复合材料

复合材料
复合材料

《复合材料力学》

第一章复合材料的概念、分类及其发展历程

材料分类:金属、无机非金属、有机高分子材料

各有千秋扬长避短:克服单一材料的缺点,产生原来单一材料没有本身所没有的新性能10000BC 各种材料在各个历史时期相对重要性

5000BC 0 1500 1900 1960 1980 1990 2000 2010 2020

金铜铁钢合金钢高温合金;

高分子木材皮肤纤维动物胶,橡胶电木尼龙PE PC PS PP PAN 聚酯高模聚合物导电高分子;

复合材料’金属基复合材料陶瓷基复合材料

石材陶瓷陶器玻璃水泥耐火材料熔融硅耐湿陶瓷韧性机械陶瓷

1、复合材料的定义

什么是复合材料(Composition Materials , Composite) ? 要给复合材料下一个严格精确而又统一的定义是很困难的。概括前人的观点,有关复合材料的定义或偏重于考虑复合后材料的性能,或偏重于考虑复合材料的结构。诸如(1)复合材料是由两种或更多的组分材料结合在一起,复合后的整体性能应超过组分材料,保留了所期望的性能(高强度、刚度、轻的重量),抑制了所不期望的特性(低延性)。

偏重于考虑复合后材料的性能

(2)复合材料是多功能的材料系统,它们可提供任何单一材料所无法获得的特性;它们是由两种或多种成分不同,性质不同,有时形状也不同的相容性材料,以物理形式结合而成的。

F.L. Matthews和R.D.Rawlings认为,复合材料是两个或两个以上组元或相组成的混合物,并应满足下面三个条件:

(1)组元含量大于5%;(2)复合材料的性能显著不同于各组元的性能,(3)通过各种方法混合而成。

按这Matthews和Rawlings给出的定义,钢铁及其合金不应属于复合材料,如Co—Cr —Mo—Si合金不属于复合材料,因为这种合金经过熔化和凝固过程;而仅有像SiC颗粒化的Al合金这种混合而成的材料才属于复合材料。因此有人认为可将复合材料划分为广义复合材料和狭义复合材料。

从广义上讲,复合材料是由两种或两种以上不同化学性质的组分组合而成的材料。但在现代材料学界中,复合材料专指由两种或两种以上不同相态的组分所组成的材料。

复合材料可定义为:用经过选择的、含一定数量比的两种或两种以上的组分(或称组元),通过人工复合、组成多相、三维结合且各相之间有明显界面的、具有特殊性能的材料。

上述复合材料的定义较易被普遍接受,它不仅明确指出复合材料是“通过人工复合的”和“有特殊性能的”材料,而且还指明了复合材料的组分、结构特点及与其他种材料(如简单混合物、化合物、合金)的特征区别。

根据上述复合材料的定义,复合材料应不包括自然形成的具有某些复合材料形态的物质、化合物、单相合金和多相合金。以下面五点概括了复合材料的特点:1、复合材料的组分和相对含量是由人工选择和设计的;2、复合材料是以人工制造而非天然形成的(区别于具有某些复合材料形态特征的天然物质);3、组成复合材料的某些组分在复合后仍然保持其固有的物理和化学性质(区别于化合物和合金);4、复合材料的性能取决于各组成相性能的协同。复合材料具有新的、独特的和可用的性能,这种性能是单个组分材料性能所不及或

不同的;5、复合材料是各组分之间被明显界面区分的多相材料。

国际标准化组织:由两种以上在物理和化学上不同的物质组

合起来而得到的一种多相固体材料。

《材料科学技术百科全书》中关于复合材料的定义如下:复合材料是由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料。它既保留原组成材料的重要特色,又通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优越的性能,与一般材料的简便混合有本质区别。

《材料大辞典》中关于复合材料的定义为:复合材料是根据应用的需要进行设计,把两种以上的有机聚合物材料,或无机非金属材料,或金属材料组合在一起,使之互补性能优势,从而制成的一类新型材料。一般由基体组元与增强材料或功能体组元所组成,因此亦属于多相材料范畴。

