第2章自由振动分析

第1章--单自由度系统的自由振动题解

习 题 1-1一单层房屋结构可简化为题1-1图所示的模型,房顶质量为m ,视为一刚性杆;柱子高h ,视为无质量的弹性杆,其抗弯刚度为EJ 。求该房屋作水平方向振动时的固有频率。 解:由于两根杆都是弹性的,可以看作是两根相同的弹簧的并联。 等效弹簧系数为k 则 mg k δ= 其中δ为两根杆的静形变量,由材料力学易知 δ=3 24mgh EJ = 则 k = 3 24EJ h 设静平衡位置水平向右为正方向,则有 " m x kx =- 所以固有频率3 n 24mh EJ p = 1-2 一均质等直杆,长为 l ,重量为W ,用两根长h 的相同的铅垂线悬挂成水平位置,如题1-2图所示。试写出此杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出振动固有周期。 解:给杆一个微转角 2 a =h 2F cos α=mg 由动量矩定理: a h a mg a mg Fa M ml I M I 822cos sin 12 1 2 2-=-≈?-=== =αθ αθ&& 题1-1图 题1-2图 F sin α 2 θ h mg

其中 12 cos sin ≈≈θ α α h l ga p h a mg ml n 2 2 2 2 2304121==?+θθ&& g h a l ga h l p T n 3π23π2π22 2= == 1-3求题1-3图中系统的固有频率,悬臂梁端点的刚度分别是k 1和k 3,悬臂梁的质量忽略不计。 解:悬臂梁可看成刚度分别为k 1和k 3的弹簧,因此,k 1与k 2串联,设总刚度为k 1ˊ。k 1ˊ与k 3并联,设总刚度为k 2ˊ。k 2ˊ与k 4串联,设总刚度为k 。即为 21211k k k k k += ',212132k k k k k k ++=',4 241213231421432421k k k k k k k k k k k k k k k k k k k k ++++++= ) (42412132314 214324212k k k k k k k k k k m k k k k k k k k k p ++++++= 1-4求题1-4图所示的阶梯轴一圆盘系统扭转振动的固有频率。其中J 1、J 2和J 3是三个轴段截面的极惯性矩,I 是圆盘的转动惯量,各个轴段的转动惯量不计,材料剪切弹性模量为G 。 解: 111/l GJ k = (1) 222/l GJ k = (2) 333/l GJ k = (3) )/(23323223l J l J J GJ k += (4) ) (/)()4)(3)(2(1/)(2332113221332122312l J l J Il l J J l J J l J J G P I k k P n n +++=+=知 )由( 题1-3图 题1-4图

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

两自由度系统有阻尼受迫振动

6□ 6-1 两自由度系统有阻尼受迫振动 图6-1 两自由度系统有阻尼受迫振动实验原理图

两自由度系统有阻尼受迫振动 □ 6-2 图6-2 两自由度系统有阻尼受迫振动实验操作界面 两自由度系统有阻尼受迫振动实验操作界面说明 主菜单 存 盘 :将测试数据存盘。按提示输入学号作为文件名。 实验指导 :激活本实验的实验指导文本。 退 出 :退出本操作界面,回到主界面(图2)

虚拟仪器 量程:指示灯为“绿色”表示信号达到半量程,为“黄色”表示信号 两自由度系统有阻尼受迫振动 □ 6-3过载。设置量程使信号超过半量程而不过载可以减小量化误差。 示波器 :选择“显示选择”中的某一选项(共7项),可使示波器显示相 应的内容。 电压表 :选择“1号点”,显示1号传感器的输出电压。选择“2号点”, 显示2号传感器的输出电压。 频率计 :显示加速度信号的频率。 李萨玉图 :观察1号加速度信号和激振信号的李萨玉图。 信号发生器 :输出一定电压和频率的简谐信号。用“On/Off”开启或关闭 信号发生器。 测试数据: 拾取数据 : 将频率计当前的读数和1号、2号传感器当前的输出电压 同时拾取到测试数据表格中。“幅值1”为1号传感器的输出电压,“幅 值2”为2号传感器的输出电压。若重复拾取某一频率的数据,则当 前拾取的数据将覆盖过去拾取的同频率的数据。 重新拾取 : 清除测试数据表格中的全部数据,重新拾取频率计当前的 读数和1#、2#传感器当前的输出电压。 数据检验 : 将测试数据表格中的加速度信号数据绘成幅频曲线(图6 -3)。

