高等数学教案ch 7 空间解析几何与向量代数

高等数学教案ch 7 空间解析几何与向量代数
高等数学教案ch 7 空间解析几何与向量代数

第七章空间解析几何与向量代数

教学目的:

1、理解空间直角坐标系,理解向量的概念及其表示。

2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。

3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。

4、掌握平面方程和直线方程及其求法。

5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6、点到直线以及点到平面的距离。

7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

8、了解空间曲线的参数方程和一般方程。

9、了解空间曲线在坐标平面上的投影,并会求其方程。

教学重点:

1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;

2、两个向量垂直和平行的条件;

3、平面方程和直线方程;

4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;

5、点到直线以及点到平面的距离;

6、常用二次曲面的方程及其图形;

7、旋转曲面及母线平行于坐标轴的柱面方程;

8、空间曲线的参数方程和一般方程。

教学难点:

1、向量积的向量运算及坐标运算;

2、平面方程和直线方程及其求法;

3、点到直线的距离;

4、二次曲面图形;

5、旋转曲面的方程;

§7. 1 向量及其线性运算

一、向量概念

向量: 在研究力学、物理学以及其他应用科学时, 常会遇到这样一类量, 它们

既有大小, 又有方向. 例如力、力矩、位移、速度、加速度等, 这一类量叫做向量. 在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向. 向量的符号:

以A 为起点、B 为终点的有向线段所表示的向量记作→

AB . 向量可用粗体字母

表示, 也可用上加箭头书写体字母表示, 例如, a 、r 、v 、F 或→a 、→

r 、→v 、→

F .

自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a 和b 的大小相等, 且方向相同, 则说向量a 和b 是相等的, 记为a = b . 相等的向量经过平移后可以完全重合.

向量的模: 向量的大小叫做向量的模. 向量a 、→

a 、→

AB 的模分别记为|a |、||→

a 、||→

AB . 单位向量: 模等于1的向量叫做单位向量.

零向量: 模等于0的向量叫做零向量, 记作0或→

0. 零向量的起点与终点重合, 它的方向可以看作是任意的.

向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a 与b 平行, 记作a // b . 零向量认为是与任何向量都平行.

当两个平行向量的起点放在同一点时, 它们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.

类似还有共面的概念. 设有k (k ≥3)个向量, 当把它们的起点放在同一点时, 如果k 个终点和公共起点在一个平面上, 就称这k 个向量共面. 二、向量的线性运算

1.向量的加法

向量的加法: 设有两个向量a 与b , 平移向量使b 的起点与a 的终点重合, 此时从a 的起点到b 的终点的向量c 称为向量a 与b 的和, 记作a +b , 即c =a +b . 三角形法则:

上述作出两向量之和的方法叫做向量加法的三角形法则. 平行四边形法则:

当向量a 与b 不平行时, 平移向量使a 与b 的起点重合, 以a 、b 为邻边作一平行四边形, 从公共起点到对角的向量等于向量a 与b 的和a +b .

向量的加法的运算规律: (1)交换律a +b =b +a ;

(2)结合律(a +b )+c =a +(b +c ).

由于向量的加法符合交换律与结合律, 故n 个向量a 1, a 2, ? ? ?, a n (n ≥3)相加可写成

a 1+a 2+ ? ? ?+a n ,

并按向量相加的三角形法则, 可得n 个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a 1, a 2, ? ? ?, a n , 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和. 负向量:

设a 为一向量, 与a 的模相同而方向相反的向量叫做a 的负向量, 记为-a . 向量的减法:

我们规定两个向量b 与a 的差为

b -a =b +(-a ).

即把向量-a 加到向量b 上, 便得b 与a 的差b -a . 特别地, 当b =a 时, 有 a -a =a +(-a )=0.

显然, 任给向量→

AB 及点O , 有

A

O OB OB O A AB -=+=,

因此, 若把向量a 与b 移到同一起点O , 则从a 的终点A 向b 的终点B 所引向量→

AB 便是向量b 与a 的差b -a . 三角不等式:

b

a -

b a -

b

a

b a -

b

a

c

A

B

C

A

B

C

a

由三角形两边之和大于第三边的原理, 有

|a +b |≤|a |+|b |及|a -b |≤|a |+|b |,

其中等号在b 与a 同向或反向时成立. 2.向量与数的乘法

向量与数的乘法的定义:

向量a 与实数λ的乘积记作λa , 规定λa 是一个向量, 它的模|λa |=|λ||a |, 它的方向当λ>0时与a 相同, 当λ<0时与a 相反.

当λ=0时, |λa |=0, 即λa 为零向量, 这时它的方向可以是任意的. 特别地, 当λ=±1时, 有

1a =a , (-1)a =-a .

运算规律:

(1)结合律 λ(μa )=μ(λa )=(λμ)a ; (2)分配律 (λ+μ)a =λa +μa ; λ(a +b )=λa +λb . 例1. 在平行四边形ABCD 中, 设?→

?AB

=a ,

?→

?AD

=b .

试用a 和b 表示向量

?→

?MA

、?→

?MB 、?→

?MC 、?→

?MD , 其中M 是平行四边形对角线的交点.

解 由于平行四边形的对角线互相平分, 所以 a +b ?→

??→

?==AM

AC 2, 即 -(a +b )?→

?=MA

2

,

于是

2

1-

=?→

?MA (a +b ).

因为

?→

??→

?-=MA

MC , 所以

2

1=

?→

?MC (a +b ).

又因-a +b ?→

??→

?==

MD

BD 2, 所以2

1=?→

?MD

(b -a ).

由于

?→

??→

?-=MD

MB , 所以

2

1=

?→

?MB (a -b ).

向量的单位化: 设a ≠0, 则向量

|

|a a

是与a 同方向的单位向量, 记为e a .

于是a =|a |e a .

向量的单位化:

A

B

C

D

a

设a ≠0, 则向量

|

|a a

是与a 同方向的单位向量, 记为e a .

于是a = | a | e a .

定理1 设向量a ≠ 0, 那么, 向量b 平行于a 的充分必要条件是: 存在唯一的实数λ, 使 b = λa .

证明: 条件的充分性是显然的, 下面证明条件的必要性.

设b // a . 取|

|a b ||||=λ, 当b 与a 同向时λ取正值, 当b 与a 反向时λ取负值, 即b =λa .

这是因为此时b 与λa 同向, 且 |λa |=|λ||a ||b ||a a b ==||||

|.

再证明数λ的唯一性. 设b =λa , 又设b =μa , 两式相减, 便得 (λ-μ)a =0, 即|λ-μ||a |=0. 因|a |≠0, 故|λ-μ|=0, 即λ=μ.

给定一个点及一个单位向量就确定了一条数轴. 设点O 及单位向量i 确定了数轴Ox , 对于轴上任一点P , 对应一个向量→

OP , 由→

OP //i , 根据定理1, 必有唯一的实数x , 使→

OP =x i (实数x 叫做轴上有向线段→

OP 的值), 并知→

OP 与实数x 一一对应. 于是

点P ?向量→

OP = x i ?实数x ,

从而轴上的点P 与实数x 有一一对应的关系. 据此, 定义实数x 为轴上点P 的坐标. 由此可知, 轴上点P 的坐标为x 的充分必要条件是

OP

= x i .

