比例电磁阀电磁设计流程图

比例电磁阀电磁设计流程图
比例电磁阀电磁设计流程图

1. 比例电磁铁的结构原理

比例电磁铁结构主要由衔铁、导套、极靴、壳体、线圈、推杆等组成。其工作原理是:磁力线总是具有沿着磁阻最小的路径闭合,并有力图缩短磁通路径以减小磁阻,如图1。

图1 比例电磁铁的剖面图

普通电磁铁就是一个开关量,不是开就是关,关的时候开口最小,开的时候开口最大,没有办法调节;比例电磁铁是根据给定电流的大小决定阀开口的大小,是一个连续的过程。比例电磁铁和普通的电磁铁区别就是比例电磁铁是普通电磁铁加一个弹簧,可以使比例电磁铁输出的力和电流成比例关系,和位移无关,所以比例电磁铁必须具有水平吸力特性,即在工作区,其输出力的大小只与电流有关,与衔铁位移无关。若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制。在工作围,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。

图2 比例电磁铁的电流-力-行程关系

比例电磁铁要求在一定的位移围,衔铁的输出力为一准恒定值,如图2所示。根据电磁铁基本工作原理,在衔铁运动过程中,磁阻会越来越小,衔铁受力越来越大,不会出现输出力恒定的情况,为了使电磁铁能在一定位移输出近视恒定的力,电磁铁采用结构的特殊—隔磁环。隔磁环采用非导磁材料——通常为黄铜,嵌在前后导套的中间,减少电磁铁即将闭合时急剧增大的电磁力,使整个电磁力变的平稳。

导套前段和极靴组合,形成带锥形端部的盆形极靴,导套和外筒间配置同心螺线管式控制线圈。外壳采用导磁材料,以形成磁回路。同时为了衔铁可以左右运动,在左端有挡板,在右端装有弹簧组成的调零机构。

2. 比例电磁铁的特性

2.1 电磁力

当给比例电磁铁控制线圈通入一定电流时,在线圈电流控制磁势左右下,形成两条磁路,如图3所示,一条磁路1φ由前端盖经盆形极靴底部沿轴向工作气隙进入衔铁,穿过导套后段、导磁外壳回到前端盖极靴,产生轴向力1M F ;另一条磁路2φ经盆形极靴锥形周边(导套前段)径向穿过工作气隙,再进入衔铁,而后与1φ汇合形成附加轴向力2M F ,二者综合得到比例电磁铁输出力M F ,如图2所示电流-力-行程特性,在比例电磁铁衔铁的整个行程区,电磁力特性并不全是水平曲线,可将其分为3个区域。在工作气隙接近于零的区域,输出力急剧上升,称为吸合区,比例电磁铁在这一区域不能正常工作,一般在结构上采用非导磁材料限位片将其排除;当工作气隙过大时,电磁铁输出力明显下降,这一区域称为空行程区域,这一区域电磁铁虽然也不能正常工作,但有时是需要的;在吸合区和空行程区之间的区域,具有近似的水平力-位移特性,这一区域称为工作区。

图3 比例电磁铁的磁路分布

1φ产生的端面力为:

2φ产生的轴向附加力为:

图4 不同位置电磁铁部磁力线分布2.2 影响电磁力的因素 电磁力的大小为S Ni S F M 0202)(2121μδ

μφ==,与线圈匝数平方成正比,与气隙间隙平方成反比。

在电磁阀其它结构参数和驱动电流以及气隙宽度大小相同时,线圈匝数越多,气隙的磁场强度就越强,则气隙磁感应强度也越大,电磁吸力也就越大。但实际上线圈匝数不是越多越好,随着匝数的增加,会使线圈电感和线圈电阻增大,从而在衔铁吸合初始阶段限制了驱动电流的迅速增大,在释放过程中使电流衰减速度变慢。

电磁阀气隙宽度包括衔铁工作行程和残余间隙宽度两个部分。当衔铁完全开启时,此时气隙宽度等于衔铁工作行程和残余间隙宽度之和。当衔铁完全吸合时,气隙宽度等于残余间隙宽度。随着气隙宽度的增大,将使电磁吸力减小。衔铁工作过程中,气隙宽度减小,有利于电磁阀的打开。在残余间隙不变的前提下,如果衔铁工作行程增加,则在关闭过程和重新打开过程的时间增加,电磁力增加速度平缓,电磁阀的动态特性变差。

驱动电路的形式及参数直接决定线圈电流波形,并极影响电磁阀的响应速度。驱动电压为24V时,电磁阀响应时间为0.4ms,当驱动电压为48V时,电磁阀响应时间为0.25ms,驱动电压的升高对电磁阀的响应速度有着明显的影响。不过,驱动电压从48V到100V之间,响应时间的提高率为o.02ms/2OV,驱动电压从100V提高到120V,响应时间缩减的幅度更小了,仅为0.01ms。

3. 比例电磁铁的控制

比例阀是由计算机,放大器,比例电磁铁,锥度台阶的阀芯,入口压力补偿阀(单联可以不要),梭阀,置卸荷阀(把多余的流量送回油箱)等构成的一个完整的体系。

精确控制执行机构的位移,最好的办法是用比例流量阀。比例方向阀只能起到节流阀作用,当负载压力变化时流量会变化,而比例流量阀的流量不遂负载压力变化,开口调定好流量基本不变化。

现在的比例换向阀用的都是电-液比例复合控制。首先,比例阀必须有一个配套的放大器,它接受来自于计算机或者PLC,或者电位器(滑动变阻器)的控制信号,把0-20毫安微弱的信号放大到0-800毫安。然后,放大器把放大的信号传送到电磁阀,电磁阀依据传来的信号大小,克服弹簧力,调节推杆的行程,压力随信号变化的控制油。再后,控制油到达主阀芯的两端,依据不同的压力,推动阀芯移动相应的行程,因为阀芯本身有锥度的台阶与阀体组合,不同的行程得到不同的过流面积,再入口压力稳定的情况下,得到不同的流量,最终实现比例功能。