根据《材料大辞典》中关于复合材料的定义可以看出,复合材料具有两个鲜明的特点: 1、复合材料不仅能保持原组分的部分优点,而且产生原组分所不具备的新性能。2、复合材料具有可设计性。由于各种原材料都具有各自的优点和缺点,所以在组合时可能出现如下图所示的结果。

因此复合材料必须通过对原材料的选择,各组分分布的设计和工艺条件的保证等,以使原组分材料的优点互相补充,同时利用复合材料的复合效应使之出现新的性能,最大限度地发挥优势。

综上所述,复合材料应具有以下三个特点:

(1)复合材料是由两种或两种以上不同性能的材料组元通过宏观或微观复合形成的一种新型材料,组元之间存在着明显的界面。

(2)复合材料中各组元不但保持各自的固有特性而且可最大限度发挥各种材料组元的特性,并赋予单一材料组元所不具备的优良持殊性能。

(3) 复合材料具有可设计性。

复合材料的结构通常是一个相为连续相,称为基体;而另一相是以独立的形态分布在整个连续相中的分散相,与连续相相比,这种分散相的性能优越,会使材料的性能显著增强,故常称为增强体(也称为增强材料、增强相等)。

在大多数情况下,分散相较基体硬,强度和刚度较基体大。分散相可以是纤维及其编织物,也可以是颗粒状或弥散的填料。在基体与增强体之间存在着界面。

通过对各种定义、解释加以总结,复合材料应包括:组元是人们根据材料设计的基本原则有意识地选择,至少包括两种物理和力学性能不同的独立组元,其中一组元的体积分数一般不低于20%,第二组元通常为纤维、晶须或颗粒;复合材料是人工制造的,而非天然形成的。复合材料的性质取决于组元性质的优化组合,它应优于独立组元的性质,特别是强度、刚度、韧性和高温性能。

复合材料在世界各国还没有统一的名称和命名方法,比较共同的趋势是根据增强体和基体的名称来命名,通常有以下三种情况:

2、复合材料的命名

(1)强调基体时以基体材料的名称为主。如树脂基复合材料、金属基复合材料、陶瓷基复合材料等。

(2)强调增强体时以增强体材料的名称为主。如玻璃纤维增强复合材料、碳纤维增强复合材料、陶瓷颗粒增强复合材料等。

(3)基体材料名称与增强体材料并用。这种命名方法常用来表示某一种具体的复合材料,习惯上把增强体材料的名称放在前面,基体材料的名称放在后面。

例如:“玻璃纤维增强环氧树脂复合材料”,或简称为“玻璃纤维/环氧树脂复合材料或玻璃纤维/环氧”。而我国则常把这类复合材料通称为“玻璃钢”。碳纤维和金属基体构成的复合材料叫“金属基复合材料”,也可写为“碳/金属复合材料”。碳纤维和碳构成的复合材料叫“碳/碳复合材料”。

国外还常用英文编号来表示,如MMC(Metal Matrix Composite)表示金属基复合材料,FRP(Fiber Reinforced Plastics)表示纤维增强塑料,而玻璃纤维/环氧则表示为GF/Epoxy, 或G/Ep(G-Ep)

3、复合材料的分类

随着材料品种不断增加,人们为了更好地研究和使用材料,需要对材料进行分类。材料的分类,历史上有许多方法:

(1)按材料的化学性质分类,有金属材料、非金属材料之分。

(2)按物理性质分类,有绝缘材料、磁性材料、远光材料、半导体材料、导电材料等。(3)按用途分类,有航空材料、电工材料、建筑材料、包装材料等。

材料的分类复合材料的分类方法也很多,常见的分类方法有以下几种:

一、按增强材料形态分为以下三类

1、纤维增强复合材料:

a.连续纤维复合材料:作为分散相的长纤维的两个端点都位于复合材料的边界处;

b.非连续纤维复合材料:短纤维、晶须无规则地分散在基体材料中;

2、颗粒增强复合材料:微小颗粒状增强材料分散在基体中;