三、空间直角坐标系

在空间取定一点O 和三个两两垂直的单位向量i 、j 、k , 就确定了三条都以O 为原点的两两垂直的数轴, 依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴), 统称为坐标轴. 它们构成一个空间直角坐标系, 称为Oxyz 坐标系. 注: (1)通常三个数轴应具有相同的长度单位;

(2)通常把x 轴和y 轴配置在水平面上, 而z 轴则是铅垂线; (3)数轴的的正向通常符合右手规则. 坐标面:

在空间直角坐标系中, 任意两个坐标轴可以确定一个平面, 这种平面称为坐标面.

x 轴及y 轴所确定的坐标面叫做xOy 面, 另两个坐标面是yOz 面和zOx 面.

卦限:

三个坐标面把空间分成八个部分,每一部分叫做卦限,含有三个正半轴的卦限叫做第一卦限,它位于xOy面的上方.在xOy面的上方,按逆时针方向排列着第二卦限、第三卦限和第四卦限.在xOy面的下方,与第一卦限对应的是第五卦限,按逆时针方向还排列着第六卦限、第七卦限和第八卦限.八个卦限分别用字母I、II、III、IV、V、VI、VII、VIII表示.

向量的坐标分解式:

任给向量r,对应有点M,使→r=

OM.以OM为对角线、三条坐标轴为棱作长方体,有

→→→→→→→

OR

OQ

OP

NM

PN

OP

OM+

+

=

+

+

=

=

r,

设→i x

OP=,

j y

OQ=,

k z

OR=,

则→k

j

i

r z

y

x

OM+

+

=

=.

上式称为向量r的坐标分解式,x i、y j、z k称为向量r沿三个坐标轴方向的分向量.

显然,给定向量r,就确定了点M及→i x

OP=,

j y

OQ=,

k z

OR=三个分向量,进而

确定了x、y、z三个有序数;反之,给定三个有序数x、y、z也就确定了向量r与点M.于是点M、向量r与三个有序x、y、z之间有一一对应的关系

)

,

,

(z

y

x

z

y

x

OM

M?

+

+

=

=

?k

j

i

r.

据此,定义:有序数x、y、z称为向量r(在坐标系Oxyz)中的坐标,记作r=(x,y,z);有序数x、y、z也称为点M(在坐标系Oxyz)的坐标,记为M(x,y,z).

向量→OM

=

r称为点M关于原点O的向径.上述定义表明,一个点与该点的向径有相同的坐标.记号(x,y,z)既表示点M,又表示向量→

OM.

坐标面上和坐标轴上的点,其坐标各有一定的特征.例如:点M在yOz面上,则x=0;同相,在zOx面上的点,y=0;在xOy面上的点,z=0.如果点M在x轴上,则y=z=0;同样在y轴上,有z=x=0;在z轴上的点,有x=y=0.如果点M为原点,则x=y=z=0.

四、利用坐标作向量的线性运算

设a=(a x,a y,a z),b=(b x,b y,b z)

即 a =a x i +a y j +a z k , b =b x i +b y j +b z k , 则 a +b =(a x i +a y j +a z k )+(b x i +b y j +b z k ) =(a x +b x )i +(a y +b y )j +(a z +b z )k =(a x +b x , a y +b y , a z +b z ).

a -

b =(a x i +a y j +a z k )-(b x i +b y j +b z k ) =(a x -b x )i +(a y -b y )j +(a z -b z )k =(a x -b x , a y -b y , a z -b z ). λa =λ(a x i +a y j +a z k ) =(λa x )i +(λa y )j +(λa z )k =(λa x , λa y , λa z ).

利用向量的坐标判断两个向量的平行: 设a =(a x , a y , a z )≠0, b =(b x , b y , b z ), 向量b //a ?b =λa , 即b //a ?(b x , b y , b z )=λ(a x , a y , a z ), 于是z

z y

y x

x a b a b a b =

=

.

例2 求解以向量为未知元的线性方程组???=-=-b

y x a

y x 2335,

其中a =(2, 1, 2), b =(-1, 1, -2).

解 如同解二元一次线性方程组, 可得 x =2a -3b , y =3a -5b . 以a 、b 的坐标表示式代入, 即得

x =2(2, 1, 2)-3(-1, 1, -2)=(7, -1, 10), y =3(2, 1, 2)-5(-1, 1, -2)=(11, -2, 16).

例3 已知两点A (x 1, y 1, z 1)和B (x 2, y 2, z 2)以及实数λ≠-1, 在直线AB 上求一点M , 使→→

MB

AM λ=.

解 由于→→→

OA

OM AM -=,

OM

OB MB -=,

因此 →

)

(OM OB OA OM -=-λ,

从而

→→

)(11

OB OA OM λλ++=

) 1 ,1 ,1 (212121λ

λλλλλ++++++=x x x x x x ,

这就是点M 的坐标.

另解 设所求点为M (x , y , z ), 则→

) , ,(111z z y y x x AM

---=, →

) , ,(222z z y y x x MB ---=.

依题意有

MB

AM λ=, 即

(x -x 1, y -y 1, z -z 1)=λ(x 2-x , y 2-y , z 2-z ) (x , y , z )-(x 1, y 1, z 1)=λ(x 2, y 2, z 2)-λ(x , y , z ), ) , ,(11

) , ,(212121z z y y x x z y x λλλλ

++++=,

λ

λ++=

121x x x ,

λ

λ++=

121y y y ,

λ

λ++=

121z z z .

点M 叫做有向线段→

AB 的定比分点. 当λ=1, 点M 的有向线段→

AB 的中点, 其坐标为

2

2

1x x x +=

,

2

2

1y y y +=

,

2

21z z z +=

.

五、向量的模、方向角、投影 1.向量的模与两点间的距离公式 设向量r =(x , y , z ), 作→

r

=OM , 则

OR

OQ OP OM ++==r ,

按勾股定理可得

2

22||||||||||OR OQ OP OM ++==r ,

i

x OP =,

j

y OQ =,

k

z OR =,

有 |OP |=|x |, |OQ |=|y |, |OR |=|z |, 于是得向量模的坐标表示式

2

22||z y x ++=

r .

设有点A (x 1, y 1, z 1)、B (x 2, y 2, z 2), 则

OA

OB AB -==(x 2, y 2, z 2)-(x 1, y 1, z 1)=(x 2-x 1, y 2-y 1, z 2-z 1),

于是点A 与点B 间的距离为

2

12212212)()()(||||z z y y x x AB AB -+-+-==.

例4 求证以M 1(4, 3, 1)、M 2 (7, 1, 2)、M 3 (5, 2, 3)三点为顶点的三角形是一个等腰三角形.

解 因为 | M 1M 2|2 =(7-4)2+(1-3)2+(2-1)2 =14,

| M 2M 3|2 =(5-7)2+(2-1)2+(3-2)2 =6, | M 1M 3|2 =(5-4)2+(2-3)2+(3-1)2 =6, 所以|M 2 M 3|=|M 1M 3|, 即? M 1 M 2 M 3为等腰三角形.

例5 在z 轴上求与两点A (-4, 1, 7)和B (3, 5, -2)等距离的点. 解 设所求的点为M (0, 0, z ), 依题意有|MA |2=|MB |2,

即 (0+4)2+(0-1)2+(z -7)2=(3-0)2+(5-0)2+(-2-z)2. 解之得9

14=z , 所以, 所求的点为)9

14 ,0 ,0(M .