控制比例阀的比例放大器具有深度电流负反馈的电子控制放大器,其输出电流和输入电压成正比,采用直流稳压源,利用PWM斩波控制技术调整输入电压。比例放大器一般都带有颤振信号发生器和零区电流跳跃等功能。

4. 比例电磁铁的设计

设计电磁铁的一般步骤:首先根据电磁吸力的要求及衔铁结构形式估算衔铁直径,然后估算线圈的外径及长度、确定线圈的匝数、磁势等,最后是确定整个磁路结构。

4.1 设计要求

最大电磁吸力Fmax=80N,初始气隙4mm,衔铁的推杆直径2.9mm,线圈两端的电压24VDC,线圈允许温升[θ]=70℃。

4.2 结构形式

整体采用湿式结构,如图5所示,电磁铁的导套是一个密封筒状结构,可以承受一定的液压力,衔铁上开有两个导油孔,工作时处于油液润滑状态,具有一定阻尼作用而减少了冲击和噪声。线圈和外壳处于干的状态,可以分别拆卸。湿式电磁铁具有吸合声音小,散热快,可靠性好,效率高,寿命长等优点。

4.3 材料选择

电磁铁所使用的软磁材料应具有高的磁导率、高的饱和磁感应强度和低的矫顽力。由于该比例电磁铁才用湿式结构,各主要元件与液压油直接接触,因此,所选用材料除了具有良好的导磁性外,还应有良好的耐腐蚀性。根据磁路走向及电磁铁结构布置,衔铁、前后导套、线圈外壳、端盖均采用耐腐蚀软磁合金材料,隔磁环采用黄铜,调节弹簧采用奥氏体不锈钢。

图5 Rexroth 4WAR6E 比例电磁铁剖面图

4.4 几何尺寸计算

静铁芯和衔铁的结构采用“大铁芯小衔铁”的原则;

4.4.1复位弹簧设计

由于负载工进时阀芯受液压卡紧力大于负载快进时所受的卡紧力,复位弹簧的预紧力必须要保证能克服最大卡紧力使衔铁复位。设计预紧力为F0=18N,初取弹簧刚度k=10N/m,则最大弹力为F Max=48N。材料选用奥氏体不锈钢1Cr18Ni9Ti。

4.4.2衔铁设计

为了使阀芯运动可靠,电磁铁最大推力F tmax应大于最大弹簧弹力、最大液压卡紧力、最大液动力和摩擦力之和,选取负载快进时阀芯的受力情况来计算,得F tmax=80N。

导套设计

衔铁设计

线圈设计

图3给出了导套和隔磁环的截面图,图中D代表导套和隔磁环的厚度,D=0.22mm,L代表隔磁环长度,L=0.3mm,a和θ分别为隔磁环和导套前、后端的倾角,a=0°,θ=48°,h和L分别是导套后端结构尺寸,h=3mm,L=1.3mm。

图3 隔磁环(焊铜)

电磁线圈的直径、热扩散系数,阻抗之间相互关联,增加线圈直径可以减小电阻,但是随着线圈阻抗的降低,线圈的发热损耗会增加,造成阀温度升高,使得阀中油液粘性降低,加剧了摩擦损耗。同时随着线圈直径的增大,线圈的始动安匝数也减小,电感也相应减小,这样会影响到线圈其它性能参数(如出力不够等等)。

线性度、滞环的定义,按一般控制理论的定义,例如滞环大体就是在输入电流为横坐标、输出电磁力为纵坐标的图面上(控制特性),电流从零到最大、以及从最大回到零一个变化周期中,上升电流与下降电流相等点上输出电磁力的最大差值,除以最大输出力之值的百分数。在做电磁铁控制特性滞环、线性度时,是在电磁铁一定位移下测量输出力与输入电流的关系。不同电磁铁位移,会有所差异。

隔磁环专业名叫分磁环,只有交流加隔磁环才有意义,或者说隔磁环是为交流电磁铁而设计的,直流电磁铁铁芯上加隔磁环与在其上设计一个环槽是一个效果,说白了隔磁环就是气隙,会降低闭合时的吸力!在直流电磁铁上加入隔磁环目的就是为了减少电磁铁即将闭合时急剧增大的电磁力,使整个电磁力变的平稳。材料用黄铜或是紫铜,最好是采用摩擦焊接技术,采用此技术焊接后的机械性能比较好,物件应力小。一般用于比例或者耐高压阀中。

潜孔式平面钢闸门设计

潜 孔 式 平 面 钢 闸 门 设 计 工程概况: 闸门是用来关闭、开启或者局部开启水工建筑物中过水孔口的活动结构。其主要作用是控制水位、调节流量。闸门是水工建筑物的重要组成部分,它的安全与适用,在很大程度影响着整个水工建筑物的原行效果。

设计目录: 1.水工刚结构潜孔式焊接平面钢闸门设计计算书。。。。。。。。1 (1)设计资料及有关规定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 (2)闸门结构的形式及布置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 <1>闸门尺寸的确定。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 <2>主梁的布置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。1 (3)面板设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 (4)水平次梁、顶梁和底梁地设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 (5)主梁设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6 (6)横隔板设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 (7)边梁设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 (8)行走支承设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 (9)胶木滑块轨道设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 (10)闸门启闭力和吊座验算。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.水工刚结构潜孔式焊接平面钢闸门设计图。。。。。。。。。。(附图) 水工刚结构潜孔式焊接平面钢闸门设计计算书 一、设计资料及有关规定: 1.闸门形式: 潜孔式焊接平面钢闸门。 2.孔的性质: 深孔形式。 3.材料:

电磁阀的计算选型

电磁阀的计算选型 电磁阀就是电厂热工自动化中应用相当广泛的设备之一。它可以用来控制一定压力下的某些工质在管道中的自动通断,成为特定的执行器,如锅炉的燃油快关阀、汽轮机组调速保安系统油路上的电磁滑阀、给水泵组密封水管路的切换阀以及采暖工程的热水阀等。它还可以作为气动、液动回路自动切换或顺序控制的执行元件,它就成了该气动、液动执行器的电——气、电——液执行元件,这方面的应用更为普遍。如主厂房锅炉的气动安全门、汽轮机组气动或液动的抽汽逆止门等都就是由电磁阀控制通向操作装置的气路、液(水)路的通断来完成其开关动作的,辅助车间及其系统众多气动执行机构的自动控制也离不开电磁阀这一设备。再如,过去在锅炉各段烟道压力的常规检测中也使用过电磁阀切换做到一台表计的多点测量。可见,电磁阀在电厂热工测量、控制及保护联锁上都就是一项基础元件设备,对电磁阀的关注熟悉、正确选用乃就是热工自动化设计的一项基础工作。基于此,本文着重讨论电磁阀在选型与控制上的一些问题,有些见解仅就是笔者一家之言,期盼同仁指正。 1 电磁阀的结构原理及其分类 1.1 电磁阀的结构原理 电磁阀的结构并不复杂,它由两个基本功能单元组成,一就是电磁线圈(电磁铁)与磁芯,另一就是滑阀,即包含数个孔的阀体。电磁线圈带电或失电时,磁芯的运动导致工质流体通过阀体或被切断。 上述用来在工艺管道中直接通断的作为特定执行器的电磁阀,电磁线圈带电时,磁芯 直接开启常闭阀的孔或关闭常开阀的孔,阀门能从0(无压差)至其最大额定压力间开启或关闭。而上述用来在气动、液动执行器充当执行元件的电磁阀,则要借助动力源(压缩空气、有压头的水或油等液体)来操作电磁阀上的先导孔与旁通孔。电磁线圈带电时,磁芯开启先导孔,通过阀的出口消除膜片或活塞顶部的压力,且将其推离主孔,阀门得以开启。电磁线圈失电时,先导孔关闭,动力源的压头通过旁通孑L作用于膜片或活塞顶部而产生阀座力,阀门得以关闭。这就是因为受这些执行机构控制的工艺阀门一般口径都较大, 要求执行机构接受动力源的压头也大(如DNl50及以上的气动隔膜阀、气动蝶阀的操作压力》0.5MPa),则传递动力源的电磁阀的孑L尺寸及工质流体压力势必也要大,只有将电磁线圈做大才足以开启电磁阀来传递执行机构所需的动力源。为了解决这一矛盾,保持电磁线圈的小尺寸,就不再使用磁芯直接启闭阀体孔的直接操作的(直动式)电磁阀, 而改用磁芯启闭先导孔的导向操作的(先导式)电磁阀。 1.2 电磁阀的分类 电磁阀的分类无定式,随分类方式不同而异, 实际上,上表并不能涵盖所有电磁阀的种类。如两通、三通直动式及单电控两位四通、五通(五个接口)电磁阀还有电脉冲控制的,电磁线圈非连续带电,而用磁闪锁控制。还如不同于两个电磁线圈控制的“双稳”先导式电磁阀,另一种“双稳”先导式电磁阀就是由双 外部压力源控制的(先导式要有压力源,丽一种说得更确切,就是由电磁线圈及主压力源控制),已无电气部件——电磁线圈。再如由两个电磁先导阀、一个滑阀及其连接体组成的三位三通、三位五通电磁阀。这些或应用相对较少,或仅就是一个滑阀,就不再列入分

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞

比例电磁阀和 MFM-MFC-2824

目录 | 比例电磁阀和 MFM/MFC [返回总目录]

概览和选型指南 | 比例电磁阀150 概览 Burkert 比例电磁阀以断电时弹簧作用关闭的开关电磁阀为基础,通过改变开关电磁阀中电磁组件的结构,使弹簧力与线圈电流的电磁力相平衡。由线圈电流和/或电磁力的大小来决定阀芯行程和/或阀门开度。阀门开度与电磁力成正比。 比例电磁阀是由脉宽调制信号(PWM)控制的,该信号使线圈电流根据设定值而变化。由于介质压力和电磁力都克服弹簧力,因此采用控制器可以设置工作条件下的流量最小值和最大值。 比例电磁阀可用于实现开环和闭环控制回路。开环回路不需实际值反馈,而闭环控制回路是根据设定值与实际值之间的偏差来调节的。 比例电磁阀定位性能的主要特性 ? 迟滞: 输入信号从小到大和从大到小变化时输出信号的最大差值,以最大输出信号的 % 表示。 ? 响应灵敏度: 引起输出信号变化的最小设定值差值,以最大输出信号的 % 表示。? 重复性: 重复以同一方向,加同样大小的输入信号时,输出信号的最大偏差。? 调节比: 最大和最小开度下的 Kv值 (参见比例阀的计算)之比。比例电磁阀的调节比可达1:500。 比例电磁阀选型指南 为保证无故障控制功能,必须根据比例阀的用途来进行选型,最重要的选型参数是 Kv 值和压力范围。 阀门的 Kv 值(单位 m 3/h), 该值是以介质为水、20℃、入口压力 1 bar、出口 0 bar 时测得。对于气体,通常以 QNn 值表示。 QNn 值为空气在 20℃、阀入口 6 bar、阀上压降 1 bar 时的流量值(l N /min)。气体的参考条件为绝压 1.013 bar、温度 0℃。 除了 Kv 值,阀入口的最大预压力也是选阀(型号和通径)的主要因素。阀门通径越小或线圈越大,最大开关压力越高。 Kv 值可用以下公式计算。根据计算出的 Kv 值和实际压力范围,可以从选型指南表上找到阀门型号。 Kv 值计算公式: Kv = 流量值,m 3/h Q = 实际流量,m 3/h Q N = 标准流量,m N 3/h (?p=1 bar, p 1=6 bar 和 T 1=(273+20) K 时的 QNn值)p 1 = 入口压力,bar (a) p 2 = 出口压力,bar (a)?p = 压差,bar ρ = 密度,kg/m 3 ρN = 标准密度,kg/m 3 T 1 = 介质温度,(273+t) K 气体标准或工作状态与正常状态的转换:Q S = 标准状态 (1.013 bar 和 20 °C ) 或工作状态下的流量 p S = 标准状态 (=1.013 bar) 或工作状态下的绝压 T S = 标准状态 (= 293 K) 或工作状态下的温度 (= (273+t)K) Q N = 正常流量p N = 正常压力 T N = 正常温度 (= 273 K) Q N = Q S T N · p S T S · p N [返回目录] [返回目录]

