高考数学平面向量及其应用习题及答案doc

高考数学平面向量及其应用习题及答案doc
高考数学平面向量及其应用习题及答案doc

一、多选题

1.已知点()4,6A ,33,2B ??- ???

,与向量AB 平行的向量的坐标可以是( ) A .14,33??

???

B .97,2?

? ???

C .14,33??

-

- ???

D .(7,9)

2.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++=

3.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为

( )

A .

B .

C .8

D .

4.在ABC 中,若30B =?,AB =2AC =,则C 的值可以是( ) A .30°

B .60°

C .120°

D .150°

5.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =

30A =?,则B =( )

A .30

B .45?

C .135?

D .150?

6.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,且

()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )

A .sin :sin :sin 4:5:6A

B

C = B .ABC ?是钝角三角形

C .ABC ?的最大内角是最小内角的2倍

D .若6c =,则ABC ? 7.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )

A .若a b >,则sin sin A

B >

B .若sin 2sin 2A B =,则AB

C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形

D .若2220a b c +->,则ABC 是锐角三角形

8.在ABC 中,15a =,20b =,30A =,则cos B =( )

A .

B .

23

C .23

-

D .

3

9.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥c

B .若PA PB PB P

C PC PA ?=?=?,则P 是三角形ABC 的垂心

C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向

D .若a ∥b ,则存在唯一实数λ使得a b λ= 10.在下列结论中,正确的有( )

A .若两个向量相等,则它们的起点和终点分别重合

B .平行向量又称为共线向量

C .两个相等向量的模相等

D .两个相反向量的模相等

11.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )

A .A

B D

C =

B .AB D

C =

C .AB DC >

D .BC AD ∥

12.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()

m a b ma mb -=- B .()m n a ma na -=-

C .若ma mb =,则a b =

D .若()0ma na a =≠,则m n =

13.设,a b 是两个非零向量,则下列描述正确的有( ) A .若||||||a b a b +=-,则存在实数λ使得a b λ= B .若a b ⊥,则||||a b a b +=-

C .若||||||a b a b +=+,则a 在b 方向上的投影为||b

D .若存在实数λ使得a b λ=,则||||||a b a b +=- 14.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模

D .若a b a b -=-,则a 与b 方向相同15.题目文件丢失!

二、平面向量及其应用选择题

16.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在

OC 方向上的投影相同,则a =( )

A .12

-

B .

12

C .-2

D .2

17.若△ABC 中,2

sin()sin()sin A B A B C +-=,则此三角形的形状是( )

A .直角三角形

B .等腰三角形

C .等边三角形

D .等腰直角三角形

18.在ABC ?中,a 、b 、c 分别是角A 、B 、C 的对边,若

22sin cos sin a b c

A B B

===,则ABC ?的面积为(

) A .2

B .4

C .2

D .22

19.已知在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,若ABC 的面积为

S ,且222()S a b c =+-,则tan C =( )

A .43

-

B .34

-

C .

34

D .

43

20.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )

A .30

B .45?

C .60?

D .90?

21.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为

1S ,ABC 的面积为2S ,则

1

2

S S = A .310 B .38

C .

25

D .

421 22.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=?==,则△ABC 的面积的最大值为( ) A .123

B .63

C .12

D .183

23.在ABC ?中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4

B .3

C .-4

D .5

24.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则

::PAB PAC PBC S S S =△△△( )

A .1∶2∶3

B .1∶2∶1

C .2∶1∶1

D .1∶1∶2

25.如图,在ABC 中,点D 在线段BC 上,且满足1

2

BD DC =

,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )

A .m n +是定值,定值为2

B .2m n +是定值,定值为3

C .

11

m n

+是定值,定值为2 D .

21

m n

+是定值,定值为326.题目文件丢失!

27.在矩形ABCD 中,3,3,2AB BC BE EC ===,点F 在边CD 上,若

AB AF 3→→=,则AE BF

→→的值为( ) A .0

B .

83

3

C .-4

D .4

28.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .

3

π B .

23

π C .

56

π D .

6

π 29.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )

A .13

24

AB AD -+ B .12

23AB AD + C .