例6 已知两点A (4, 0, 5)和B (7, 1, 3), 求与→

AB 方向相同的单位向量e . 解 因为→

)

2 ,1 ,3()5 ,0 ,4()

3 ,1 ,7(-=-=AB ,

14

)2(13||222=-++=AB , 所以

)2 ,1 ,3(14

1|

|-=

=

AB AB

e .

2.方向角与方向余弦

当把两个非零向量a 与b 的起点放到同一点时, 两个向量之间的不超过π的夹角称为向量a 与b 的夹角, 记作^) ,(b a 或^) ,(a b . 如果向量a 与b 中有一个是零向量, 规定它们的夹角可以在0与π之间任意取值.

类似地, 可以规定向量与一轴的夹角或空间两轴的夹角. 非零向量r 与三条坐标轴的夹角α、β、γ称为向量r 的方向角. 向量的方向余弦: 设r =(x , y , z ), 则

x =|r |cos α, y =|r |cos β, z =|r |cos γ . cos α、cos β、cos γ 称为向量r 的方向余弦.

|

|c o s r x

=

α,

|

|cos r y =

β,

|

|cos r z =

γ.

从而

r e r r ==

|

|1

)c o s ,c o s ,(c o s γβα.

上式表明, 以向量r 的方向余弦为坐标的向量就是与r 同方向的单位向量e r . 因此

cos 2α+cos 2β+cos 2γ=1.

例3 设已知两点)

2 ,2 ,2( A )和B (1, 3, 0), 计算向量→

AB 的模、方向余弦和方向

角. 解 →

)

2 ,1 ,1()20 ,2

3 ,21(--=-

--=AB ;

2)2(1)1(||222=-++-=AB ;

2

1

c o s -

=α,

2

1cos =

β,

2

2cos -

=γ;

3

2πα=

,

3

π

β=

,

4

3 πγ=

.

3.向量在轴上的投影

设点O 及单位向量e 确定u 轴. 任给向量r , 作→

r

=OM

, 再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫

作点M 在u 轴上的投影), 则向量→

M O '称为向量r 在u 轴上的分向量. 设→

e λ='M O , 则数λ称为向量r 在u 轴上的投影, 记作Prj u r 或(r )u .

按此定义, 向量a 在直角坐标系Oxyz 中的坐标a x , a y , a z 就是a 在三条坐标轴上的投影, 即

a x =Prj x a , a y =Prj y a , a z =Prj z a . 投影的性质:

性质1 (a )u =|a |cos ? (即Prj u a =|a |cos ?), 其中?为向量与u 轴的夹角; 性质2 (a +b )u =(a )u +(b )u (即Prj u (a +b )= Prj u a +Prj u b ); 性质3 (λa )u =λ(a )u (即Prj u (λa )=λPrj u a );

§7. 2 数量积 向量积

一、两向量的数量积

数量积的物理背景: 设一物体在常力F 作用下沿直线从点M 1移动到点M 2. 以s 表示位移→

21M M . 由物理学知道, 力F 所作的功为

W = |F | |s | cos θ ,

其中θ 为F 与s 的夹角.

数量积: 对于两个向量a 和b , 它们的模 |a |、|b | 及它们的夹角θ 的 余弦的乘积称为向量a 和b 的数量积, 记作a ?b , 即

a ·

b =|a | |b | cos θ .

数量积与投影:

由于|b | cos θ =|b |cos(a ,^ b ), 当a ≠0时, |b | cos(a ,^ b ) 是向量 b 在向量a 的方向上的投影, 于是a ·b = |a | Prj a b . 同理, 当b ≠0时, a·b = |b | Prj b a . 数量积的性质: (1) a·a = |a | 2.

(2) 对于两个非零向量 a 、b , 如果 a·b =0, 则 a ⊥b ; 反之, 如果a ⊥b , 则a·b =0.

如果认为零向量与任何向量都垂直, 则a ⊥b ? a ·b =0. 数量积的运算律: (1)交换律: a·b = b·a ;

(2)分配律: (a +b )?c =a ?c +b ?c . (3) (λa )·b = a·(λb ) = λ(a·b ), (λa )·(μb ) = λμ(a·b ), λ、μ为数. (2)的证明:

分配律(a +b )?c =a ?c +b ?c 的证明:

因为当c =0时, 上式显然成立; 当c ≠0时, 有

(a +b )?c =|c |Prj c (a +b ) =|c |(Prj c a +Prj c b ) =|c |Prj c a +|c |Prj c b =a ?c +b ?c .

例1 试用向量证明三角形的余弦定理.

证: 设在ΔABC 中, ∠BCA =θ (图7-24), |BC |=a , |CA |=b , |AB |=c , 要证

c 2=a 2+b 2-2 a b cos θ . 记→

CB =a , →

CA =b , →

AB =c , 则有

c =a -b ,

从而 |c |2=c ? c =(a -b )(a -b )=a ? a +b ? b -2a ? b =|a |2+|b |2-2|a ||b |cos(a ,^b ), 即 c 2=a 2+b 2-2 a b cos θ .

数量积的坐标表示:

设a =(a x , a y , a z ), b =(b x , b y , b z ), 则 a·b =a x b x +a y b y +a z b z . 提示: 按数量积的运算规律可得 a·b =( a x i + a y j + a z k )·(b x i + b y j + b z k ) =a x b x i·i + a x b y i·j + a x b z i·k +a y b x j ·i + a y b y j ·j + a y b z j ·k +a z b x k ·i + a z b y k ·j + a z b z k ·k = a x b x + a y b y + a z b z . 两向量夹角的余弦的坐标表示: 设θ=(a , ^ b ), 则当a ≠0、b ≠0时, 有

2

222

22|

|||cos z

y x z

y x z

z y y x x b b b a a a b a b a b a ++++++=?=

b a b

a θ.

提示: a·b =|a ||b |cos θ .

例2 已知三点M (1, 1, 1)、A (2, 2, 1)和B (2, 1, 2), 求∠AMB .

解 从M 到A 的向量记为a , 从M 到B 的向量记为b , 则∠AMB 就是向量a 与b 的夹角.

a ={1, 1, 0},

b ={1, 0, 1}. 因为

a ?

b =1?1+1?0+0?1=1, 2

011||222=++=a , 2

101||222=

++=b .

所以 2

12

21|

|||cos =?=?=

∠b a b

a AMB .

从而

3

π

=

∠A M B .

例3.设液体流过平面S上面积为A的一个区域, 液体在这区域上各点处的流速均为(常

向量)v. 设n为垂直于S的单位向量(图7-25(a)),计算单位时间内经过这区域流向n所指一方的液体的质量P(液体的密度为ρ).

解 单位时间内流过这区域的液体组成一个底面积为A、斜高为|v|的斜柱体(图7-25(b)).

这柱体的斜高与底面的垂线的夹角就是v 与n的夹角θ , 所以这柱体的高为| v | cosθ, 体积为

A| v |cos θ=A v ·n.

从而, 单位时间内经过这区域流向n所指一方的液体的质量为

P=ρA v ·n.

二、两向量的向量积

在研究物体转动问题时, 不但要考虑这物体所受的力, 还要分析这些力所产生的力矩.

设O为一根杠杆L的支点.有一个力F作用于这杠杆上P点处. F与→OP的夹角为θ.

由力学规定, 力F对支点O的力矩是一向量M, 它的模

θ

|F

=,

M OP

||

sin

|

||

而M的方向垂直于→OP与F所决定的平面, M的指向是的按右手规则从→OP以不超过π的角转向F来确定的.