图6-3

两自由度系统有阻尼受迫振动 □ 6-4一、实验目的 ? 了解和掌握两自由度系统在简谐激振力作用下受迫振动的一般规律及现 象。 ? 理解两自由度系统固有振型的物理概念。 ? 巩固基本振动测试设备的操作与使用。 二、实验仪器 ? 两自由度系统试件 1件 ? 激振器及功率放大器 1套 ? 加速度传感器(ICP式) 1只 ? ICP电源(即ICP信号调节器)4通道 1台 ? 信号发生器 1台 ? 电压表 1台 ? 频率计 1台 ? 示波器 1台 其中:信号发生器、电压表、频率计和示波器由计算机虚拟提供。 三、实验方法及步骤 1、装配实验系统 ? 按图6-1将综合实验台装配成两自由度系统。 ? 按1节所述的方法和要求安装激振器和加速度传感器。 ? 按图6-1连接各测试设备。 2、将功率放大器“输出调节”旋至最小,“信号选择”置“外接”!打开 各设备电源。 3、从“综合振动综合实验系统”对话框(图2),进入“两自由度系统有阻 尼受迫振动”实验操作界面(图6-2)。 4、使信号发生器的输出频率约为30Hz,输出电压约为1V。调节功率放大 器的“输出调节”,逐渐增大其输出功率直至质量块有明显的振动(用

实验一 单自由度系统强迫振动实验

单自由度系统强迫振动实验 一、实验目的 1、 了解学习振动系统和测振系统的组成及原理,掌握测振的一般方法。 2、 观察简支梁振动系统在共振前、共振时、共振后以及快速通过共振区的振幅变化情况。 3、 观察简支梁振动系统在共振前、共振时、共振后干扰力与系统位移的相位关系。 4、 测定简支梁振动系统的固有频率及幅频特性曲线。 二、实验装置 1、 实验装置简图 测振仪(11) 示波器(12) 闪光测速仪(9) 闪光灯(8)电动机(3) 变压器(2) 传感器(10) 简支梁(1) 偏心轮(4) 振标(7) 标记线(5) 图一 2、实验装置上各附件的作用 (1) 简支梁 简支梁是由一块截面为矩形的弹性钢板通过轴承支撑在两个刚性很强的固定支架上,它在系统中主要起弹簧作用。 (2) 固定架 固定架是用来固定偏心轮、标记盘等部件的,其质量同简支梁质量的一半组成系统的质量(根据能量原理而得)。故此系统可简化为(图二)所示的弹簧质量系统。 图二

