t f x t C f x t →+--'= 0()() ()lim ()x f x f a D f a a x →-'=- 4. 设f (x )有二阶连续导数,且()0 () (0)0,lim 1,0()_______x f x f f f x x →'''==则是的。 (A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。 ()()()0A f x x φ-=()()()B f x x C φ-= () ()() C d f x d x φ= ?? () ()()d d D f x dx x dx dx dx φ=?? 二、 填空题(每小题3分,共18分) 1. 设0 (2) ()0(0)0,lim 1sin x f x f x x f x →===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。 2.函数()f x =[0,3]上满足罗尔定理,则定理中的= 。 3.设1 (),()ln f x f x dx x '=?的一个原函数是 那么 。 4.设(),x f x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。 5.设某商品的需求量Q是价格P的函数5Q =-,那么在P=4的水平上,若价格 下降1%,需求量将 。 6.若,1 1),(+-= =x x u u f y 且,1)('u u f =dy dx = 。 三、计算题(每小题6分,共42分): 1、 求 11ln (ln ) lim x x e x -→

清华大学微积分题库

(3343).微分方程0cos tan =-+'x x y y 的通解为 x C x y cos )(+=。 (4455).过点)0,2 1(且满足关系式11arcsin 2 =-+ 'x y x y 的曲线方程为 21arcsin - =x x y 。 (4507).微分方程03='+''y y x 的通解为 22 1x C C y + =。 (4508).设)(),(),(321x y x y x y 是线性微分方程)()()(x f y x b y x a y =+'+''的三个特解,且 C x y x y x y x y ≠--) ()() ()(1312,则该微分方程的通解为 )())()((())()((1132121x y x y x y C x y x y C y +-+-=。 (3081).设x e x y x y -++=+=22213,3是某二阶线性非齐次微分方程的两个特解,且相 应齐次方程的一个解为x y =3,则该微分方程的通解为x e C x C x y -+++=212 3。 (4725).设出微分方程x e xe x y y y x x 2cos 32++=-'-''-的一个特解形式 )2sin 2cos ()(*x F x E e e D Cx x B Ax y x x +++++=-。 (4476).微分方程x e y y y =+'-''22的通解为 )sin cos 1(21x C x C e y x ++=。 (4474).微分方程x e y y 24=-''的通解为 x x e x C e C y 222141??? ? ? ++=-。 (4477).函数x C x C y 2sin 2cos 21+=满足的二阶线性常系数齐次微分方程为 04=+''y y 。 (4532).若连续函数)(x f 满足关系式 2ln )2 ()(20 +=? x dt t f x f ,则=)(x f 2ln 2x e 。 (6808).设曲线积分 ?--L x ydy x f ydx e x f cos )(sin ])([与路径无关,其中)(x f 具有一阶 连续导数,且0)0(=f ,则)(x f 等于[ ] (A) )(2 1x x e e --。 (B) )(21 x x e e --。

高等数学基础模拟题答案

高等数学基础模拟题 一、单项选择题(每小题3分,本题共15分) 1.设函数)(x f 的定义域为),(+∞-∞,则函数)()(x f x f --的图形关于( D )对称. (A) x y = (B) x 轴 (C) y 轴 (D) 坐标原点 2.当0→x 时,变量( C )是无穷小量. (A) x 1 (B) x x sin (C) 1e -x (D) 2x x 3.设x x f e )(=,则=?-?+→?x f x f x ) 1()1(lim 0( B ). (A) e 2 (B) e (C) e 41 (D) e 21 4. =? x x xf x d )(d d 2 ( A ). (A) )(2x xf (B) x x f d )(2 1 (C) )(2 1 x f (D) x x xf d )(2 5.下列无穷限积分收敛的是( B ). (A) ? +∞ d e x x (B) ? +∞-0 d e x x (C) ? +∞1d 1 x x (D) ? +∞ 1 d 1x x 二、填空题(每小题3分,共15分) 1.函数) 1ln(92 --=x x y 的定义域是 (1,2)U(2,3] . 2.函数? ??≤>-=0sin 0 1x x x x y 的间断点是 X=0 . 3.曲线1)(+=x x f 在)2,1(处的切线斜率是 1/2 . 4.函数1)1(2 ++=x y 的单调减少区间是 (-∞,-1) . 5.='?x x d )(sin sinx + c . 三、计算题(每小题9分,共54分)

1.计算极限x x x 5sin 6sin lim 0→. 2.设2 2sin x x y x +=,求y '. 3.设x y e sin 2=,求. 4.设 是由方程y x y e cos =确定的函数,求 . 5.计算不定积分? x x x d 3cos . 6.计算定积分? +e 1 d ln 2x x x . 四、应用题(本题12分) 圆柱体上底的中心到下底的边沿的距离为l ,问当底半径与高分别为多少时,圆柱体的体积最大? 五、证明题(本题4分) 当0>x 时,证明不等式x x arctan >.