向量积: 设向量c是由两个向量a与b按下列方式定出:

c的模 |c|=|a||b|sin θ, 其中θ为a与b间的夹角;

c的方向垂直于a与b所决定的平面, c的指向按右手规则从a转向b来确定.

那么, 向量c叫做向量a与b的向量积, 记作a?b, 即

c =a?b.

根据向量积的定义,力矩M等于→OP与F的向量积, 即

M?

=OP.

F

向量积的性质:

(1) a?a =0;

(2) 对于两个非零向量a、b, 如果a?b = 0, 则a//b; 反之, 如果a//b, 则a?b =0.

如果认为零向量与任何向量都平行, 则a//b ? a?b = 0.

数量积的运算律:

(1) 交换律a ?b = -b ?a ;

(2) 分配律: (a +b )?c = a ?c + b ?c .

(3) (λa )?b = a ?(λb ) = λ(a ?b ) (λ为数).

数量积的坐标表示: 设a = a x i + a y j + a z k , b = b x i + b y j + b z k . 按向量积的运算规律可得

a ?

b = ( a x i + a y j + a z k ) ? ( b x i + b y j + b z k )

= a x b x i ?i + a x b y i ?j + a x b z i ?k

+a y b x j ?i + a y b y j ?j + a y b z j ?k +a z b x k ?i + a z b y k ?j + a z b z k ?k .

由于i ?i = j ?j = k ?k = 0, i ?j = k , j ?k = i , k ?i = j , 所以

a ?

b = ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k .

为了邦助记忆, 利用三阶行列式符号, 上式可写成

z

y x z

y x b b b a a a k

j i b a =?=a y b z i +a z b x j +a x b y k -a y b x k -a x b z j -a z b y i

= ( a y b z - a z b y ) i + ( a z b x - a x b z ) j + ( a x b y - a y b x ) k . .

例4 设a =(2, 1, -1), b =(1, -1, 2), 计算a ?b .

2

111

12--=?k

j i b a =2i -j -2k -k -4j -i =i -5j -3k .

例5 已知三角形ABC 的顶点分别是A (1, 2, 3)、B (3, 4, 5)、C (2, 4, 7), 求三角形ABC 的面积.

解 根据向量积的定义, 可知三角形ABC 的面积

||2

1

sin ||||21AC AB A AC AB S ABC ?=∠=

?. 由于→AB =(2, 2, 2),

AC

=(1, 2, 4), 因此

4

212

22k j i =?AC AB =4i -6j +2k . 于是

14

2)6(42

1|264|21222=+-+=+-=

?k j i ABC S .

例6 设刚体以等角速度ω 绕l 轴旋转, 计算刚体上一点M 的线速度.

解 刚体绕l 轴旋转时, 我们可以用在l 轴上的一个向量ω表示角速度, 它的大小等于角速度的大小, 它的方向由右手规则定出: 即以右手握住l 轴, 当右手的四个手指的转向与刚体的旋转方向一致时, 大姆指的指向就是ω的方向.

设点M到旋转轴l的距离为a, 再在l轴上任取一点O作向量r =→OM, 并以θ表示ω与r的夹角, 那么

a = |r| sinθ.

设线速度为v, 那么由物理学上线速度与角速度间的关系可知, v的大小为

|v| =| ω|a= |ω| |r| sinθ ;

v的方向垂直于通过M点与l轴的平面, 即v垂直于ω与r, 又v的指向是使ω、r、v 符合右手规则. 因此有

v = ω?r.

§7. 3 曲面及其方程

一、曲面方程的概念

在空间解析几何中, 任何曲面都可以看作点的几何轨迹. 在这样的意义下, 如

果曲面S 与三元方程

F (x , y , z )=0

有下述关系:

(1) 曲面S 上任一点的坐标都满足方程F (x , y , z )=0; (2) 不在曲面S 上的点的坐标都不满足方程F (x , y , z )=0,

那么, 方程F (x , y , z )=0就叫做曲面S 的方程, 而曲面S 就叫做方程F (x , y , z )=0的图形.

常见的曲面的方程:

例1 建立球心在点M 0(x 0, y 0, z 0)、半径为R 的球面的方程. 解 设M (x , y , z )是球面上的任一点, 那么

|M 0M |=R . 即

R

z z y y x x =-+-+-202020)()()(,

或 (x -x 0)2+(y -y 0)2+(z -z 0)2=R 2.

这就是球面上的点的坐标所满足的方程. 而不在球面上的点的坐标都不满足这个方程. 所以

(x -x 0)2+(y -y 0)2+(z -z 0)2=R 2.

就是球心在点M 0(x 0, y 0, z 0)、半径为R 的球面的方程.

特殊地, 球心在原点O (0, 0, 0)、半径为R 的球面的方程为 x 2+y 2+z 2=R 2.

例2 设有点A (1, 2, 3)和B (2, -1, 4), 求线段AB 的垂直平分面的方程.

解 由题意知道, 所求的平面就是与A 和B 等距离的点的几何轨迹. 设M (x , y , z )为所求平面上的任一点, 则有

|AM |=|BM |, 即

2

22222)4()1()2()3()2()1(-+++-=-+-+-z y x z y x .

等式两边平方, 然后化简得

2x -6y +2z -7=0.

这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程, 所以这个方程就是所求平面的方程. 研究曲面的两个基本问题:

(1) 已知一曲面作为点的几何轨迹时, 建立这曲面的方程;

(2) 已知坐标x 、y 和z 间的一个方程时, 研究这方程所表示的曲面的形状.

例3 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解 通过配方, 原方程可以改写成

(x -1)2+(y +2)2+z 2=5. 这是一个球面方程, 球心在点M 0(1, -2, 0)、半径为5

=

R .

一般地, 设有三元二次方程

Ax 2+Ay 2+Az 2+Dx +Ey +Fz +G =0,

这个方程的特点是缺xy , yz , zx 各项, 而且平方项系数相同, 只要将方程经过配方就可以化成方程

(x -x 0)2+(y -y 0)2+(z -z 0)2=R 2.

的形式, 它的图形就是一个球面. 二、旋转曲面

以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面, 这条定直线叫做旋转曲面的轴.

设在yO z 坐标面上有一已知曲线C , 它的方程为

f (y , z ) =0,

把这曲线绕z 轴旋转一周, 就得到一个以z 轴为轴的旋转曲面. 它的方程可以求得如下:

设M (x , y , z )为曲面上任一点, 它是曲线C 上点M 1(0, y 1, z 1)绕z 轴旋转而得到的. 因此有如下关系等式

0) ,(11=z y f , 1z z =, 2

21||y x y +=

,

从而得 0) ,(22=+±z y x f ,

这就是所求旋转曲面的方程.

在曲线C 的方程f (y , z )=0中将y 改成2

2y x +±, 便得曲线C 绕z 轴旋转所成的

旋转曲面的方程

0) ,(22=+±z y x f .

同理, 曲线C 绕y 轴旋转所成的旋转曲面的方程为

) ,(22=+±

z x y f .

例4 直线L 绕另一条与L 相交的直线旋转一周, 所得旋转曲面叫做圆锥面. 两直线的交点叫做圆锥面的顶点, 两直线的夹角α (2

0πα<<)叫做圆锥面的半顶角.