11

32

AB AD - D .

13

24

AB AD - 30.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若

(),DE AB AD R λμλμ=+∈,则λμ?等于( )

A .3

16

- B .

316 C .

12

D .12

-

31.ABC ?中,22:tan :tan a b A B =,则ABC ?一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形

D .等腰或直角三角形

32.已知点O 是ABC ?内一点,满足2OA OB mOC +=,4

7

AOB ABC S S ??=,则实数m 为( ) A .2

B .-2

C .4

D .-4

33.如图所示,设P 为ABC ?所在平面内的一点,并且11

42

AP AB AC =+,则BPC ?与ABC ?的面积之比等于( )

A .

2

5

B .

35

C .

34

D .

14

34.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cos cos 2c A a C c +=且

a b =,则cos B 等于( )

A .

154

B .

14

C .

34

D .

32

35.已知M (3,-2),N (-5,-1),且1

2

MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2?

?-- ??

?

C .31,2?? ???

D .(8,-1)

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ABC 【分析】

先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则

选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选 解析:ABC 【分析】

先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】

由点()4,6A ,33,2B ?

?- ???,则972,

AB ??=-- ???

选项A . 914

73023

??-?--?= ???,所以A 选项正确. 选项B. 9977022??

-?

--?= ???

,所以B 选项正确. 选项C . ()91473023????

-?---?-= ? ?????

,所以C 选项正确. 选项D. 979702??

-?--?≠ ???

,所以选项D 不正确 故选:ABC 【点睛】

本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.

2.CD 【分析】

转化为,移项运算即得解 【详解】 由题意: 故 即 , 故选:CD 【点睛】

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

解析:CD 【分析】

转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】

由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=

0C PA PB P ++=∴,PA AB PB +=

故选:CD

本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.

3.AC 【分析】

利用余弦定理:即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:, 即,解得. 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基

解析:AC 【分析】

利用余弦定理:2222cos b a c ac B =+-即可求解. 【详解】

在△ABC 中,b =15,c =16,B =60°, 由余弦定理:2222cos b a c ac B =+-,

即216310a a -+=,解得8a = 故选:AC 【点睛】

本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.

4.BC 【分析】

由题意结合正弦定理可得,再由即可得解. 【详解】

由正弦定理可得,所以, 又,所以, 所以或. 故选:BC. 【点睛】

本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.

解析:BC 【分析】

由题意结合正弦定理可得sin C =

()0,150C ∈??即可得解.

由正弦定理可得sin sin AB AC C B =

,所以1

sin 2sin 2AB B C AC ?===, 又30B =?,所以()0,150C ∈??, 所以60C =?或120C =?. 故选:BC. 【点睛】

本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.

5.BC 【分析】

用正弦定理求得的值,由此得出正确选项. 【详解】

解:根据正弦定理得: , 由于,所以或. 故选:BC. 【点睛】

本题考查利用正弦定理解三角形,是基础题.

解析:BC 【分析】

用正弦定理求得sin B 的值,由此得出正确选项. 【详解】

解:根据正弦定理sin sin a b A B

=得:

1

sin 2sin 12

b A B a ===,

由于1b a =>=,所以45B =或135B =.

故选:BC. 【点睛】

本题考查利用正弦定理解三角形,是基础题.

6.ACD 【分析】

先根据已知条件求得,再根据正余弦定理计算并逐一判断即可. 【详解】 因为

所以可设:(其中),解得: 所以,所以A 正确;

由上可知:边最大,所以三角形中角最大,

又 ,所以角为

解析:ACD 【分析】

先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可. 【详解】

因为()()()::9:10:11a b a c b c +++=

所以可设:91011a b x a c x b c x +=??

+=??+=?

(其中0x >),解得:4,5,6a x b x c x ===

所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确; 由上可知:c 边最大,所以三角形中C 角最大,

又222222(4)(5)(6)1

cos 022458

a b c x x x C ab x x +-+-===>?? ,所以C 角为锐角,所以B 错

误;

由上可知:a 边最小,所以三角形中A 角最小,

又222222(6)(5)(4)3

cos 22654

c b a x x x A cb x x +-+-===??,

所以2

1

cos22cos 18

A A =-=

,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π??