3、板状增强体、编织复合材料:以平面二维或立体三维物为增强材料与基体复合而成。

其他增强体:层叠、骨架、涂层、片状、天然增强体

复合材料结构示意图

a)层叠复合b)连续纤维复合c)细粒复合d)短切纤维复合

纤维增强复合材料

纤维增强复合材料分为以下五种:

①玻璃纤维复合材料;②碳纤维复合材料;③有机纤维(芳香族聚酰胺纤维、芳香族聚酯纤维、聚烯烃纤维等)复合材料;④金属纤维(如钨丝、不锈钢丝等)复合材料;⑤陶瓷纤维(如氧化铝纤维、碳化硅纤维、硼纤维等)复合材料。

混杂复合材料:两种或两种以上增强体同一种基体制成的复合材料。可以看成是两种

或多种单一纤维或颗粒复合材料的相互复合,即复合材料的“复合材料”。

①玻璃纤维复合材料

用玻璃纤维增强工程塑料的复合材料,即玻璃钢。玻璃钢分为两种,即热塑性玻璃钢和热固性玻璃钢。

A、热塑性玻璃钢

热塑性玻璃钢是以玻璃纤维为增强剂和以热塑性树脂为粘结剂制成的复合材料。B、热固性玻璃钢

热固性玻璃钢是以玻璃纤维为增强剂和以热固性树脂为粘结剂制成的复合材料。

②碳纤维复合材料

A、碳纤维复合材料:作基体的树脂,目前应用最多的是环氧树脂、酚醛树脂和聚四氟乙烯。B、碳纤维碳复合材料:用有机基体浸渍纤维坯块,固化后再进行热解,或纤维坯型经化学气相沉积,直接填入碳。

C、碳纤维金属复合材料:主要用于熔点较低的金属或合金,如在碳纤维表面镀金属,制成了碳纤维金属复合材料。

D、碳纤维陶瓷复合材料:我国研制了一种碳纤维石英玻璃复合材料。

③硼纤维复合材料

硼纤维是由硼气相沉积在钨丝上来制取的。

A、硼纤维树脂复合材料:基体主要为环氧树脂、聚苯并咪唑和聚酰亚胺树脂等。

B、硼纤维金属复合材料:常用的基体为铝、镁及其合金,还有钛及其合金等。

④金属纤维复合材料

作增强纤维的金属主要是强度较高的高熔点金属钨、钼、钢、不锈钢、钛、铍等,它们能被基体金属润湿,也能增强陶瓷。

A、金属纤维金属复合材料:研究较多的增强剂为钨钼丝,基体为镍合金和钛合金。

B、金属纤维陶瓷复合材料:利用金属纤维的韧性和抗拉能力改善陶瓷的脆性。

二、按材料作用分两类

①结构复合材料;②功能复合材料。

①结构复合材料

主要用于制造受力构件;结构复合材料主要是作为承力结构使用的复合材料,它基本上是由能承受载荷的增强体组元与能联接增强体成为整体承载同时又起分配与传递载荷作用的基体组元构成。

结构复合材料又可按基体材料类型和增强体材料类型来分类见下图所示:

A、按基体类型分类:

聚合物基复合材料;金属基复合材料;陶瓷基复合材料;水泥基复合材料;碳基复合材料

聚合物基复合材料:热固性树脂基;热塑性树脂基;橡胶基

陶瓷基复合材料:高温陶瓷基;玻璃基;玻璃陶瓷基

金属基复合材料:轻金属基;高熔点金属基;金属间化合物基

B、按增强体类型分类:

结构复合材料:叠层式复合材料;片材增强复合材料;颗粒增强复合材料;纤维增强复合材料

片材增强复合材料:人工晶片;天然片状物

颗粒增强复合材料:微米颗粒;纳米颗粒

纤维增强复合材料:不连续纤维复合材料;连续纤维增强复合材料

不连续纤维复合材料:晶须增强复合材料;短切纤维增强复合材料

连续纤维增强复合材料:单向纤维增强复合材料;二维织物增强复合材料;三维织物增强复合材料44

结构复合材料的特点

可根据材料在使用中受力的要求进行组元选材和增强体排布设计,从而充分发挥各组元的效能。

②功能复合材料

指具备各种特殊物理与化学性能的材料。例如:声、光、电、磁、热、耐腐蚀、零膨胀、阻尼、摩擦、屏蔽或换能等。

功能复合材料中的增强体又可称为功能体组元,它分布于基体组元中。功能复合材料中的基体不仅起到构成整体的作用,而且能够产生协同或加强功能的作用。除了上面的各种各样的复合材料以外,还有同质复合材料和异质复合材料。同质复合材料(增强材料和基体材料属于同种物质,如碳/碳复合材料);异质复合材料(前面提及的复合材料多属此类)。复合材料目前状况

(1)玻璃钢和树脂基复合材料非常成熟广泛的应用

(2)金属基复合材料开发阶段某些结构件的关键部位

(3)陶瓷基复合材料及功能复合材料等尚处于研究阶段有不少科学技术问题有待解决4、复合材料发展概况

复合材料发展简史:

学术界开始使用“复合材料”(composite materials )一词大约是在20世纪40年代,当时出现了玻璃纤维增强不饱和聚酯,开辟了现代复合材料的新纪元。从20世纪60年代开始,开发出多种高性能纤维。20世纪80年代以后,由于人们丰富了设计、制造和测试等方面的知识和经验,加上各类作为复合材料基体的材料的使用和改进,使现代复合材料的发展达到了更高的水平,即进入高性能复合材料的发展

阶段。

复合材料的整个发展过程可表示为:古代近代先进复合材料

天然复合材料

自然界中存在许许多多的天然复合材料。例如,树木和竹子是纤维素和木质素的复合体;动物的骨骼则由无机磷酸盐和蛋白质胶原复合而成。

人类很早就接触和使用各种天然复合材料,并仿效自然界制作各种各样的复合材料。例如陕西半坡人--草梗合泥筑墙,且延用至今;漆器--麻纤维和土漆复合而成,至今已四千多年;敦煌壁画--泥胎、宫殿建筑里园木表面的披麻覆漆。

近代,复合材料的发展始于20世纪40年代,第二次世界大战中,玻璃纤维增强聚酯树脂复合材料被美国空军用于制造飞机构件开始算起。50年代得到了迅速发展。

我国从1958年开始发展复合材料

现代复合材料的制作成功则要从1942年,第二次世界大战中,玻璃纤维增强聚酯树脂复合材料被美国空军用于制造飞机构件开始算起。

材料科学家们认为,就世界范围而论,从1940年到1960年这20年间,是玻璃纤维增强塑料时代,可以称为复合材料发展的第一代。

第一代:1940年到1960年,玻璃纤维增强塑料;1965年英国科学家研制出碳纤维;1971年美国杜邦公司开发出Kevler-49 (开芙拉-49 );1975年先进复合材料“碳纤维增强、及Kevler纤维增强环氧树脂复合材料”已用于飞机、火箭的主承力件上。这一时期被称为复合材料发展的第二代。

第二代:1960年到1980年,先进复合材料的发展时期

1980年到1990年间,是纤维增强金属基复合材料的时代,其中以铝基复合材料的应用最为广泛,这一时期是复合材料发展的第三代。

1990年以后则被认为是复合材料发展的第四代,主要发展多功能复合材料,如机敏(智能)复合材料和梯度功能材料等。

随着新型复合材料的不断涌现,复合材料不仅应用在导弹、火箭、人造卫星等尖端工业中,在航空、汽车、造船、建筑、电子、桥梁、机械、医疗和体育等各个部门都

得到应用。

纵观复合材料的发展过程,可以看到:

早期发展出现的复合材料,由于性能相对比较低,生产量大,使用面广,可称之为常用复合材料。

后来随着高技术发展的需要,在此基础上又发展出性能

高的先进复合材料。

复合材料工艺大全

复合材料工艺大全 复合材料成型工艺是复合材料工业的发展基础和条件。随着复合材料应用领域的拓宽,复合材料工业得到迅速发展,老的成型工艺日臻完善,新的成型方法不断涌现,目前聚合物基复合材料的成型方法已有20多种,并成功地用于工业生产。如: (1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术; (14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。 视所选用的树脂基体材料的不同,上述方法分别适用于热固性和热塑性复合材料的生产,有些工艺两者都适用。