试建立顶点在坐标原点O , 旋转轴为z 轴, 半顶角为α的圆锥面的方程. 解 在yO z 坐标面内, 直线L 的方程为

z =y cot α ,

将方程z =y cot α 中的y 改成2

2y x +±

, 就得到所要求的圆锥面的方程

αc o t

22y x z +±=,

z 2=a 2 (x 2+y 2), 其中a =cot α .

例5. 将zOx 坐标面上的双曲线122

22

=-c

z a

x 分别绕x 轴和z 轴旋转一周, 求所生成

的旋转曲面的方程.

解 绕x 轴旋转所在的旋转曲面的方程为

12

2

222=+-c z y a x ;

绕z 轴旋转所在的旋转曲面的方程为

12

2

2

22=-

+c z a y x . 这两种曲面分别叫做双叶旋转双曲面和单叶旋转双曲面. 三、柱面

例6 方程x 2+y 2=R 2表示怎样的曲面?

解 方程x 2+y 2=R 2在xOy 面上表示圆心在原点O 、半径为R 的圆. 在空间直角坐标系中, 这方程不含竖坐标z , 即不论空间点的竖坐标z 怎样, 只要它的横坐标x 和纵坐标y 能满足这方程, 那么这些点就在这曲面上. 也就是说, 过xOy 面上的圆x 2+y 2=R 2, 且平行于z 轴的直线一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线.

例6 方程x 2+y 2=R 2表示怎样的曲面?

解 在空间直角坐标系中, 过xOy 面上的圆x 2+y 2=R 2作平行于z 轴的直线l , 则直线l 上的点都满足方程x 2+y 2=R 2, 因此直线l 一定在x 2+y 2=R 2表示的曲面上. 所以这个曲面可以看成是由平行于z 轴的直线l 沿xOy 面上的圆x 2+y 2=R 2移动而形成的. 这曲面叫做圆柱面, xOy 面上的圆x 2+y 2=R 2叫做它的准线, 这平行于z 轴的直线l 叫做它的母线.

柱面: 平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面, 定曲线C 叫做柱面的准线, 动直线L 叫做柱面的母线.

上面我们看到, 不含z 的方程x 2+y 2=R 2在空间直角坐标系中表示圆柱面, 它的母线平行于z 轴, 它的准线是xOy 面上的圆x 2+y 2=R 2.

一般地, 只含x 、y 而缺z 的方程F (x , y )=0, 在空间直角坐标系中表示母线平行于z 轴的柱面, 其准线是xOy 面上的曲线C : F (x , y )=0.

例如, 方程y 2=2x 表示母线平行于z 轴的柱面, 它的准线是xOy 面上的抛物线y 2 =2x , 该柱面叫做抛物柱面.

又如, 方程 x -y =0表示母线平行于z 轴的柱面, 其准线是xOy 面的直线 x -y =0, 所以它是过z 轴的平面.

类似地, 只含x 、z 而缺y 的方程G (x , z )=0和只含y 、z 而缺x 的方程H (y , z )=0分别表示母线平行于y 轴和x 轴的柱面.

例如, 方程 x -z =0表示母线平行于y 轴的柱面, 其准线是zOx 面上的直线 x -z =0. 所以它是过y 轴的平面.

四、二次曲面

与平面解析几何中规定的二次曲线相类似, 我们把三元二次方程所表示的曲面叫做二次曲面. 把平面叫做一次曲面.

怎样了解三元方程F (x , y , z )=0所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相截, 考察其交线的形状, 然后加以综合, 从而了解曲面的立体形状. 这种方法叫做截痕法.

研究曲面的另一种方程是伸缩变形法:

设S 是一个曲面, 其方程为F (x , y , z )=0, S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面.

显然, 若(x , y , z )∈S , 则(λx , y , z )∈S '; 若(x , y , z )∈S ', 则S

z y x ∈) , ,1

.

因此, 对于任意的(x , y , z )∈S ', 有0) , ,1

(=z y x F λ

,

即0) , ,1

(=z y x F λ

是曲面

S '的方程.

例如,把圆锥面2222z a y x =+沿y 轴方向伸缩a

b 倍, 所得曲面的方程为

222

2)(

z a y b

a x =+, 即2

2

222

z b

y a

x =+

.

(1)椭圆锥面 由方程

222

22z b

y

a x =+所表示的曲面称为椭圆锥面.

圆锥曲面在y 轴方向伸缩而得的曲面. 把圆锥面

2

2

22z a

y x =+沿y 轴方向伸缩a

b 倍, 所得曲面称为椭圆锥面2

2

222

z b

y a

x =+

.

以垂直于z 轴的平面z =t 截此曲面, 当t =0时得一点(0, 0, 0); 当t ≠0时, 得平面

z =t 上的椭圆

1)()(2

222

=+bt y at x .

当t 变化时, 上式表示一族长短轴比例不变的椭圆, 当|t |从大到小并变为0时, 这族椭圆从大到小并缩为一点. 综合上述讨论, 可得椭圆锥面的形状如图. (2)椭球面 由方程

12

2

22

22=++c z b y a x 所表示的曲面称为椭球面.

球面在x 轴、y 轴或z 轴方向伸缩而得的曲面. 把x 2+y 2+z 2=a 2沿z 轴方向伸缩a

c 倍, 得旋转椭球面12

2

2

22

=+

+c z a y x

; 再沿y 轴方向

伸缩a

b 倍, 即得椭球面12

2

22

22=++c z b y a x .

(3)单叶双曲面 由方程

12

2

22

22=-+c z b y a x 所表示的曲面称为单叶双曲面.

把zOx 面上的双曲线

12

2

22=-c z a x 绕z 轴旋转, 得旋转单叶双曲面

12

2

2

22=-+c z a y x ; 再

沿y 轴方向伸缩a

b 倍, 即得单叶双曲面12

2

22

22=-+c z b y a x .

(4)双叶双曲面 由方程

12

2

22

22=--c z b y a x 所表示的曲面称为双叶双曲面.

把zOx 面上的双曲线

12

2

22=-c z a x 绕x 轴旋转,

得旋转双叶双曲面122

222=+-c

y

z a x ;

沿y 轴方向伸缩c

b 倍, 即得双叶双曲面12

2

22

22=--c z b y a x .

(5)椭圆抛物面 由方程

z

b y a x =+2

22

2所表示的曲面称为椭圆抛物面.

把zOx 面上的抛物线

z a x =2

2

绕z 轴旋转, 所得曲面叫做旋转抛物面

z

a y x =+2

22, 再

沿y 轴方向伸缩a

b 倍, 所得曲面叫做椭圆抛物面z

b

y a

x =+

2

22

2

(6)双曲抛物面. 由方程

z b y a x =-2

2

22所表示的曲面称为双曲抛物面.

双曲抛物面又称马鞍面.