图中:M ------系统的质量 m -------偏心质量 0F -------离心惯性力 k --------简支梁的弹簧刚度 r --------阻尼系数 (3) 自耦变压器 自耦变压器用来启动电机和调节电机转速的设备。当通过变压器手轮改变变压器输出电压时,即可改变电机的转速,借以达到调速之目的。 (4) 电动机 电动机是用来驱动偏心轮旋转的动力源。在本实验中借助改变电机的转速来实现干扰力频率的变化。 (5) 偏心轮 偏心轮在系统中是产生干扰力的元件。当转轴带动偏心轮以转速N 旋转时,偏心质量m 就以2(1/)60 N s πω= 作等速圆周运动,同时产生了一个离心惯性力20F me ω=。该力通过轴和轴承座传给梁。这个旋转的离心惯性力在铅直方向的分量就构成了对梁沿铅直方向的简谐干扰力,即20sin sin F F t me t ωωω==。此干扰力使系统产生强迫振动。以坐标x 表示偏心轮轴心离开静平衡位置的铅垂位移,如图二,则系统振动的微分方程为: 2sin Mx rx kx me t ωω++= (1) 设 2r n M = , 2 k p M =,2me q M ω= 上式可以写成 22sin x nx p x q t ω++= (2) 这个微分方程的全解为 12()()()x t x t x t =+ 其中 22 1()sin()nt x t Ae p n t ?-=-+是个衰减振动,在振动开始的一定时间后就完全 消失了。所以: 2()sin()x x t B t ω?==- (3) 此式所表示的就是系统的稳态强迫振动。 式中: B →振幅=0 2 22 2 2 222 ()4(1)(2) q q p n p ωω λζλ= -+-+ (4) ψ→相位差 222 22tan 1n p ωζλ ?ωλ ==-- (5) 式中:

第2章 单自由度系统的受迫振动题解

习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值 1 2 .41=+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 360 22 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.0360 4)1(02 2220 == +-= λζλ 222 122tg λζλ ωωα-=-= n p n 由 d nT i i A A e 2.41 === +η 489 .3π 2797 .0ln 8 .1ln ======d d d d d T p T n T nT η η 又 22n p p n d -= 有 579.32 22=+=n d n p n p p 45.51255.1298.0374 .0838 .01838.0223.02tg 103.1408 .045 .0838.0223.04)838.01(45 .0223.0579 .3797.0838.0579 .33 2 222===-??= == ??+-= === == =ααζω λB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n ==1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 222()sin sin()sin()st Q W W k x w e wt x g g W Q x kx w e wt g g kg Q x x w e wt W W ππ-σ+- =+=++=+ 所以:2n kg P W Q h w e W ==, 又因为st st W W k k =σ=σ即 22() st st B w e B W g w =σ-σ将结果代入Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωco s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第三章两自由度系统振动

1α,小车与斜面之间摩擦力 gk P T π 2=, ?? ? ??+= α2sin 2k P h k P A 2 m 。 ()2 2 34mr a r k n +=ω 3.确定图2-3系统的固有频率。

() r R g n -= 32ω 图2-3 第三章 两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a )、车床两顶尖间的工件系统(b )、磨床主轴及砂轮架系统(c )。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在

于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。

单自由度振动分析

结构动力学三级项目 班级:冶金五班 小组成员:邱林凯李海洋 张富张富增 指导老师:王健 2017年4月18日

目录 摘要 (2) 单自由度系统的振动 (3) 单自由度振动系统数学模型的建立 (3) 参数设定与求解 (5) 单自由度系统的强迫振动 (8) 本章小结 (17) 总结与心得 (17)

摘要 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 关键词:振动系统;单自由度;MATLAB;多自由度 前言 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 在结构动力学中,单自由度系统的振动是最简单的运动,但这部分又十分重要。因为从中可得到有关振动理论的一些基本的概念和解决问题的方法,同时它也适用于更为复杂的振动问题,是分析多自由度体系振动问题的基础。因此,搞清楚了单自由度系统的振动,将有助于我们提高分析和解决其他各种振动问题的能力。另外在实际工程中,确实有许多振动问题,可简化为单自由度问题,或近似地用单自由度理论去分析解决。

第5章--两自由度系统的振动

第5章 两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以由质心C 偏离其平衡位置的铅直位移z 及平板的转角 来确定。这样,车辆在铅直面内的振动问题就被简化为一个两自由度的系统。 5.1 双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩擦力及其它阻尼,以它们各自的静平衡位置为坐标x 1、x 2的原点,物体离开其平衡位置的位移用x 1、x 2表示。两物体在水平方向的受力图如图5-2(b)所示,由牛顿第二定律得 ? ? ?=+-=-++00)(2212222212111x k x k x m x k x k k x m &&&& (5-1) 这就是两自由度系统的自由振动微分方程。习惯上写成下列形式 ??? =+-=-+00212211dx cx x bx ax x &&&& (5-2) 显然此时 2 2 1 2 1 2 1,,m k d c m k b m k k a = == += 但对不同的系统, 式(5-2)中各系数的意义并不相同。 图5-1车辆模型 图5-2两自由度的弹簧质量系统