∈ ??

?

所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =

,又sin 8

C ==

所以

2R =

,解得:7

R =,所以D 正确. 故选:ACD. 【点睛】

本题考查了正弦定理和与余弦定理,属于基础题.

7.AC 【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判

解析:AC

【分析】

对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误. 【详解】

对选项A ,2sin 2sin sin sin a b r A r B A B >?>?>,故A 正确; 对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =?= 所以A B =或2

A B π

+=

,则ABC 是等腰三角形或直角三角形.故B 错误;

对选项C ,因为cos cos a B b A c -=,

所以()sin cos sin cos sin sin A B B A C A C -==+,

sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,

因为sin 0B ≠,所以cos 0A =,2

A π

=,ABC 是直角三角形,故③正确;

对D ,因为2

2

2

0a b c +->,所以222

cos 02a b c A ab

+-=>,A 为锐角.

但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误. 故选:AC 【点睛】

本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题.

8.AD 【分析】

利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】

由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】

本题考查利用正弦定理与同

解析:AD 【分析】

利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】

由正弦定理sin sin b a B A

=,可得1

20sin 22sin 153

b A B a ?

===,

b a >,则30B A >=,所以,B 为锐角或钝角.

因此,cos B ==. 故选:AD. 【点睛】

本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.

9.AD 【分析】

分别对所给选项进行逐一判断即可. 【详解】

对于选项A ,当时,与不一定共线,故A 错误; 对于选项B ,由,得,所以,,

同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量

解析:AD 【分析】

分别对所给选项进行逐一判断即可. 【详解】

对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;

对于选项B ,由PA PB PB PC ?=?,得0PB CA ?=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;

对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;

对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】

本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.

10.BCD 【分析】

根据向量的定义和性质依次判断每个选项得到答案. 【详解】

A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;

B. 平行向量又称为共线向量,根据平行向量定义知正确

解析:BCD 【分析】

根据向量的定义和性质依次判断每个选项得到答案.

【详解】

A. 若两个向量相等,它们的起点和终点不一定不重合,故错误;

B. 平行向量又称为共线向量,根据平行向量定义知正确;

C. 相等向量方向相同,模相等,正确;

D. 相反向量方向相反,模相等,故正确;

故选:BCD

【点睛】

本题考查了向量的定义和性质,属于简单题.

11.BD

【分析】

根据向量的模及共线向量的定义解答即可;

【详解】

解:与显然方向不相同,故不是相等向量,故错误;

与表示等腰梯形两腰的长度,所以,故正确;

向量无法比较大小,只能比较向量模的大小,故

解析:BD

【分析】

根据向量的模及共线向量的定义解答即可;

【详解】

解:AB与DC显然方向不相同,故不是相等向量,故A错误;

,故B正确;

AB与DC表示等腰梯形两腰的长度,所以AB DC

向量无法比较大小,只能比较向量模的大小,故C错误;

等腰梯形的上底BC与下底AD平行,所以//

BC AD,故D正确;

故选:BD.

【点睛】

本题考查共线向量、相等向量、向量的模的理解,属于基础题.

12.ABD

【分析】

根据向量数乘运算判断AB选项的正确性,通过的特殊情况判断C选项的正确性,根据向量运算判断D选项的正确性.

【详解】

根据向量数乘的运算可知A和B正确;C中,当时,,但与不一定相等,

解析:ABD

【分析】

根据向量数乘运算判断AB选项的正确性,通过m的特殊情况判断C选项的正确性,根据向量运算判断D选项的正确性.

【详解】

根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】

本小题主要考查向量数乘运算,属于基础题.