空间解析几何与向量代数论文

空间解析几何与向量代数 呼伦贝尔学院 计算机科学与技术学院 服务外包一班 2013级 2014.5.4 小组成员: 宋宝文 柏杨白鸽 李强白坤龙

空间解析几何与向量代数 摘要:深入了解空间解析几何与向量代数的概念,一一讲述他们的区别和用途。向量的集中加减乘法和运算规律,还有空间直线与平面的关系。 关键词:向量;向量代数;空间几何 第一部分:向量代数 第一节:向量 一.向量的概念: 向量:既有大小,又有方向的量成为向量(又称矢量)。 表示法:有向线段a 或a 。 向量的模:向量的打小,记作|a |。 向径(矢径):起点为原点的向量。 自由向量:与起点无关的向量。 单位向量:模为1的向量。 零向量:模为0的向量,记作.0或0 若向量a 与b 大小相等,方向相同,则称a 与b 相等,记作a =b ; 若向量a 与b 方向相同或相反,则称a 与b 平行,记作a //b 规定:零向量与任何向量平行;与a 的模相同,但方向相反的向量称为a 的负向量, 记作-a ;因平行向量可平移到同一直线上,故两向量平行又称两向量共线。若K 3 个向量经平移可移到同一平面上,则称此K 个向量共面。 二.向量的线性运算 1.向量的加法 平行四边形法则: b a +b a 三角形法则: a + b b

a 运算规律:交换律a + b =b +a a 与b 结合律:(a +b )+c =a +(b +c ) 三角形法则可推广到多个向量相加。 2.向量的减法 b -a =b +(a ) a b -a b b -a a 特别当b =a 时,有a -a =a (a )=0 ; 三角不等式:|b +a |; |a -b |; 3.向量与数的乘法是一个数,与a 的乘积是一个新向量,记作a 。 规定: a 与a 同向时,|a |=|a |; 总之:|a | | |a | 三.向量的模、方向角 1.向量的模与两点间的距离公式 设r (x,y,z ),作om r ,则有r op oq or R Z Q O Y P X 由勾股定理得: |r | |OM| B A 对两点A ()与B ()因AB OB OA () 得两点间的距离公式: |AB| |AB | 第二节:数量积 向量积

§ 7 空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及;及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程0242222=++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22=绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 222=+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的369422=-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2 x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 2 2 y x z += (2))(42 2 y x z += 四、

空间解析几何和向量代数总结

第八章空间解析几何和 向量代数总结 向量的概念 向量的线性运算 空间直角坐标系(右手系)向量的坐标 坐标形式的向量的线性运算(8—1,19) 方向角与方向余弦(8—1,15) 向量的数量积、向量积、混合积 (8—2,1、3、6、10; 总习题八,1(3)、(4))

应用:判断向量正交、 平行(共线)、 计算平行四边形面 积、 一向量在另一向量的投影。 曲面 曲面的概念 (),,0F x y z =, ()(){}:,,,,0x y z F x y z ∑=建立曲面方程 (P23,例1、P24,例2,8—3,2、3)

旋转曲面(8—3,7、10) 坐标面上的曲线饶一坐标轴旋转一周的旋转曲面方程 (),00f x y z ?=?=?绕x 轴旋转一周得到的旋转曲面 为(,0f x =; (),00f x y z ?=?=?绕y 轴旋转一周得到的旋转曲面 为()0 f y =;

(),00f y z x ?=?=?绕y 轴旋转一周得到的旋转曲面 为(,0f y =; (),00f y z x ?=?=?绕z 轴旋转一周得到的旋转曲面 为()0f z =; (),00f x z y ?=?=?绕x 轴旋转一周得到的旋转曲面为

(,0f x =; (),00f x z y ?=?=?绕z 轴旋转一周得到的旋转曲面 为() 0f z =。 空间曲线及其方程 空间曲线的一般方程 ()(),,0,,0F x y z G x y z =???=?? 参数方程(P33,例3)

()()()x t y t z t αβγ=??=??=? 空间曲线在坐标面的投影(P36,例4、例5、8—4,4) 平面及其方程 建立平面方程:点法式、一般式、截距式、三点式(8—5,1、2、3、6) 平面与平面的夹角(锐角)(8—5,5) 点的平面的距离(8—5,9)

第六章-空间解析几何要求与练习(含答案)

第六章 要求与练习 一、学习要求 1、理解空间直角坐标系,理解向量的概念及其表示. 2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法. 3、掌握平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题. 7、了解空间曲线在坐标平面上的投影,会求其方程. 二、练习 1、一向量起点为A (2,-2,5),终点为B (-1,6,7),求 (1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量; (2)AB 的模;(3)AB 的方向余弦;(4)AB 方向上的单位向量. 解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的 分向量2k ;(2)AB = ;(3)AB ; (4)AB 382) i j k -++. 2、设向量a 和b 夹角为60o ,且||5a =,||8b =,求||a b +,||a b -. 解:()2 220||||||2||||cos60a b a b a b a b += +=++= ( ) 2 220||||||2||||cos60a b a b a b a b -= -=+-=7. 3、已知向量{2,2,1}a =,{8,4,1}b =-,求 (1)平行于向量a 的单位向量; (2)向量b 的方向余弦. 解(1)2223a = +=平行于向量a 的单位向量221 {,,}333±; (2)2849b =+=,向量b 的方向余弦为:841,,999 -. 4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标. 解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求 (1)垂直于a 和b 的单位向量; (2)向量a 在b 上的投影;

空间解析几何与向量代数习题

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ; A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( ) A )2 π B )4 π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( ) A )2 π B )4 π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12 21 3+=-=z y x 的距离是:( ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 3 62 B ) 3 64 C )3 2 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

空间解析几何答案word

第八章 空间解析几何与向量代数 §8.1向量及其线性运算 1.填空题 (1)点)1,1,1(关于xoy 面对称的点为()1,1,1(-),关于yoz 面对称的点为()1,1,1(-),关于xoz 面对称的点为()1,1,1(-). (2)点)2,1,2(-关于x 轴对称的点为()2,1,2(-),关于y 轴对称的点为()2,1,2(---),关于z 轴对称的点为()2,1,2(-),关于坐标原点对称的点为()2,1,2(--). 2. 已知两点)1,1,1(1M 和)1,2,2(2M ,计算向量21M M 的模、方向余弦和方向角. 解:因为)0,1,1(21=M M ,故2||21= M M ,方向余弦为2 2 cos = α,22cos = β,0cos =γ,方向角为4πα=,4π β=, 2 πγ=. 3. 在yoz 平面上,求与)1,1,1(A 、)2,1,2(B 、)3,3,3(C 等距离的点. 解:设该点为),,0(z y ,则 222222)3()3(9)2()1(4)1()1(1-+-+=-+-+=-+-+z y z y z y , 即?????-+-+=-+-+-+=-+2 2222 2) 3()3(9)2()1(4)2(4)1(1z y z y z z ,解得???==33y z ,则该点 为)3,3,0(. 4. 求平行于向量k j i a 432-+=的单位向量的分解式. 解:所求的向量有两个,一个与a 同向,一个与a 反向. 因为 29)4(32||222=-++=a ,所以)432(29 1k j i e a -+± =. 5.设k j i m 22-+=,k j i n ++=2,求向量n m a +=4在各坐标轴上的投影及分向量. 解:因为k j i k j i k j i n m a 796)2()22(44-+=+++-+=+=, 所以在x 轴上的投影为6=x a ,分向量为i i a x 6=,y 轴上的投影为 9=y a ,分向量为j j a y 9=,z 轴上的投影为7-=z a ,分向量为 k k a z 7-=. 6. 在yOz 平面上,求与)1,2,1(A 、)0,1,2(B 和)1,1,1(-C 等距离的点.