复合材料制品成型工艺特点:与其它材料加工工艺相比,复合材料成型工艺具有如下特点: (1)材料制造与制品成型同时完成 一般情况下,复合材料的生产过程,也就是制品的成型过程。材料的性能必须根据制品的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足制品的物化性能、结构形状和外观质量要求等。 (2)制品成型比较简便 一般热固性复合材料的树脂基体,成型前是流动液体,增强材料是柔软纤维或织物,因此用这些材料生产复合材料制品,所需工序及设备要比其它材料简单的多,对于某些制品仅需一套模具便能生产。 ◇成型工艺层压及卷管成型工艺 1、层压成型工艺 层压成型是将预浸胶布按照产品形状和尺寸进行剪裁、叠加后,放入两个抛光的金属模具之间,加温加压成型复合材料制品的生产工艺。它是复合材料成型工艺中发展较早、也较成熟的一种成型方法。该工艺主要用于生产电绝缘板和印刷电路板材。现在,印刷电路板材已广泛应用于各类收音机、电视机、电话机和移动电话机、电脑产品、各类控制电路等所有需要平面集成电路的产品中。 层压工艺主要用于生产各种规格的复合材料板材,具有机械化、自动化程度高、产品质量稳定等特点,但一次性投资较大,适用于批量生产,并且只能生产板材,且规格受到设备的限制。 层压工艺过程大致包括:预浸胶布制备、胶布裁剪叠合、热压、冷却、脱模、加工、后处理等工序。 2、卷管成型工艺 卷管成型工是用预浸胶布在卷管机上热卷成型的一种复合材料制品成型方法,其原理是借助卷管机上的热辊,将胶布软化,使胶布上的树脂熔融。在一定的张力作用下,辊筒在运转过程中,借助辊筒与芯模之间的摩擦力,将胶布连续卷到芯管上,直到要求的厚度,然后经冷辊冷却定型,从卷管机上取下,送入固化炉中固化。管材固化后,脱去芯模,即得复合材料卷管。