5.1.2 固有频率和主振型 根据微分方程的理论,设方程(5-2)的解,即两自由度无阻尼自由振动系统的解为 ?? ? ??+=+=)sin()sin(2211ααpt A x pt A x (5-3) 或写成以下的矩阵形式 )sin(2121α+?? ? ???????=??????????pt A A x x (5-4) 将式(5-4)代入式(5-2),可得代数齐次方程组 ? ?? ???=????????????----002122 A A p d c b p a (5-5) 保证式(5-5)具有非零解的充分必要条件是式(5-5)的系数行列式等于零,即 0)(2 2 2 =----= ?p d c b p a p 展开后为 0)(24=-++-bc ad p d a p (5-6) 式(5-6)唯一确定了频率p 满足的条件,通常称为频率分程或特征方程。它是2p 的二次代数方程,它的两个特征根为 )(222 22 ,1bc ad d a d a p --??? ??++=μ bc d a d a +?? ? ??-+=2 22μ (5-7) 由于式(5-7)确定的2p 的两个正实根仅取决于系统本身的物理性质,与运动的初始条件无关,因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率p 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的振幅比

[整理]matlab二自由度系统振动.

利用Adams 和Matlab 对二自由度系统振动进行仿真与分析 一、实验思想 Adams 是一种可以对一些典型运动进行高效仿真的软件,本实验是利用Adams 对二自由度系统振动进行仿真及分析,再和理论公式对比,并用另外一种常见的仿真软件Matlab 的仿真结果进行对比,观察两者的差异,分析软件仿真产生差异的原因,加深对二自由度系统振动的理解。 二、二自由度系统振动分析 固有频率取决于系统本身物理性质,而与初始条件无关。对于二 自由度的振动系统是有两种频率的简谐波组成的复合运动,这两个频率都是系统的固有频率。 主振型是当系统按固有频率作自由振动时,称为主振动。系统作 主振动时,任何瞬时各个运动坐标之间具有一定的相对比值,即整个系统具有确定的振动形态,称为主振型。 强迫振动是振动系统在周期性的外力作用下,其所发生的振动称 为强迫振动,这个周期性的外力称为驱动力。 三、二自由度系统自由振动 1.建立二自由度系统振动模型 1)创建底座:先生成一个尺寸合适的长方体基体,再使用add to part 指令创建底座的侧壁。 2)使用new part 指令分别创建两个滑块,创建滑块时应注意滑

块与滑块、滑块与侧壁之间的尺寸适当。 3)弹簧连接:分别用弹簧链接滑块、侧壁的中心点。弹簧生成后,依次选中弹簧,在modify 选项中的stiffness and damping 下拉菜单中将damping coefficient 设置成no damping,即弹簧无阻尼。 添加约束:底座和地面固定,滑块和底座用滑动副连接。 弹簧刚度分别改为1、1、2(newton/mm) 滑块质量分别为1.0 2.0 滑块与机体滑动副的阻尼改为1.0E-007 2.模型展示 3.运动仿真结果 设置x10=12 经过Adams 运算后,滑块1、2 运动状态如图所示:

单自由度受迫振动

单自由度受迫振动 一、运动方程的建立 在简谐荷载t P θsin )t (P =作用在质点m 上,其作用线与运动方向一致。此时的运动方程为: t m P t y t y θωsin )()(2=+?? 经积分可求得运动方程的解。由初始条件t=0时,0,0v y 可得到方程为 t m p t m P t v t y t y θθωωωθθωωω ωsin )(sin )(sin cos )(222200-+?--+= 1.1 当θ=0时或P=0时,体系为自由振动,图像如下图: 考虑阻尼的情况下 不考虑阻尼的情况下