水工钢结构平面钢闸门设计计算书

水工钢结构平面钢闸门设计计算书 一、设计资料及有关规定: 1?闸门形式:潜孔式平面钢闸门。 2. 孔的性质:深孔形式。 3. 材料:钢材:Q235 焊条:E43;手工电焊;普通方法检查。 止水:侧止水用P型橡皮,底止水用条型橡皮。 行走支承:采用胶木滑道,压合胶布用MC—2。砼强度等级:C20b 启闭机械:卷扬式启闭机。 4. 规范:水利水电工程刚闸门设计规范(SL74-95),中国水利水电出版社1998.8 二、闸门结构的形式及布置 (一)闸门尺寸的确定(图1示) 1?闸门孔口尺寸: 孔口净跨(L) : 3.50m。孔口净高:3.50m。 闸门高度(H) : 3.66m。闸门宽度:4.20m。 2. 计算水头:50.00m。 (二)主梁的布置 1. 主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=3.50m,闸门高度h=3.66m,L

三、面板设计 根据《钢闸门设计规范 SD — 78 (试行)》关于面板的设计,先估算面板厚度,在主梁截面选择以 后再验算面板的局部弯曲与主梁整体弯曲的折算应力。 1?估算面板厚度 假定梁格布置尺寸如图2所示。面板厚度按下式计算 匸9 ?OF :] 现列表1计算如下: 表1 根据上表计算,选用面板厚度。 2.面板与梁格的连接计算 已知面板厚度t=14mm ,并且近似地取板中最大弯应力c max=[c ]=160N/mn n ,则 p=0.07 x 14x 面板与主梁连接焊缝方向单位长度内地应力: 3 VS 790 10 1000 14 272 T = =— 21。 2 3776770000 面板与主梁连接的焊缝厚度: h f . P 2 T 2 /0.7 [ t w ] 398/0.7 113 5mm , 面板与梁格连接焊缝厚度取起最小厚度 h f 6mm 。 四、水平次梁,顶梁和底梁地设计 1. 荷载与内力地验算 水平次梁和顶,底梁都时支承在横隔板上地连续梁,作用在它们上面的水压力可 按下式计算,即 a 上 a 下 现列表2计算如下: 表2 当 b/a < 3 时,a=1.65,则 t=a kp =0.065 a% kp 0.9 1.65 160 当 b/a >3 时,a=1.55,则 t=a kp 0.9 1.55 160 =0.067 a., kp 398N / mm,

电磁阀密封泄漏率模型与计算

Hydraulics Pneumatics &Seals/No.04.2016 doi:10.3969/j.issn.1008-0813.2016.04.004 收稿日期:2016-02-23 作者简介:殷图源(1988-),男,北京人,硕士研究生,研究方向为密封技术。 1概述 本文研究加工表面精度和形貌特征对电磁开关截 止阀密封泄漏率影响,尤其对初始泄漏率影响,通过有限元对提取的特征表面进行接触分析,从而提出泄漏率模型计算密封泄漏率。 该阀座为平板状软质PTFE 基聚合物,其金属阀芯圆弧表面与阀座配合密封,密封漏率范围反映阀门密封性能,在阀门装配后用氦质谱检漏,此时漏率称为初始泄漏率,在工作过程中密封接触区形成吻合带,在密封界面逐渐形成了一定量级泄漏通道,会存在一个稳 定期。阀芯一般用数控车加工成型,初始密封偶件泄 漏率的计算过程共有四个过程,第一步表征实际阀芯粗糙峰特征参数,建立泄漏通道的几何模型,第二步,用理想光滑表面有限元接触分析结果得出粗糙峰接触带宽,也就得出接触峰数,第三步,按显微镜下断峰高度给定泄漏模型和接触密封的刃入软表面深度判据,第四步根据泄漏流态和粗糙峰接触后残余孔径计算漏率。 2阀门的工作条件 电磁截止阀:密封偶件结构如图1所示,上面钢件为阀芯,下面PTFE 材料为阀芯,图2为氟塑料原始加工表面,阀芯与阀芯的接触几何形态为线或窄面; 检漏试验介质:He 气体;试验压力:0.10MPa ;内泄漏率:≤1×10-2Pa·L/s ;外泄漏率:≤1×10-6Pa·L/s 。 电磁阀密封泄漏率模型与计算 殷图源1,董志峰1,魏大盛2 (1.中国矿业大学(北京)机电与信息工程学院,北京100083;2.北京航空航天大学能源与动力工程学院,北京100191) 摘要:该文介绍一种常闭式电磁开关阀门,采用圆弧型面的金属阀芯与PTFE 光滑平面阀座,形成线接触密封型式,表征实际金属阀芯粗糙峰特征,建立泄漏通道几何模型,利用有限元分析方法确定泄漏率与粗糙度等级及粗糙峰特征的定量关系。对表征的金属阀芯粗糙峰与光滑阀板进行有限元接触分析,得出接触变形后泄漏通道。假设只存在涡旋形泄漏通道,以粘滞-分子流态泄漏,得出了初始密封泄漏率的计算结果。采用有限元方法避免了利用统计学对表面进行复杂数学处理,通过对电磁截止氦质谱仪检测表明,阀门泄漏率计算结果与测试结果具有较好吻合性,同时发现粗糙峰特征对PTFE 光滑阀板容易形成应力集中,粗糙峰形貌特征对阀门密封性能具有重要影响。 关键词:电磁阀;泄漏率模型;粗糙度表征;有限元接触分析;漏率计算中图分类号:TH137;TH138;TB42 文献标志码:A 文章编号:1008-0813(2016)04-0013-05 Electromagnetic Valve Seal Leak Rate Model Calculation YIN Tu-yuan 1,DONG Zhi-fen 1,WEI Da-sheng 2 (1.School of Mechatronic and Information Engineering, China University of Mining &Technology(Beijing),Beijing 100083,China ;2.School of energy and power engineering,Beihang University,Beijing 100191,China) Abstract :This article introduces a normally closed electromagnetic valve,which adopts the line contact seal mode between the circular-sur-face metal spool and the smooth PTFE valve plane seat.The actual roughness characteristic of the metal spool is represented.A geometry model of the leak path is established.And the quantitative relations of the leakage rate between with the roughness class and the roughness characteristic is determined by FEA method.Through the contact analysis of the metal spool and the smooth PTFE plate,the leak path after contact deformation is obtained.Assuming that there is only volute leak path,the initial leak rate of the valve is calculated under the pattern of viscous-molecular flow state leakage.The FEA contact analysis avoids the complex mathematical processing to characterize the surface by traditional statistics.According to the helium leak detection,the calculation results of the valve leakage rate coincide with the testing re-sults.Meanwhile,the stress concentration on the smooth PTFE valve plane produced by the roughness peak is observed.It is concluded that the roughness characteristic has an important effect on the sealing property of valves. Key words :electromagnetic valve;leak rate model;roughness characteristic;FEA contact analysis;leak rate calculation 13