聚乳酸_有机蒙脱石纳米插层复合材料的制备及表征

第31卷第4期 非金属矿 Vol.31 No.4 2008年7月 Non-Metallic Mines July, 2008 聚乳酸是一种具有广泛应用前景的环境友好型生物高分子可降解材料[1,2],但其力学性能、热稳定性能不稳定。利用层状硅酸盐的特殊结构, 使硅酸盐片层与聚乳酸基体实现纳米尺度复合,并均匀分散在聚乳酸基体中,形成聚乳酸/有机蒙脱石纳米复合材料 [3,4] 。绝大部分传统聚合物/黏土纳米复合材料废弃物 不能自然降解,对环境造成污染。而聚乳酸/有机蒙脱石纳米复合材料可有效克服这一缺点,是与生态和 环境相适应的“绿色聚合物复合材料”[5~7] ;这类材料 还改善了单一生物降解性聚合物材料的力学、耐热、阻燃、气体阻隔等性能[8~11],拓展了材料的应用范围,可从根本上解决合成材料废品废料造成的污染问题。 目前,聚乳酸/有机蒙脱石纳米复合材料,基本上是以聚乳酸和蒙脱石采用熔融共混法制备[7,9,12]。 本实验采用乳酸单体为原料的原位插层聚合方法,制备了聚乳酸/有机蒙脱石纳米插层复合材料,并通过傅立叶变换红外光谱(FT-IR)、X 射线衍射(XRD )、透射电子显微镜(TEM )、热重分析(TGA )对其结构、形态和热稳定性能进行了表征,同时对材料的降解性能进行了初步研究。1?实验部分 1.1 原料和试剂?D , L-乳酸(含量≥85%),天津市巴斯夫化工有限公司;氯化亚锡,西安化学试剂厂;氧化锌,西安化学试剂厂;乙酸乙酯,天津市巴斯夫化工有限公司;正辛醇,天津市福晨化学试剂厂;三氯甲烷,西安化学试剂厂;分子筛3?型,分析纯,天津市福晨化学试剂厂;以上均为分析纯。有机蒙脱石(OMMT ),实验室自制。 1.2 主要仪器设备 循环水式真空泵,SHB-III 型,郑州长城科工贸有限公司;电热真空干燥箱,DZF-6020 收稿日期:2008-03-28 基金项目:2005年度新疆维吾尔自治区高校科研计划(XJEDU2005E01) 聚乳酸/有机蒙脱石纳米插层复合材料的制备及表征 甄卫军?马小惠?袁龙飞?刘月娥?李志娟?庞桂林 (新疆大学化学化工学院,乌鲁木齐 830046) 摘?要?以乳酸制备的丙交酯和有机蒙脱石为原料, 通过原位插层聚合法制备了聚乳酸/有机蒙脱石纳米插层复合材料, 分别采用傅立叶变换红外光谱、X 射线衍射、透射电子显微镜、热重分析等对聚乳酸/有机蒙脱石纳米插层复合材料的结构、形貌及热稳定性进行了表征和分析,同时研究了材料的降解性能。研究表明,有机膨润土在聚合过程中被剥离成很小的粒子,并分散在聚乳酸基体中,形成聚乳酸/有机蒙脱石纳米插层复合材料。其蒙脱石层间距为2.439nm ,层间距明显增大,表明聚乳酸分子链插入到蒙脱石片层间,实现了原位插层聚合,并形成了插层型结构。材料的热失重曲线移向高温端,其热分解温度提高,热稳定性比纯PLA 有明显的提高。在不同介质中降解结果表明,材料在碱液中降解速率最快。 关键词?有机蒙脱石?聚乳酸?纳米插层复合材料?降解 中图分类号: TB332 文献标识码:A 文章编号:1000-8098(2008)04-0048-05Preparation and Characterization of Polylactic Acid/Organomontmorillonite Intercalation Nanocomposite Zhen Weijun Ma Xiaohui Yuan Longfei Liu Yuee Li Zhijuan Pang Guilin (College of Chemistry and Chemical Engineering of Xinjiang University, Urumqi 830046) Abstract The polylactic acid/organomontmorillonite intercalation nanocomposite was prepared by in-situ intercalative polymerization with organomontmorillonite (OMMT) and lactide(LA) which was obtained from lactic acid. The structure and properties of polylactic acid/organomontmorillonite intercalation nanocomposite were characterized by FT-IR, XRD, TEM and TGA. The biodegradability of PLA/OMMT intercalation nanocomposite was also discussed in this study. The research results indicated that the silicate layers were exfoliated and dispersed into the PLA matrix during the polymerization, the layer spacing of PLA/OMMT intercalation nanocomposite was 2.439nm, which revealled the swellable silicate layers were intercalated into the PLA matrix, and in-situ intercalative polymerization was done. The TGA curve of PLA/OMMT intercalation nanocomposite was shifted to higher temperature, which illustrated that intercalation of the OMMT into PLA matrix enhanced the thermal stability of PLA/OMMT intercalation nanocomposite. The results of the degradation of PLA/OMMT intercalation nanocomposite in different media showed PLA/OMMT intercalation nanocomposite was degraded more rapidly in NaOH solution. Key words organomontmorillonite polylactic acid intercalation nanocomposite degradation