[考研类试卷]考研数学二(多元函数微积分学)模拟试卷11.doc

[考研类试卷]考研数学二(多元函数微积分学)模拟试卷11 一、选择题 下列每题给出的四个选项中,只有一个选项符合题目要求。 1 设函数f(x,y)可微,且对任意x,y都有则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是( ) (A)x1>x2,y1<y2. (B)x1>x2,y1>y2. (C)x1<x2,y1<y2. (D)x1<x2,y1>y2. 2 交换积分次序∫1e dx∫0lnx f(x,y)dy为( ) (A)∫0e dy∫0lnx f(x,y)dx (B)∫ey e d y∫01f(x,y)dx (C)∫0lnx dy∫1e f(x,y)dx (D)∫01dy∫ey e f(x,y)dx 3 设f(x,y)连续,且其中D是由y=0,y=x2,x=1所围区域,则f(x,y)等于( ) (A)xy. (B)2xy.

(C) (D)xy+1. 4 则积分域为( ) (A)x2+y2≤a2. (B)x2+y2≤a2(x≥0). (C)x2+y2≤ax. (D)x2+y2≤ax(y≥0). 5 设f(x,y)在D:x2+y2≤a2上连续,则( ) (A)不一定存在. (B)存在且等于f(0,0). (C)存在且等于πf(0,0). (D)存在且等于. 6 设区域D由曲线=( ) (A)π. (B)2. (C)一2.

(D)一π. 7 设平面D由及两条坐标轴围成, 则( ) (A)I1<I2<I3. (B)I3<I1<I2. (C)I1<I3<I2. (D)I3<I2<I1. 8 设D为单位圆x2+y2≤1, ,则( ) (A)I1<I2<I3. (B)I3<I1<I2. (C)I3<I2<I1. (D)I1<I3<I2. 9 设其中函数f可微,则=( ) (A)2yf'(xy). (B)一2yf'(xy).

期末高等数学(上)试题及答案

第一学期期末高等数学试卷 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 2、(本小题5分) .d )1(22x x x ?+求 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题 (本大题共2小题,总计14分)

清华大学微积分A(1)期中考试样题

一元微积分期中考试答案 一. 填空题(每空3分,共15题) 1. e 1 2。21 3. 31 4。3 4 5. 1 6.第一类间断点 7。()dx x x x ln 1+ 8。 22sin(1)2cos(1)x x x e ++ 9。 0 10。11?????? ?+x e x 11.x x ne xe + 12。13 13。0 14。)1(223 +? =x y 15. 13y x =+ 二. 计算题 1. 解:,)(lim ,0)(lim 00b x f x f x x ==+?→→故0=b 。 …………………3分 a x f x f f x =?=′? →?)0()(lim )0(0 …………………3分 1)0()(lim )0(0=?=′+→+x f x f f x …………………3分 1=a 故当1=a ,0=b 时,)(x f 在),(+∞?∞内可导。 …………………1分 2. 解:=?+∞→])arctan ln[(lim ln /12x x x πx x x ln )arctan ln(lim 2?+∞→π = x x x x /1arctan ) 1/(1lim 22?+?+∞→π …………罗比达法则…………4分 =x x x x arctan )1/(lim 2+?++∞→π = )1/(1)1/()1(lim 2222x x x x ++?+∞→ = 2211lim x x x +?+∞→ = 1? ………………………4分 所以,原极限=1?e ………………………………………………………………………2分 3. 解:)'1)((''y y x f y ++= ,故 1) ('11)('1)(''?+?=+?+=y x f y x f y x f y ;……4分 3 2)]('1[)('')]('1[)'1)((''''y x f y x f y x f y y x f y +?+=+?++= …………………………………………6分 4.解:

关于清华大学高等数学期末考试

关于清华大学高等数学期 末考试 This manuscript was revised on November 28, 2020

清华大学 2010-2011学年第 一 学期期末考试试卷(A 卷) 考试科目: 高等数学A (上) 考试班级: 2010级工科各班 考试方式: 闭卷 命题教师: 一. 9分 ) 1、若在) ,(b a 内,函数)(x f 的一阶导数0)(>'x f ,二阶导数0)(<''x f ,则函数)(x f 在此区间内单调 ,曲线是 的。 2、设?????+=+=232322t t y t t x 确定函数)(x y y =,求=22dx y d 。 3、=? dx 1cos 12 。 本大题共3小题,每小题3分,总计 9分) 1、设A x x ax x x =-+--→1 4lim 231,则必有 答( ) 2、设211)(x x f -=,则)(x f 的一个原函数为 答( ) 3、设f 为连续函数,又,?=x e x dt t f x F 3)()(则=')0(F 答( ) 2小题,每小题5分,总计10分 ) 1、求极限x e e x x x cos 12lim 0--+-→。