空间解析几何与向量代数

空间解析几何与向量代 数 -CAL-FENGHAI.-(YICAI)-Company One1

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -== 若b a //,则 B (A )、x= y=6 (B)、x= y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){04404=--=--y x z x (D )?? ???==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3 0 1)且与平面3x 7y 5z 120平行的平面方程 解 所求平面的法线向量为n (3 7 5) 所求平面的方程为 3(x 3)7(y 0)5(z 1)0 即3x 7y 5z 40 2. 求过点(2 3 0)且以n (1 2 3)为法线向量的平面的方程 解 根据平面的点法式方程 得所求平面的方程为

空间解析几何(练习题参考答案)

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ → -AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.332212--=+=-x y x ; 10.曲线 1422 =+z y 绕z 轴

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则 B (A )、x=0.5 y=6 (B)、x=-0.5 y=6 (C)、x=1 y=-7 (D)、x=-1 y=-3 2.平面x -2z = 0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1 (B)、x+2z+3y+4=0 (C)、3(x-1)-y+(y+3)=0 (D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x + y - 11=0, π2: 3x +8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是 D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是 B 。 (A )、L 1⊥L 2 (B )、L 1//L 2 (C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题 1. 点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l = -4 ,及m= 3 时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1· 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0. 2. 求过点(2, -3, 0)且以n =(1, -2, 3)为法线向量的平面的方程. 解 根据平面的点法式方程, 得所求平面的方程为 (x -2)-2(y +3)+3z =0, 即 x -2y +3z -8=0.

空间解析几何习题答案解析(20210120005111)

WORD 格式整理 . 2 30 x 3 3) 10 、计算题与证明题 1.已知 |a| 1, |b| 4, |c| 5, 并且 a b c 0. 计算 a b b c c a . 解:因为 |a| 1, |b| 4, |c| 5, 并且 a b c 0 所以 a 与 b 同向,且 a b 与 c 反向 因此 a b 0 , b c 0 , c a 0 所以 a b b c c a 0 2.已知 |a b| 3, |a b| 4, 求 |a| |b|. 解: |a b| a b cos 3 (1) |a b| a bsin 4 ( 2) (1)2 2 2 得 a b 2 25 所以 a b 5 4.已知向量 x 与 a (,1,5, 2) 共线 , 且满足 a x 3, 求向量 x 的坐标. 解:设 x 的坐标为 x,y,z ,又 a 1,5, 2 则 a x x 5y 2z 3 又 x 与 a 共线,则 x a 0 ij xy 15 2y 5zi z 2x j 5x y k 0 所以 2y 5z 2 z 2x 2 5x y 2 0 即 29x 2 5y 2 26z 2 20yz 4xz 10xy 0 (2) 又 x 与 a 共线, x 与 a 夹角为 0或 22 yz cos0 1 xa x 2 y 2 z 2 12 52 2 2 1) xy 15 整理得

WORD 格式整理 . 2 30 x 3 3) 10 联立 1、2 、3 解出向量 x 的坐标为 1 ,1, 1 10,2, 5

6.已知点 A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程. 解:因为 A 3,8,7 ,B( 1,2, 3) AB 中垂面上的点到 A 、B 的距离相等,设动点坐标为 M x,y,z ,则由 MA MB 得 x 3 2 y 8 2 z 7 2 x 1 2 y 2 2 z 3 2 化简得 2x 3y 5z 27 0 这就是线段 AB 的中垂面的方程。 7. 向量 a , b , c 具有 相 同的 模 , 且两 两 所成 的角 相 等 , 若 a , b 的 坐 标分 别 为 (1,1,0)和(0,1,1), 求向量 c 的坐标. 解: abc r 且它们两两所成的角相等,设为 则有 a b 1 0 1 1 0 1 1 则 cos 设向量 c 的坐标为 x, y,z c x 2 y 2 z 2 r 12 12 02 2 所以 x 2 y 2 z 2 2 3 8.已知点 A(3,6,1) , B(2, 4,1) , C(0, 2,3), D( 2,0, 3), (1) 求以 AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥 A BCD 的体积. x1 联立( 1)、(2)、(3)求出 y 0 或 z1 则 a c 1 x 1 y 0 z x y a bcos r r 12 1 r b c 0 x 1 y 1 z y z b c cos r 1 r 2 r 1) 2) 所以向量 c 的坐标为 1,0,1 或 1 4 1 ,, 3,3, 3 3)

第四章习题与复习题(线性空间)----高等代数

习题5. 1 1. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 2.全体正实数R + , 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R + 按上面定义的加法与数乘是否构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 A B AB BA ⊕=- 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 习题 1.讨论22P ?中 1234111111,,,111111a a A A A A a a ???????? ==== ? ? ? ????????? 的线性相关性. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 1234010011001111ααααα?????????? ? ? ? ? ? ? ? ? ? ?== ? ? ? ? ?- ? ? ? ? ?-?????????? 2111,=,=,=,3010 2212342347P ααααα??????????? = ? ? ? ? ?-?????????? 110-11-1103.在中求在基=,=,=,=下的坐标.11100000 4.已知3R 的两组基 (Ⅰ): 123111ααα?????? ? ? ? ? ? ? ? ? ??????? 11=,=0,=0-11

(Ⅱ):123121βββ?????? ? ? ? ? ? ? ? ? ??????? 23=,=3,=443 (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 已知向量123123,,,,,αααααβββ?? ? ? ??? 1在基下的坐标为0求在基下的坐标-1; (3) 已知向量123123,,,,,βββββααα?? ? ? ???1在基下的坐标为-1求在基下的坐标2; (4) 求在两组基下坐标互为相反数的向量γ. 5.已知P [x ]4的两组基 (Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,, (Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ). 习题 证明线性方程组 12345123451 234536420 22353056860 x x x x x x x x x x x x x x x +--+=?? +--+=??--+-=? 的解空间与实系数多项式空间3[]R x 同构. 习题 1. 求向量()1,1,2,3α=- 的长度. 2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离. 3.求下列向量之间的夹角 (1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,

空间解析几何与向量代数

第八章 空间解析几何与向量代数 一、 选择题 1.设}.4,,1{},2,3,{y b x a -==??若b a ??//,则B (A )、x=0.5y=6(B)、x=-0.5y=6 (C)、x=1y=-7(D)、x=-1y=-3 2.平面x-2z=0的位置是 D 。 (A)、平行XOZ坐标面。 (B)、平行OY轴 (C)、垂直于OY轴 (D)、通过OY轴 3.下列平面中通过坐标原点的平面是 C 。 (A)、x=1(B)、x+2z+3y+4=0(C)、3(x-1)-y+(y+3)=0(D)、x+y+z=1 4.已知二平面π1:mx+y-3z+1=0与π2:7x-2y-z=0当m = B π1⊥π2。 (A)、1/7 (B)、-1/7 (C)、7 (D)、-7 5.二平面π1:x+y-11=0,π2:3x+8=0的夹角θ= C 。 (A)、2 π (B)、π/3 (C)、π/4 (D)、π/6 6.下列直线中平行与XOY 坐标面的是D 。 (A )233211+=+=-z y x (C )1 0101z y x =-=+ (B ){ 4404=--=--y x z x (D )?????==+=4321z t y t x 7.直线L 1:{7272=-+=++-z y x z y x 与L 2:{836302=-+=--z y x z y x 的关系是B 。 (A )、L 1⊥L 2(B )、L 1//L 2(C )、L 1与L 2相交但不垂直。(D )、L 1与L 2为异面直线。 二、填空题