当P不为0,且θ不为零的情况下,体系发生受迫振动。 二、无阻尼振动 单自由度体系受迫振动可分为有阻尼和无阻尼振动两种。在模型建立过程当中,可以直接进行建立。在运行时,只需将c=0即可。如下图,结构在受迫振动的同时会有初位移,初速度引起的自由振动,以及动荷载激起的按结构自振频率振动的分量,即伴随自由振动。

三、有阻尼受迫振动 由于有阻尼的作用,自由振动会很快的衰减掉。在振动计算过程中,通常不考虑自由振动部分尚未完全衰减掉的过渡阶段,而只计算在这以后体系按干扰力的频率θ进行的受迫振动。这时的振幅和频率是恒定的。成为稳态强迫振动。如图: 3.1 振幅 2 2-11A ωβm P ?=,ωθβ= 由公式可见,强迫振动的振幅除与干扰力这幅P 有关外,还与ω θβ=有关。 3.1.1 ωθ<< 此时0≈=ω θβ,得st y ≈≈A 1,μ,可知与自振频率相比,频率很低的干扰力所产生的动力作用并不明显,可当静荷载处理,可认为结构为刚体或荷载并不随时间变化,不存在振动问题。图像如下图所示

第2章 单自由度系统的受迫振动题解

20 习 题 2-1已知系统的弹簧刚度k =800 N/m ,作自由振动时的阻尼振动周期为1.8s ,相邻两振幅的比值1 2.41 =+i i A A ,若质量块受激振力t t F 3cos 360)(=N 的作用,求系统的稳态响应。 解:由题意,可求出系统的运动微分方程为 t m x n x p x n 3cos 36022 =++ 得到稳态解 )3cos(α-=t B x 其中 m k B B B 45.03604)1(02 2 2 2 == +-= λ ζλ 2 2 2 122tg λ ζλωωα-=-= n p n 由 d nT i i A A e 2.41 ===+η 489 .3π2797 .0ln 8 .1ln == == ==d d d d d T p T n T nT ηη 又 2 2 n p p n d -= 有 579.32 2 2 =+=n d n p n p p 45 .51255 .1298 .0374.0838 .01838.0223.02tg 103.1408 .045.0838 .0223.04)838.01(45 .0223.0579 .3797.0838 .0579.332 2 2 2=== -??= ==??+-= ===== = ααζωλB p n p n n 所以 x =1.103 cos(3t -51?27') 2-2一个无阻尼弹簧质量系统受简谐激振力作用,当激振频率ω1 =6rad/s 时,系统发生共振;给

21 质量块增加1 kg 的质量后重新试验,测得共振频率ω2 =5.86rad/s ,试求系统原来的质量及弹簧刚度。 解:设原系统的质量为m ,弹簧常数为k 由 m k p n = ,共振时m k p n = =1ω 所以 m k =6 ① 又由 当 86.51 2=+= =m k p n ω ② ①与②联立解出 m =20.69 kg ,k =744.84 N/m 2-3总质量为W 的电机装在弹性梁上,使梁产生静挠度st δ,转子重Q ,重心偏离轴线e ,梁重及阻尼可以不计,求转速为ω时电机在垂直方向上稳态强迫振动的振幅。 解:列出平衡方程可得: 2 22()sin sin()sin() st Q W W k x w e w t x g g W Q x kx w e w t g g kg Q x x w e w t W W ππ-σ+- = +=++ = + 所以: 2n kg P W Q h w e W = = , 又因为st st W W k k =σ= σ即 22() st st B w e B W g w = σ-σ将结果代入: Q = 即为所求的振幅 2-4如题2-4图所示,作用在质量块上的激振力t F t F ωsin )(0=,弹簧支承端有运动 t a x s ωc o s =,写出系统的运动微分方程,并求稳态振动。 题2-4图