13.AB 【分析】

若,则反向,从而; 若,则,从而可得;

若,则同向,在方向上的投影为

若存在实数使得,则共线,但是不一定成立. 【详解】

对于选项A ,若,则反向,由共线定理可得存在实数使得; 对于选

解析:AB 【分析】

若||||||a b a b +=-,则,a b 反向,从而a b λ=; 若a b ⊥,则0a b ?=,从而可得||||a b a b +=-;

若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a

若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 【详解】

对于选项A ,若||||||a b a b +=-,则,a b 反向,由共线定理可得存在实数λ使得

a b λ=;

对于选项B ,若a b ⊥,则0a b ?=,

222222||2,||2a b a a b b a b a a b b +=+?+-=-?+,可得||||a b a b +=-;

对于选项C ,若||||||a b a b +=+,则,a b 同向,a 在b 方向上的投影为||a ;

对于选项D ,若存在实数λ使得a b λ=,则,a b 共线,但是||||||a b a b +=-不一定成立. 故选:AB. 【点睛】

本题主要考查平面向量的性质及运算,明确向量的性质及运算规则是求解的关键,侧重考查逻辑推理的核心素养.

14.ABD 【分析】

根据平面向量的平行四边形法则与三角不等式分析即可.

如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有. 当同向时

解析:ABD 【分析】

根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】

如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+. 当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-. 当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-

故选:ABD 【点睛】

本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.

15.无

二、平面向量及其应用选择题

16.A 【分析】

根据平面向量的投影的概念,结合向量的数量积的运算公式,列出方程,即可求解. 【详解】

由题意,点(),1A a ,()2,1B -,()4,5C , O 为坐标原点, 根据OA 与OB 在OC 方向上的投影相同,则

OA OC OB OC OC

OC

??=

,

即OA OC OB OC ?=?,可得4152415a +?=?-?,解得12

a =-

.

【点睛】

本题主要考查了平面向量的数量积的坐标运算,以及向量的投影的定义,其中解答中熟记向量投影的定义,以及向量的数量积的运算公式,列出方程是解答的关键,着重考查运算与求解能力. 17.A 【分析】

已知等式左边第一项利用诱导公式化简,根据sin C 不为0得到sin()sin A B C -=,再利用两角和与差的正弦函数公式化简. 【详解】

ABC ?中,sin()sin A B C +=,

∴已知等式变形得:2sin sin()sin C A B C -=,即sin()sin sin()A B C A B -==+,

整理得:sin cos cos sin sin cos cos sin A B A B A B A B -=+,即2cos sin 0A B =,

cos 0A ∴=或sin 0B =(不合题意,舍去),

0A π<< 90A ∴=?,

则此三角形形状为直角三角形. 故选:A 【点睛】

此题考查了正弦定理,以及三角函数中的恒等变换应用,熟练掌握公式是解本题的关键,属于中档题. 18.A 【分析】

首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积. 【详解】 由正弦定理可知2sin sin sin a b c

r A B C

===

已知

sin cos sin a b c

A B B

===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,

由条件可知ABC ,即等腰直角三角形的斜边长为

所以1

22

ABC

S

=?=. 故选:A 【点睛】

本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型.

【分析】

由三角形面积公式和余弦定理可得C 的等式,利用二倍角公式求得tan

2

C

,从而求得tan C . 【详解】

∵222222()2S a b c a b ab c =+-=++-,即2221

2sin 22

ab C a b ab c ??=++-, ∴222sin 2ab C ab a b c ?-=+-,

又222sin 2sin cos 1222

a b c ab C ab C

C ab ab +-?-===-,∴sin cos 12C C +=

, 即22cos sin cos 222C C C =,则tan 22C =,∴2

22tan

2242tan 1231tan 2

C

C C ?===---, 故选:A . 【点睛】

本题考查三角形面积公式,余弦定理,考查二倍角公式,同角间的三角函数关系,掌握相应的公式即可求解.属于中档题,考查了学生的运算求解能力. 20.C 【分析】

首先根据题的条件27a b +=

,得到2()7a b +=,根据a ,b 为单位向量,求得

1

2a b ?=

,进而求得向量夹角. 【详解】 因为27a b +=

,所以2()7a b +=,

即2

2

447a a b b +?+=, 因为2

2

1a b ==,所以12

a b ?=, 所以1

cos ,2

a b <>=

,因为向量a ,b 夹角的范围为[0,180]??, 所以向量a ,b 夹角的范围为60?, 故选:C. 【点睛】

该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 21.A 【解析】

∵2350OA OB OC ++=,∴()()

23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且

32

OM

ON

=

, ∴3

613

225

54

10OAC

OMC

CMN

ABC ABC S

S

S

S S ??==?=?= ???