液压比例阀工作原理

液压比例阀工作原理)置信电气生产非晶合金变压器,2间电网投资的快速增长为公司提供了良好的发展机遇。市场占公司为国内唯一的规模化生产非晶合金变压器的企业,属于国家推广的节能类产品,%以上。受政府强制采购政策的推动,非晶合金变压器有望获得大范围的推广,80有率达到得益于此,公司将面临一个巨大的市场空间。建议重点关注特变电工和置信电气。电力行业“节能减排”形势严峻“十一五”期间在“十一五”乃至相当长的时间内,“节能减排”将是我国政府工作的重点。%。但电力%、主要污染物排放总量减少10节能减排目标:实现国内生产总值能耗降低20亿吨,排放的二氧年,发电用煤超过121)2006行业节能减排形势很严峻,具体表现为:%,烟尘排放量占全国排放量的40化碳占全国排放总量的54%,火电用水占工业用水的)电网32)我国火电发电机组所占比例大,大量小机组存在,这使得煤耗显著偏高。%。20“重发轻供”导致电网建设落后于电源建设,电网建设中超高压输电线路比重偏建设滞后,低,高耗能变压器使用量太大。电气设备将在“节能减排”中发挥重要作用加强现有电厂设备未来国内电力行业节能的主要途径为:大力发展特高压电网;我们认为,改造,提高能源使用效率;积极鼓励新能源开发利用。电气设备将在“发送配用”各个环节发 首页>>产品中心>>比例式减压阀 的详细资料:固定比例式减压阀一、产品[] 产品名称:固定比例式减压阀. 产品特点:本厂生产的比例式减压阀,外形美观,质量可靠,比例准确,工作平稳.既减动压也减静压。该阀利用阀体内部活塞两端不同截面积产生的压力差,改变阀后的压力,达到减压目的。我厂减压阀的减压比例是:2:1,3:1,4:

电磁阀 计算1

螺线管计算分析案例(Amperes)1. 模型简介 下图为螺线管模型的外观图: 1.1 模型尺寸 单位:英寸(inch)

尺寸如上图所示,此模型为旋转对称模型(RS),对称轴在x=0的直线上。根据以上图形建立模型。 1.2 模型物性设置 模型分为五个部分,分别为Plugnut,Coil,Core,Yoke,Bonnet。Coil内通有幅度为10000安培的电流,方向为从纸面内指向纸面外(负值)。 Plugnut为非线性磁介质SS430,B-H曲线如下图所示: Core为永磁体NEO35,剩磁Br=1.25T,矫顽力Hc=-9.47e-5(H/m),如下图所示磁化曲线,磁化方向为Z的负方向。

Yoke与Bonnet所用材料相同,都是冷轧钢Cold Rolled Steel,是非线性磁介 质,B-H曲线如下图所示: SS430和冷轧钢的B-H数据如下面两个数据表格所示: SS430 冷轧钢 H(A/m) B(Tesla) H(A/m) B(Tesla) 0 0 0 0 1.4300000e+002 1.2500000e-001 1.0800000e+003 8.5800000e-001 1.8000000e+002 2.0600000e-001 1.4800000e+003 1.0600000e+000 2.1900000e+002 3.9400000e-001 2.0900000e+003 1.2600000e+000 2.5900000e+002 5.8900000e-001 3.1200000e+003 1.4400000e+000 2.9800000e+002 7.4300000e-001 5.1600000e+003 1.6100000e+000 3.3800000e+002 8.5300000e-001 9.9300000e+003 1.7700000e+000 3.7800000e+002 9.3200000e-001 1.5500000e+004 1.8600000e+000 4.3800000e+002 1.0100000e+000 2.5000000e+004 1.8800000e+000 5.1700000e+002 1.0800000e+000 3.5000000e+004 1.9000000e+000 5.9700000e+002 1.1100000e+000 7.1600000e+002 1.1600000e+000 9.5500000e+002 1.2000000e+000 1.5900000e+003 1.2700000e+000 3.9800000e+003 1.3700000e+000 6.3700000e+003 1.4300000e+000 1.1900000e+004 1.4900000e+000 2.3900000e+004 1.5500000e+000 3.9800000e+004 1.5900000e+000 以上的磁介质电导率很小,都可以看作是完全绝缘的。

水工钢闸门结构设计(详细计算过程)