有阻尼自由系统的振动分析

有阻尼自由系统的振动分析 实际系统振动时不可避免地存在阻力,因而在一定时间内振动逐渐衰减直至 停止。阻力有多种来源,例如两个物体之间的干摩擦阻力、气体或液体介质的阻力、有润滑剂的两个面之间的摩擦力、由于材料的粘弹性而产生的内部阻力等等。 在振动中这些阻力统称为阻尼。其弹簧一质量系统模型图示如右图,因为有考虑到阻尼的影响故其运动方程应为: mu(t) cu(t) ku(t) =0 (1)或 u(t) 2 E(u(t)w 2 u(t) =0 (2) 其中2 I,=丄式(2)是一个常系数齐次线性微分方程 m x 2 2 x 2=o (3) 其通解为 x = ? =':-$':V 2 -1 由上可知,式(2)的解与E的大小有关。对于E可分为以下四种情况简要讨论: 1 、临界阻尼情况(E =1或C=2m ) 在这种情况下特征方程的根是一对重根:X1、2=- 3 , 式(2)的通解是u(t)'t[u o(1 …,t)? u°t] (4) 在这种情况下系统不发生振动。临界阻尼就是不产生振动的最小阻尼。 2、超阻尼情况(E > 1或C> 2m w ) U ■丄戶 i"t u o 亠■心u o 此特征根是两个负实数。通解为u(t) =e [u o chd,-0 o sh「d t (5) ⑷d 式中「d = 2 -1,这种阻尼过大系统的运动是按指数规律衰减的非周期运动。 3、负阻尼情况(E < 0或C v 0) 阻尼本来是消耗能量的,负阻尼则表示系统在不断增加能量,这种情况下的运动是不稳定的,其振幅会越来越大,直到系统振动失效破坏。 4、低阻尼或小阻尼情况(E < 1或C< 2m w ) 一…t uo uo~r ,_ __ 此时特征根是两个复数,式(2)的通解为u(t) 二 e (sin d t u cos d t) (6) mgr

两自由度系统的振动

5-1 如图所示的系统,若运动的初始条件:,0,mm 5,0201010====x x x t 试求系统对初始条件的响应。 解: 112211222112102,,22,0,202020cos(),cos()cos()005,k k k k k x x k k x k k x mx kx kx mx kx kx x x A t t kA t t x mm ω?ωω?ω?ω-?? =??-?? -??????????+=??????????-??????????+-=+-===++++== ==2带入可得运动微分方程:m,00,m 令代入原方程可得 -mA 有 时,1020120, cos 5,sin 0,5,0 ().x x A A A mm x x mm ?ω??===-=====有可得 ω有两个值 12p p = = 15522x =+ 255c o c 22x =- 5-2 图示为一带有附于质量m 1和m 2上的约束弹簧的双摆,采用质量的微小水平平移 x 1和x 2为坐标,设m m m ==21,l l l ==21,021==k k ,试求系统的固有频率和主振型。

解:设1m 沿1x 方向移动1个单位,保持 2m 不动,对2m ,1m 进行受力分析,可得: 212 2()0, m A k l m g =--=∑2212m g k l =- 11 12111212122 111211112()()()0 m B k k k l m m g m m m m m g k g k k g k l l l =-+-+=++= +-=++∑ 同理使2m 沿2x 方向移动一个单位,保持1m 不变,对2m 受力分析可得: 22 222()()*0m C k k l m g =--=∑, 22222m g k k l =+ ; 刚度矩阵为 11211222,,k k k k ??=????k ,质量距阵12,00,m m ??=????m , 带入可得运动的微分方程为:mx kx F += 12,00,m m ?? ???? 12x x ??????+11211222,,k k k k ?? ????12x x ???? ??=F ; 综上解得:????? ????=???? ??++-=-???? ??++++)()(222221222212221 2212111t F x l g m k x l g m x m t F x l g m x g l m g l m m k x m 利用刚度影响系数法求刚度矩阵k 。 设0,121==x x ,分别画出1m 与2m 的受力图,并施加二物块力2111,k k ,列平衡方程, 对1m : ∑=0X ,0sin sin 1221111 =---k T T k θθ ∑=0Y ,0cos cos 1 2 2 1 1 =--g m T T θθ 对2 m : ∑ =0X , 0sin 2 2 21 =+θT k ∑ =0Y , 0cos 2 22=-g m T θ