1.点P(1,2,1)到平面x+2y+2z-10=0的距离是 1 。 2.当l =-4,及m=3时,二平面2x+my+3z-5=0与l x-6y-6z+2=0互相平行。 3.过点P(4,-1,3)且平行于直线 51232-==-z y x 的直线方程 为 5 32/1134-=+=-z y x 。 三、计算题 1·求过点(301)且与平面3x 7y 5z 120平行的平面方程 解所求平面的法线向量为n (375)所求平面的方程为 3(x 3)7(y 0)5(z 1)0即3x 7y 5z 40 2.求过点(230)且以n (123)为法线向量的平面的方程 解根据平面的点法式方程得所求平面的方程为 (x 2)2(y 3)3z 0 即x 2y 3z 80 3·求过三点M 1(214)、M 2(132)和M 3(023)的平面的方程 解我们可以用→→3121M M M M ?作为平面的法线向量n 因为→)6 ,4 ,3(21--=M M →)1 ,3 ,2(31--=M M 所以 根据平面的点法式方程得所求平面的方程为 14(x 2)9(y 1)(z 4)0 即14x 9yz 150 4·求过点(413)且平行于直线51123-==-z y x 的直线方程 解所求直线的方向向量为s (215)所求的直线方程为 5·求过两点M 1(321)和M 2(102)的直线方程 解所求直线的方向向量为s (102)(321)(421)所求的直线方程为

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

向量代数与空间解析几何教案

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =,b =,试用a 和b 表示向量、、和MD ,这里M 是平行四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。 2. 间直角坐标系共有八个卦限,各轴名称分别为:x 轴、y 轴、z 轴,坐标面分别 为xoy 面、yoz 面、 zox 面。坐标面以及卦限的划分如图7-2所示。图7-1右手规则演示 图7-2空间直角坐标系图 图7-3空间两点21M M 的距离图3.空间点),,(z y x M 的坐标表示方法。 通过坐标把空间的点与一个有序数组一一对应起来。 注意:特殊点的表示

空间解析几何习题答案解析

一、计算题与证明题 1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ?+?+?. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=?b a ,0=?c b ,0=?a c 所以0=?+?+?a c c b b a 2.已知3||=?b a , 4||=?b a , 求||||b a ?. 解:3cos ||=?=?θb a b a (1) 4sin ||=?=?θb a b a (2) ()222)1(+得()252 =?b a 所以 5=?b a 4.已知向量x 与)2,5,1(,-a 共线, 且满足3=?x a ρ ρ, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a 则325=-+=?z y x x a (1) 又x 与a 共线,则0=?a x 即 ()()()0 52525121252 51=-+++--=+---=-k y x j x z i z y k y x j y x i z y z y x k j i 所以()()()052522 22=-+++--y x x z z y 即01042026529222=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π ()30325110cos 22222 2222?++=-++?++?==z y x z y x a x 整理得 10 3222=++z y x (3) 联立()()()321、、 解出向量x 的坐标为??? ??-51,21,101

空间解析几何与向量代数教案

《高等数学A》课程教案 第七章空间解析几何 一、教学目的与要求 1、了解空间直角坐标系,理解向量的概念及其表示。 2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。 3、了解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。 4、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。 5、了解空间曲线的参数方程和一般方程,了解空间曲线在坐标平面上的投影,并会求其方程 6、掌握平面方程和直线方程及其求法。 7、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 8、会求点到直线以及点到平面的距离。 二、教学内容及学时分配: 第一节向量及其线性运算2学时 第二节数量积向量积和混合积2学时 第三节曲面及其方程2学时 第四节空间曲线及其方程2学时 第五节平面及其方程2学时 第六节空间直线及其方程2学时 三、教学内容的重点及难点: 重点: 向量概念与运算,旋转曲面方程,柱面方程,平面方程直线方程

难点:向量的数量积与向量积,旋转曲面方程,平面束方程,有关直线与平面的综合题 四、教学内容的深化和拓宽: 1、空间直角坐标系的作用,向量的概念及其表示。 2、向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件。 3、单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法。 4、平面方程和直线方程及其求法,会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。 5、曲面方程的概念,常用二次曲面的方程及其图形, 五、教学方法与手段 启发探索式教学方法,结合多媒体课件教学。

空间解析几何与向量微分

第七章:空间解析几何与向量微分 本章内容简介 在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。 7.1空间直角坐标系 一、空间点的直角坐标 为了沟通空间图形与数的研究,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现。 过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位.这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴.通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要符合右手规则,即以右手握住z轴,当右手的四指从正向x轴以π/2角度转向正向y轴时,大拇指的指向就是z轴的正向,这样的三条坐标轴就组成了一个空间直角坐标系,点O叫做坐标原点。(如下图所示) 三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称坐标面。 取定了空间直角坐标系后,就可以建立起空间的点与有序数组之间的对应关系。 例:设点M为空间一已知点.我们过点M作三个平面分别垂直于x轴、y轴、z轴,它们与x轴、y轴、z轴的交点依次为P、Q、R,这三点在x轴、y轴、z轴的坐标依次为x、y、z.于是空间的一点M就唯一的确定了一个有序数组x,y,z.这组数x,y,z就叫做点M的坐标,并依次称x,y和z为点M的横坐标,纵坐标和竖坐标。(如下图所示)

坐标为x,y,z的点M通常记为M(x,y,z). 这样,通过空间直角坐标系,我们就建立了空间的点M和有序数组x,y,z之间的一一对应关系。 注意:坐标面上和坐标轴上的点,其坐标各有一定的特征. 例:如果点M在yOz平面上,则x=0;同样,zOx面上的点,y=0;如果点M在x轴上,则y=z=0;如果M是原点, 则x=y=z=0,等。 二、空间两点间的距离 设M1(x1,y1,z1)、M2(x2,y2,z2)为空间两点,为了用两点的坐标来表达它们间的距离d我们有公式: 例题:证明以A(4,3,1),B(7,1,2),C(5,2,3)为顶点的三角形△ABC是一等腰三角形. 解答:由两点间距离公式得: 由于,所以△ABC是一等腰三角形 7.2 方向余弦与方向数 解析几何中除了两点间的距离外,还有一个最基本的问题就是如何确定有向线段的或有向直线的方向。 方向角与方向余弦 设有空间两点,若以P1为始点,另一点P2为终点的线段称为有 向线段.记作.通过原点作一与其平行且同向的有向线段.将与Ox,Oy,Oz三个 坐标轴正向夹角分别记作α,β,γ.这三个角α,β,γ称为有向线段的方向角.其中

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

习题与复习题详解线性空间高等代数

习题与复习题详解线性 空间高等代数 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

习题5. 1 1.判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间. 答 是. 因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间. 2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R +⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈. 因为,a b R a b ab R ++?∈?⊕=∈, ,R a R a a R λλλ++?∈∈?=∈, 所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕; (2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕; (3) R +中存在零元素1, ?a R +∈, 有11a a a ⊕=?=; (4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλ μλλμ?? ==== ?? ? ;

(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕; 所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为 按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否. A B B A ∴⊕⊕与不一定相等. 故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间. 4.在22P ?中,{}2222/0,,W A A A P W P ??==∈判断是否是的子空间. 答 否. 121123123345?????? ? ? ??????? 例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭. 习题 1.讨论22P ?中 的线性相关性. 解 设11223344x A x A x A x A O +++=, 即1234 1 234 12341234 00 ax x x x x ax x x x x ax x x x x ax +++=??+++=??+++=??+++=? . 由系数行列式3111111 (3)(1)111111 a a a a a a =+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中 解 设11223344x x x x ααααα=+++

相关文档
最新文档