6 金属结构设计 6.3 金属结构设计计算 6.3.1 设计资料 (1)闸门型式:露顶式平面钢闸门 (2)孔口尺寸(宽×高):6m ×3m (3)设计水头:3.16m (4)结构材料:Q235钢 (5)焊条:E43 (6)止水橡皮:侧止水型号采用P45-A ,底止水型号采用I110-16 (7)行走支承:采用胶木滑道,压合胶木为MCS-2 (8)混凝土强度等级:C25 (9)规范:《利水电工程钢闸门设计规范》(SL74-95) 6.3.2 闸门结构的形式及布置 6.3.2.1 闸门尺寸的确定 1.闸门高度:考虑风浪产生的水位超高,将闸门的高度确定为3m 。 2.闸门的荷载跨度为两侧止水的间距:L 0=6.0m 3.闸门计算跨度:L=L 0+2d=6.0+2×0.15=6.3m 6.3.2.2静水总压力 闸门在关闭位置的静水总压力如图6.1所示,其计算公式为: 2 29.8344.1/2 2gh P kN m ρ?= == 图6.1 闸门静水总压力计算简图 P

6.3.2.3 主梁的形式 主梁的形式应根据水头的大小和跨度大小而定,本设计中主梁采用实腹式组合梁。 6.3.2.4主梁的布置 根据主梁的高跨比,决定采用双主梁。两根主梁应布置在静水压力合力线上下等距离的位置上,并要求两主梁的距离值要尽量大些,且上主梁到闸门顶缘的距离c 小于0.45H ,且不宜大于3.6m ,底主梁到底止水的距离应符合底缘布置的要求。故主梁的布置如图6.2所示 图6.2 主梁及梁格布置图 6.3.2.5 梁格的布置和形式 梁格采用复式布置并等高连接,并使用实腹式竖向隔板兼作竖直次梁,使水平次梁穿过隔板上的预留孔而成为连续梁,其间距上疏下密,面板各区格需要的厚度大致相等,具体布置尺寸如图6.2所示。 6.3.3 面板设计 根据《利水电工程钢闸门设计规范》(SL74-95),关于面板的计算,先估算面板厚度,在主梁截面选择之后再计算面板的局部弯曲与主梁整体弯曲的折算应力。 初选面板厚度。面板厚度计算公式为: δ当b/a >3时,α=1.4;当b/a ≤3时,α=1.5。 列表进行计算,见表6.1:

气浮法设计计算

气浮法设计计算一.气浮法分类及原理 二.气浮法设计参数

三.气浮法设计计算

四.不同温度下的K T值和736K T值

例:2×75m3 / h气浮池 气浮池设置在絮凝池侧旁,沉淀池上方。气浮类型较多,有全部压力溶气气浮、分散空气气浮、电解凝聚气浮、内循环射流气浮等,这里选择适用于城镇给水处理的部分回流压力溶气气浮。 气浮适用于含藻类及有机杂质、水温较低、常年浊度低于100NTU的原水;它依靠微气泡粘附絮粒,实现絮粒强制性上浮,达到固、液分离,由于气泡的重度远小于水,浮力很大,促使絮粒迅速上浮,提高固、液分离速度。气浮依靠无数微气泡去粘附絮粒,对絮粒的重度、大小要求不高,能减少絮凝时间,节约混凝剂量;带气絮粒与水的分离速度快,单位面积产水量高,池容及占地减少,造价降低;气泡捕足絮粒的机率很高,跑矾花现象很少,有利于后级滤池延长冲洗周期,节约水耗;排渣方便,浮渣含水率低,耗水量小;池深浅,构造简单,可随时开、停,而不影响出水水质,管理方便。 ●结构尺寸: 取回流比R=20%,气浮池处理水量:Q3=(1+R)Q2=1.2×75=90m3/h 接触区底部上升段纵截面为矩形,上升流速10~20mm/s,取U J1=18mm/s=64.8m/h 接触区底部通水平面面积:F J1=90/64.8=1.389≈1.4m2 接触区宽与絮凝池相同,B=2m,接触区底部平面池长方向尺寸:L J1=1.4/2=0.7m 接触区上端扩散段纵截面为倒直角梯形,出口流速5~10mm/s,取U J2=7.5mm/s=27m/h 接触区上端扩散出口通水平面面积:F J2=90/27=3.333m2 接触区宽与絮凝池相同,B=2m,接触区上端扩散出口平面池长方向尺寸:L J2=3.333/2=1.6665≈1.7m 扩散段水平倾角α=35°,扩散段高:h K=(1.7-0.7)tan35°=0.7m 扩散段容积:V K=〔(1.7+0.7)/2〕×0.7×2=1.68m3 接触区停留时间需大于60s,取t J=90s=1.5min,接触区容积:V J=90×1.5/60=2.25m3 接触区底部上升段高:h D=(V J-V K)/F J1=(2.25-1.68)/1.4=0.4m 分离区清水下降流速1.5~2.5mm,取U3=2.5mm/s=9m/h

selection solenoid valve(电磁阀选择)