两自由度(无阻尼强迫振动)系统

如图所示两自由度(无阻尼强迫振动)系统,证明在强迫振动共振时系统的运动为主振动。 证: 振动微分方程为 t F x k x k k x m ωsin )(12212111=-++? ? t F x k k x k x m ωsin )(22231222=++-? ? 引入符号 121m k k a += ,12m k b =,22m k c =,22 3m k k d += 111m F f = ,2 22m F f = 则振动微分方程简化为 t f bx ax x ωsin 1211=-+? ? t f dx cx x ωsin 2212=+-? ? 现令 t B x ωsin 11= , t B x ωsin 22= 代入简化的振动方程,得 1212)(f bB B a =--ω 2221)(f B d cB =-+-ω 解之得 2 12 2 2112)()(bf f d f a cf B B +--+=ωω (1) 自由振动时,振动微分方程为 0)(2212111=-++? ?x k x k k x m 0)(2231222=++-? ?x k k x k x m x1 x2 F1sinwt F2sinwt

同理解得主振型为 2 12 2 2112122222)()()()(bf f p d f p a cf f p d cf bf f p a p d c b p a i i i i i i i +--+=-=-=-=-=ν (i=1,2) (2) 由(1)、(2)两式比较可知:当i p =ω时(i=1,2) i i B B ν=)( 1 2 即在系统共振时,系统的振型为主振型,系统的振动为主振动。 李小龙 2017-3-26

第8讲 多自由度受迫振动教案

系统对简谐力激励的响应 设 n 自由度系统沿各个广义坐标均受到频率和相位相同的广义简谐力的激励,系统受迫振动方程: t i e ω0 F KX X M =+ ω:外部激励的频率; 0F :广义激励力的幅值列阵T n F F F ][002010??=F 设稳态解:t i e ωX X =,T n X X X ][21 ??=X 代入作用力方程,得:() 02F X M K =-ω 记()1]2[--=M K H ωω,多自由度系统的幅频响应矩阵 0HF X =,t i e ω0HF X = 简谐激励下,系统稳态响应也为简谐响应,并且振动频率为外部激励的频率,但是各个自由度上的振幅各不相同。 工程中:() M K 2ω-称为阻抗矩阵,()12][--=M K H ωω导纳矩阵。 因此H ij 的物理意义为仅沿j 坐标作用频率为w 的单位幅度简谐力时, 沿 i 坐标所引起的受迫振动的复振幅 ()1 2 ][--=M K H ωωM K M K 2 2)(ωω--= adj 由于 H 含有1 2--M K ω,系统的特征方程02=-M K ω 因此,当外部激励频率ω接近系统的任意一个固有频率时,都会使受迫振动的振幅无限增大,引起共振。 动力吸振器 许多机器或部件由于旋转部分的质量偏心而产生强迫振动,为减小这种振动有时可以采用动力吸振器 若忽略主系统阻尼,主系统固有频率:1 1 1m k = ω,为抑制主系统的振动,