,即123

10

S S =.选A . 22.A 【分析】

由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值 【详解】

由题意,可得如下示意图

令||AC a =,||BC b =,又2BM MC =,即有1||||33

b CM CB =

= ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠

2221216()332333

a a

b ab ab ab

b =+-?≥-=,当且仅当3a b =时等号成立

∴有48ab ≤

∴113sin 48123222

ABC S ab C ?=≤??=故选:A 【点睛】

本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值 23.C 【分析】

先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ?,然后利用投影的定义求出BC 在CA 方向上的投影.

【详解】

对等式AB AC AB AC +=-两边平方得,

2222

22AB AC AB AC AB AC AB AC ++?=+-?,整理得,0AB AC ?=,则AB AC ⊥,

()

2

16BC CA AC AB CA AC CA AB CA AC ∴?=-?=?-?=-=-,

设向量BC 与CA 的夹角为θ,

所以,BC 在CA 方向上的投影为16

cos 44

BC CA BC CA BC BC BC CA

CA

θ??-?=?=

=

=-?, 故选C . 【点睛】

本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题. 24.B 【分析】

延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。 【详解】

延长PB 至D ,使得2PD PB =,于是有0PA PD PC ++=,即点P 是ADC 的重心,依据重心的性质,有PAD PAC PDC S S S ==△△△.由B 是PD 的中点,得

::1:2:1PAB PAC PBC S S S =△△△.

故选:B 【点睛】

本题考查了三角形重心和向量的关系,主要是用向量表达重心的数量关系。另外本题是奔驰定理直接推导得出。 25.D 【分析】

过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出

21312

AM n n

n AB n n ==

--+,再根据AM mAB =可得231n m n =

-,整理可得213m n

+=,最后选出正确答案即可. 【详解】

如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得

1

AC AN n

=,所以11AE AC EM CN n ==-,由12BD DC =可得

12

BM ME =,所以21312

AM n n

n AB n n ==

--+,因

为AM mAB =,所以231

n

m n =-, 整理可得

21

3m n

+=.

故选:D . 【点睛】

本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.

26.无

27.C 【分析】

先建立平面直角坐标系,求出B,E,F 坐标,再根据向量数量积坐标表示得结果. 【详解】 如图所示,

AB AF

2232,3cos 1133BE EC BE BC AF DF α=?=

=→→=?=?=.以A 为原点建立平面直角坐标系,AD 为x 轴,AB 为y 轴,则()(

)

230,3,3,1,,33B F

E ??

? ???

因此(

)

BF

AE

BF

23

3,2,323264→=

-→→=

?-?=-=-,故选C.

【点睛】

平面向量数量积的类型及求法

(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ?=?;二是坐标公式

1212a b x x y y ?=+;三是利用数量积的几何意义.

(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简. 28.D 【分析】

根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可. 【详解】

∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得2

2

a b

a b +=-,即2222

||2||2a b a b a b a b ++?=+-? ,

则0a b ?=,由2a b b +=,

平方得2

2

2

||24||a b a b b ++?=,得2

2

3a b =,即3a b =则2a b b +=,

22|3|a b a a a b b +?=+?=(),

则向量a b +与a 的夹角的余弦值23||3

223a b a b cos a b a b b

θ+?===+??(), ,0.6

π

θπθ≤≤∴=

, ,

故选D. 【点睛】

本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 29.D 【分析】

利用向量的三角形法则和向量共线定理可得:

DF AF AD =-,1=

2AF AE ,=AE AB BE +,1

=2

BE BC ,=BC AD ,即可得出答案. 【详解】

利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +,

E 为BC 的中点,

F 为AE 的中点,则1=2AF AE ,1

=2

BE BC 1111

=

=()=+2224

DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又

=BC AD

13

24

DF AB AD ∴=

-.

相关主题
相关文档
最新文档