电磁阀选型与控制 电磁阀的关注熟悉、正确选用是热工自动化设计的一项基础工作。文中介绍了电磁阀的分类、流通能力的计算乃至其选型,并对电磁阀的控制提出一些个人见解。 电磁阀是电厂热工自动化中应用相当广泛的设备之一。它可以用来控制一定压力下的某些工质在管道中的自动通断,成为特定的执行器,如锅炉的燃油快关阀、汽轮机组调速保安系统油路上的电磁滑阀、给水泵组密封水管路的切换阀以及采暖工程的热水阀等。它还可以作为气动、液动回路自动切换或顺序控制的执行元件,它就成了该气动、液动执行器的电——气、电——液执行元件,这方面的应用更为普遍。如主厂房锅炉的气动安全门、汽轮机组气动或液动的抽汽逆止门等都是由电磁阀控制通向操作装置的气路、液(水)路的通断来完成其开关动作的,辅助车间及其系统众多气动执行机构的自动控制也离不开电磁阀这一设备。再如,过去在锅炉各段烟道压力的常规检测中也使用过电磁阀切换做到一台表计的多点测量。可见,电磁阀在电厂热工测量、控制及保护联锁上都是一项基础元件设备,对电磁阀的关注熟悉、正确选用乃是热工自动化设计的一项基础工作。基于此,本文着重讨论电磁阀在选型与控制上的一些问题,有些见解仅是笔者一家之言,期盼同仁指正。 1 电磁阀的结构原理及其分类 1.1 电磁阀的结构原理 电磁阀的结构并不复杂,它由两个基本功能单元组成,一是电磁线圈(电磁铁)和磁芯,另一是滑阀,即包含数个孔的阀体。电磁线圈带电或失电时,磁芯的运动导致工质流体通过阀体或被切断。 上述用来在工艺管道中直接通断的作为特定执行器的电磁阀,电磁线圈带电时,磁芯直接开启常闭阀的孔或关闭常开阀的孔,阀门能从0(无压差)至其最大额定压力间开启或关闭。而上述用来在气动、液动执行器充当执行元件的电磁阀,则要借助动力源(压缩空气、有压头的水或油等液体)来操作电磁阀上的先导孔和旁通孔。电磁线圈带电时,磁芯开启先导孔,通过阀的出口消除膜片或活塞顶部的压力,且将其推离主孔,阀门得以开启。电磁线圈失电时,先导孔关闭,动力源的压头通过旁通孑L作用于膜片或活塞顶部而产生阀座力,阀门得以关闭。这是因为受这些执行机构控制的工艺阀门一般口径都较大,要求执行机构接受动力源的压头也大(如DNl50及以上的气动隔膜阀、气动蝶阀的操作压力》0.5MPa),则传递动力源的电磁阀的孑L尺寸及工质流体压力势必也要大,只有将电磁线圈做大才足以开启电磁阀来传递执行机构所需的动力源。为了解决这一矛盾,保持电磁线圈的小尺寸,就不再使用磁芯直接启闭阀体孔的直接操作的(直动式)电磁阀,而改用磁芯启闭先导孔的导向操作的(先导式)电磁阀。 1.2 电磁阀的分类 电磁阀的分类无定式,随分类方式不同而异,详见下表。

电磁阀控制电路

电磁阀控制电路 (1)试制作一个电磁阀控制电路 一个参考设计的电磁阀控制电路和印制电路板图[68]如图6.3.8和6.3.9所示,印制电路板的实际尺寸约为65mm×40mm。霍耳传感器U1和小磁铁等构成了铁片检测电路。“555”时基集成电路U2和电位器RP1、电阻器R4、电容器C2等构成了典型单稳态触发电路。交流固态继电器SSR和压敏电阻器RV、限流电阻器R5等构成了交流无触点开关电路,它的负载是一个交流电磁阀。电源变压器T和硅全桥QD,固定式三端集成稳压器U3、滤波电容器C5等构成了电源电路,将220V 交流变换成平滑的9V直流,供控制电路使用。 图6.3.8 电磁阀控制电路电原理图 图6.3.9 电磁阀控制电路印制电路板图 当无铁片插入时,霍耳传感器U1受小磁铁磁力线的作用,其输出端第3脚处于低电平,发光二极管D1亮,晶体三极管Q1截止,与其集电极相接的时基集成电路U2的低电平触发端第2脚通过电阻器R3接电源正极,单稳态电路处于复位状态。此时,U2内部导通的放电三极管(第7脚)将电容器C2短路,U2输出端第3脚为低电平,发光二极管D2不亮,交流固态继电器SSR因无控制电流而处于截止状态,电磁阀无电不吸动,处在闭阀状态。当将铁片投入专门的投票口时,铁片沿着滑槽迅速下滑,在通过检测电路时,小磁铁与U1之间的磁力线被铁片暂时短路,使U1第3脚输出高电平脉冲,经Q1反相后作为U2的触发脉冲。于是,单稳态电路翻转进入暂稳态,U2的第3脚输出高电平,D2发光;同时SSR导通,使控制电磁阀得电自动开阀。这时,U2内部放电三极管截止,延时电路中的C2通过R P和R4开始充电,并使U2的阀值输入端(高电平触发端)第6脚电位不断上升。当。两端充电电压大于号V DD时,单稳态电路复位,U2的第3脚又恢复为低电平,D2熄灭,SSR截止,电磁阀断电关闭。与此同时,U2内部放电三极管导通,C2经第7脚快速放电,电路又恢复到常态。 322

比例阀原理

比例阀结构及工作原理 比例阀结构及工作原理 1 引言 电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(scr ewin cartridge proportional valve),另一类是滑阀式比例阀(spool proporti onal valve)。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与

多路换向阀尺寸设计计算

多路换向阀尺寸设计计算 预设主阀的额定流量:Q =80L/min 预设主阀的额定压力:P S =31.4Mpa 为了使换向阀的压力损失尽量小,应使得流道上任意端面的流速V 限制在2~6m/s 以内,高压时最大亦不应超过8m/s ,而且应使整个流道上的过流断面积只在很小范围内变化,以减小在过流断面积剧烈变化处附加压力损失。故以下取速度V =6m/s 。 1 多路换向阀主要尺寸的确定 1.1、进出油口的直径d 从在进出油口的面积可以顺利通过额定流量考虑: Q V )d (≥??π22 即V Q d ?π?≥ 4 (1-1) 式中d ——进出油口的直径; V ——进出油口直径d 处油液流速; Q ——主阀的额定流量; 1.2 阀芯台肩大直径D 和小直径d 1,阀芯中间孔直径d 0 (1)、理论取值 从强度考虑:d 1≥ 0.5×D ; 从阀芯与阀体间环形通道流可以顺利通过额定流量考虑:0.25×π×(D 2-d 12)×V ≥ Q ; 由上两式解得: d D d V Q ?≤≤+?π?242 1 (1-2) V Q D d D 1?π?- ≤≤?4212 (1-3) 式中D ——阀芯台肩大直径; d 1——阀芯台肩小直径; 式(1-2)、(1-3)两式中对于阀芯无中间孔时常取:d 1=0.5×D (1-4) 以上计算所得的D 、d 1、都要圆整为标准值。 (2)、经验取值 为使得阀芯中间孔壁厚面积 4 2 021d d ?-?ππ、阀杆外环形面积 4 2 12d D ?-?ππ、