在主系统上附加一个弹簧-质量系统,动力吸振器的无阻尼固有频率: 2 2 2m k = ω 通过调节动力吸振器的参数大小,以达到抑制主系统振动的目的。 系统的强迫振动方程: ?? ? ???=????????????--++????????????--+????????????0sin 0002122221212121t F x x k k k k k x x c c c c x x m m ω 当吸振器阻尼为零时,利用直接法t ωsin X X = 稳态响应振幅: ?????????? ??----+=??????-001 222222 12121F m k k k m k k x x ωω?? ? ???-?=22220)(k m k F ωω M K 2)(ωω-=?:系统的特征多项式 2 2 2222121))(()(k m k m k k ---+=?ωωω 212221221421)(k k m k m k m k m m +++-=ωω 当2 2 m k = ω时,外部激励频率等于吸振器的固有频率,主系统不再振动,01=x 。 此时22 )(k -=?ω,吸振器振幅2 2k F x - =,主系统上受到的激振力恰好被来自吸振器的弹性恢复力平衡。 吸振器参数 k 2、m 2 一般选为:μ==1 2 12m m k k ,使吸振器的固有频率和主系统的固有频率相等。

两自由度系统的振动

x 1 ax 1 bx 2 x 2 cx 1 dx 2 显然此时 m 2 但对不同的系统, 式(5-2)中各系数的意义并不相同。 第5章两自由度系统的振动 应用单自由度系统的振动理论,可以解决机械振动中的一些问题。但是,工程中有很多实际问 题必须简化成两个或两个以上自由度,即多自由度的系统,才能描述其机械振动的主要特征。多自 由度系统的振动特性与单自由度系统的振动特性有较大的差别,例如,有多个固有频率、主振型、 主振动和多个共振频率等。本章主要介绍研究两 自由度系统机械振动的基本方法。 如图5-1所示。平板代表车身,它的位置可以 由质心C 偏离其平衡位置的铅直位移 z 及平板的 转角 来确定。这样,车辆在铅直面内的振动问 题就被简化为一个两自由度的系统。 图 21-1 5.1双质量弹簧系统的自由振动 5.1.1 运动微分方程 图5-2(a)表示两自由度的弹簧质量系统。略去摩 擦力及其它阻尼,以它们各自的静平衡位置为坐标 X 1、X 2的原点,物体离开其平衡位置的位移用 X 1、X 2 何 表示。两物体在水平方向的受力图如图 5-2(b)所示, 由牛顿第二定律得 图5-2两自由度的弹簧质量系统 m 1x 1 (k 1 k 2)x 1 k 2x 2 0 m 2x 2 k 2 x 1 k 2x 2 0 (5-1) 这就是两自由度系统的自由振动微分方程 。习惯上写成下列形式 (5-2) k 1 k 2 k 2 k 2 m 1

5.1.2 固有频率和主振型 根据微分方程的理论,设方程 (5-2)的解,即两自由度无阻尼自由振动系统的解为 x i A i sin( pt ) x 2 A 2 sin( pt ) 或写成以下的矩阵形式 将式(5-4)代入式(5-2),可得代数齐次方程组 a p 2 b A i 0 c d p 2 A 2 保证式(5-5)具有非零解的充分必要条件是式 (5-5)的系数行列式等于零,即 2 a p 2 b (p 2) p 2 c d p 展开后为 p 4 (a d) p 2 ad be 0 的两个特征根为 (ad bc) (5-7) 由于式(5-7)确定的p 2的两个正实根仅取决于系统本身的物理性质, 与运动的初始条件无关, 因此p 称为系统的固有频率。较小的一个称为第一阶固有频率,较大的一个称为第二阶固有频率。 5.2.2 主振型 将固有频率P 1和p 2分别代入式(5-5)的任一式,可得到对应于它们的 振幅比 (5-3) x i X 2 A i sin( pt ) A 2 (5-4) (5-5) (5-6) 式(5-6)唯一确定了频率 p 满足的条件, 通常称为频率分程或特征方程。 它是p 2的二次代数方程,它 2 a d 2 bc

相关文档
最新文档