2、x y 2ln 1+=,求y '。 3小题,每小题8分,总计24分 ) 1、讨论?? ???=≠=0,00arctan )(2 x x x x x f ,,在0=x 处的可导性。 2、设)(x f 在]1,0[上连续,且1)(0≤≤x f ,证明:至少存在一点]1,0[∈ξ,使得 ξξ=)(f 。 3、证明不等式:当4>x 时,22x x >。 3小题,每小题8分,总计24分 ) 1、求函数x e y x cos =的极值。 2、求不定积分? x x x d cos sin 3。 3、计算积分?-+-+2222)cos 233(ln sin ππdx x x x x 。 4小题,每小题6分,总计24分 ) 1、求不定积分? +)1(10x x dx 。 2、计算积分?+πθθ4 30 2cos 1d 。 3、求抛物线221x y = 被圆822=+y x 所截下部分的长度。 4、求微分方程''-'-=++y y y x e x 2331的一个特解。

2.《高等数学》(二)期末模拟试题(含答案)

2.《高等数学》(二)期末模拟试题(含答案)

电气092班 电气092班 2 【注】 高等数学考试时间:7月13日(第二十周周二) 地点:主教楼1601教室 以下题目供同学们复习参考用!!!! 《高等数学》(二)期末模拟试题 一、填空题:(15分) 1.设,y x z =则=??x z .1-y yx 2. 积分=??D xydxdy .其中D 为40,20≤≤≤≤y x 。 16 3. L 为2x y =点(0,0)到(1,1)的一段弧,则=? ds y L .121 55- 4. 级数∑∞ =-1)1(n p n n 当p 满足 时条件收敛.10≤

电气092班 电气092班 3 (A )???Ω +dv y x )(22; (B )???1 1 2 0 r dz rdr d π θ; (C )?? ?+----2 22 2 1 1 1 1 y x x x dz dy dx ; (D )??? 1 1 0 2 0 dz rdr d π θ。 5.方程x e x y y y -=+'-''323的特解形式为 。B (A )x e b ax )(+ (B )x cxe b ax ++ (C )x ce b ax ++ (D )x xe b ax )(+ 三、),(2 2 x y f z -=其中)(u f 有连续的二阶偏导数,求22x z ??.(8分) 解:)2(x f x z -?'=?? )2()2(222-?'+-?''=??f x f x z f f x '-''=242 例、设)](,[2 xy y x f z ?-=,),(v u f 具有二阶连续偏导数,求x y z ???2. x f f y z ?'?'+-?'=???21)1( ]2[1211 2y f x f x y z ?'?''+?''-=????x y f x f ?'??'?''+?''+??]2[2221 ??' ?'+??''?'+22f x y f 11 22)(f x xy f ''-''+'?'=??222122)2(f xy f y x ''?'+''?'-+?? 四、计算?-+-L x x dy y e dx y y e )2cos ()2sin (,L 为由点A(1,0)到B(0,1),再到 C(-1,0)的有向折线。(8分) 解:2cos ,2sin -=-=y e Q y y e P x x y e x Q y e y P x x cos ,2cos =??-=?? .,,围成的区域为由设CA BC AB D 由格林公式 ?-+-L x x dy y e dx y y e )2cos ()2sin (

最新大一期末考试微积分试题带答案

第一学期期末考试试卷 一、填空题(将正确答案写在答题纸的相应位置. 答错或未答,该题不得分.每小题3分,共15分.) 1. =→x x x 1 sin lim 0___0_____. 2. 设1 )1(lim )(2+-=∞→nx x n x f n ,则)(x f 的间断点是___x=0_____. 3. 已知(1)2f =,4 1 )1('-=f ,则 12 ()x df x dx -== _______. 4. ()a x x '=_______. 5. 函数434)(x x x f -=的极大值点为________. 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代码写 在答题纸的相应位置.答案选错或未选者,该题不得分.每小题3分,共15分.) 1. 设)(x f 的定义域为)2,1(, 则)(lg x f 的定义域为________. A.)2lg ,0( B. ]2lg ,0[ C. )100,10( D.)2,1(. 2. 设对任意的x ,总有)()()(x g x f x ≤≤?,使lim[()()]0x g x x ?→∞ -=,则 lim ()x f x →∞ ______. A.存在且一定等于零 B. 存在但不一定等于零 C.不一定存在 D. 一定存在. 3. 极限=-→x x x x e 21lim 0________. A. 2e B. 2-e C. e D.不存在. 4. 设0)0(=f ,1)0(='f ,则=-+→x x f x f x tan ) 2()3(lim 0________. A.0 B. 1 C. 2 D. 5. 5. 曲线2 21x y x =-渐近线的条数为________. A .0 B .1 C .2 D .3. 三、(请写出主要计算步骤及结果,8分.) 求2 0sin 1lim sin x x e x x →--. 四、(请写出主要计算步骤及结果,8分.)

相关文档
最新文档