阀进出油口面积 4 2 d ?π相当。 当阀芯无中心孔时:取D =1.4×d ;d 1=d ; (1-5) 当阀芯有中心孔时:取D =1.7×d ;d 1=1.4×d ;d 0=d ; (1-6) 式中d 0——阀芯中间孔直径; 以上计算所得的D 、d 1、d 0都要圆整为标准值。 1.3、有效封油长度l f 和封油长度L f 及间隙δ的确定 (1)、按照理论选取上述参数l f 、L f 、δ 从泄漏量需要小于允许的最大泄漏量考虑:q ≤[q ] (1-7) 带偏心圆环缝隙泄漏量公式为:)5.11(12223δ μδπe l P D q f ?+?????= (1-8) 有效封油长度与封油长度的关系为:l f =L f -Z×b , (1-9) 式中:D ——阀芯台肩大径; P ——缝隙前后压差; δ——单边间隙; μ——为油液黏度; e ——为偏心距离; Z ——均压槽个数; b ——均压槽宽度; [q ]——最大内泄漏允许值; 结合目前加工工艺水平,设计时常定为[q ]=0.01Q 。考虑当完全偏心时即e/δ=1此时内泄漏量最大。由上式(1-7)、(1-8)、(1-9)解得: Q P D l f ???????≥μδπ01.0125.23 (1-10) 当完全偏心时,由式(1-9)得泄漏量与间隙成三次方的关系,为了减小泄漏量设计时取: δ=0.0035~0.01mm (1-11) (2)、按照经验选取有效封油长度l f 表1-1 工作压力与封油长度推荐值 工作压力(Mpa) 0.5~2.5 2.5~8.0 8.0~16.0 16.0~32.0 >32.0 封油长度(mm) 1.5~ 2.0 2.0~ 3.0 3.0~ 4.0 4.0~ 5.0 6.0~ 7.0 1.4、沉割槽直径D 1及阀体沉割槽间距b

比例电磁阀电磁设计流程

1. 比例电磁铁的结构原理 比例电磁铁结构主要由衔铁、导套、极靴、壳体、线圈、推杆等组成。其工作原理是:磁力线总是具有沿着磁阻最小的路径闭合,并有力图缩短磁通路径以减小磁阻,如图1。 图1 比例电磁铁的剖面图 普通电磁铁就是一个开关量,不是开就是关,关的时候开口最小,开的时候开口最大,没有办法调节;比例电磁铁是根据给定电流的大小决定阀开口的大小,是一个连续的过程。比例电磁铁和普通的电磁铁区别就是比例电磁铁是普通电磁铁加一个弹簧,可以使比例电磁铁输出的力和电流成比例关系,和位移无关,所以比例电磁铁必须具有水平吸力特性,即在工作区内,其输出力的大小只与电流有关,与衔铁位移无关。若电磁铁的吸力不显水平特性,弹簧曲线与电磁力曲线族只有有限的几个交点,这意味着不能进行有效的位移控制。在工作范围内,不与弹簧曲线相交的各电磁力曲线中,对应的电流在弹簧曲线以下,不会引起衔铁位移;在弹簧曲线以上时,若输出这样的电流,电磁力将超过弹簧力,将衔铁一直拉到极限位置为止。相反,若电磁铁具有水平特性,那么在同样的弹簧曲线下,将与电磁力曲线族产生许多交点。在这些交点上,弹簧力与电磁力相等,就是说,逐渐加大输入电流时,衔铁能连续地停留在各个位置上。 图2 比例电磁铁的电流-力-行程关系 比例电磁铁要求在一定的位移范围内,衔铁的输出力为一准恒定值,如图2所示。根据电磁铁基本工作原理,在衔铁运动过程中,磁阻会越来越小,衔铁受力越来越大,不会出现输出力恒定的情况,为了使电磁铁能在一定位移内输出近视恒定的力,电磁铁采用结构的特殊—隔磁环。隔磁环采用非导磁材料——通常为黄铜,嵌在前后导套的中间,减少电磁铁即将闭合时急剧增大的电磁力,使整个电磁力变的平稳。

水工钢结构平面定轮钢闸门设计计算书

目录 一.课程设计任务与要求 (1) 二.设计资料 (1) 三.闸门结构形式及布置 (1) 四、面板设计 (2) 五、水平次梁,顶梁和底梁地设计 (3) 六、主梁设计 (5) 七、横隔板设计 (10) 八、边梁设计 (11) 九、行走支承设计 (12) 十、胶木滑块轨道设计 (12) 十一、闸门启闭力和吊座验算 (13)

水工钢结构钢闸门课程设计计算书 一.课程设计任务与要求 1、《钢结构》课程设计的任务为某节制闸工作闸门的设计。 2、要求根据钢闸门设计规范与要求,设计出合理、可行的平面定轮钢闸门。 二.设计资料 某供水工程,工程等级为1等1级,其某段渠道上设有节制闸。节制闸工作闸门操作要求为动水启闭,采用平面定轮钢闸门。本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。基本资料如下: 孔口尺寸:6.0m×6.0m(宽×高); 底槛高程:23.0m; 正常高水位:35.0m; 设计水头:12.0m; 门叶结构材料:Q235A。 三.闸门结构形式及布置 1.闸门尺寸的确定 闸门的高度:考虑风浪所产生的水位超高为0.5m,故闸门高度H=6+0.5=6.5m 闸门的荷载跨度为两侧止水的间距:L1=6.1m 闸门计算跨度:L=L0+2d=6+2×0.2=6.4m 闸门尺寸图见附图1 2.主梁的数目及形式 主梁是闸门的主要受力构件,其数目主要取决于闸门的尺寸。因为闸门跨度L=6.4,闸门高度H=6.5,L

相关文档
最新文档