复合材料在汽车制造中的应用

2012年10月(下)工业技术科技创新与应用 复合材料在汽车制造中的应用 刘莉 (兰州职业技术学院,甘肃兰州730070) 汽车工业是我国国民经济的重要产业支柱之一,近年来已取得迅猛的发展。截至2010年,我国汽车产销量分别为1826.7和1806.9万辆,跃居世界第一。按照“十二五”规划,到2015年将形成2500万辆的产能[1]。汽车工业的快速发展伴随着能源匮乏、环境污染等问题。汽车节能、环保、安全既是国际汽车技术的发展方向,也是我国产业政策的要求[2]。由于钢材料刚性好、易加工,能满足汽车各零部件对材料性能的要求,但钢材料也存在易腐蚀、密度大、能量消耗多的缺点,因此以轻质材料取代传统钢材料势在必行。近年来,复合材料在汽车制造业的开发应用减轻了重量、降低了油耗、提高了强度和改善震动等性能[3]。复合材料是由两种或者多种不同性质的材料用物理或化学方法在宏观尺度上组成的具有新性能的材料。一般复合材料的性能优于其组成材料的性能,并且有些性能是原来组成材料所没有的,如改善材料的刚度、强度和热学等性能等。 1汽车制造业发展趋势 为缓解日益减少的石油资源的压力,节能减排是影响可持续发展的关键因素。用高性能轻质材料是实现汽车轻量化的一条重要途径。减轻了汽车重量,滚动阻力随之减少,每公里油耗也就随之下降,不但降低了石油资源的损耗,还减少了尾气排放,缓解了温室效应的压力[2]。近年来,由于机械和汽车领域对材料强度和硬度方面的要求越来越高,使得复合材料得到广泛的应用。但与复合材料在宇航方面的应用相比,汽车工业应用复合材料的发展较为缓慢,主要是受限于材料价格高,复合材料的成型加工困难等因素。目前,伴随高性能复合材料研发与应用,已可通过减轻材料重量来节约成本。复合材料与金属材料相比,具有能耗低、加工方便、材料性能高和使用寿命长的特点,目前已大规模应用于汽车零部件和内部装饰等方面[4]。 2复合材料在汽车零部件开发应用 2.1在汽车发动机上的应用 发动机的主要部件是活塞,它的工作环境为高温高压,并且活塞在运动过程中不断与活塞环、汽缸壁之间产生摩擦,极易损坏,因此要保证发动机正常工作,要选择耐磨的复合材料。目前,应用于活塞的材料主要由低密度金属和增强陶瓷纤维组成。此外,国外又推出了氧化铝纤维增强活塞顶的铝活塞及氧化铝增强的镁合金制造的活塞等[5]。由于陶瓷材料质量较轻,若将配气机构中的附件也用陶瓷复合材料替换后,可以通过提高转速的方法来提高发动机的功率,或者转速不变,也可通过降低气门弹簧的弹力而降低功率损耗,从而达到节能减排的目的。气门座和摇臂头等易磨损部件再采用陶瓷材料后,也可减少磨损,延长使用寿命。在柴油机的涡流室安装陶瓷镶块后,改善了发动机低负荷时的燃烧,及低温启动性能,降低了燃烧噪声。涡轮增压器零件中使用最普遍的是增压器陶瓷涡轮,与金属涡轮相比,陶瓷涡轮质轻,转动惯量仅为金属涡轮的20%,“涡轮滞后”现象得以改善,提高了增压器的动态性能,能在金属涡轮不能承受的高温下工作[6]。韩鹏[7]从碳纤维复合材料的力学性能和发动机罩的结构特点出发,按照等刚度原则,设计并分析了碳纤维复合材料发动机罩。用有限元分析方法,确定了发动机罩性能参数。结果发现,复合材料发动机罩在满足刚度条件下,可减重约16%左右。 2.2车轮 刘国军[4]数值模拟了碳纤维/环氧(T300/5208)复合材料车轮与铝合金车轮的弯曲疲劳试验。通过对汽车车轮建模,用有限元AN-SYS软件,按国家标准车轮弯曲疲劳试验,分别分析了铝合金和复合材料汽车车轮的强度。结果发现,在相同应力水平下,复合材料车轮比铝合金车轮轻了40.74%。同时,优化设计碳纤维/环氧(T300/ 5208)复合材料汽车车轮的轮辋厚度、车轮安装凸缘厚度和车轮的轮廓尺寸,也可以使车轮的重量降低。 2.3其他部件 东风汽车公司开发的共聚甲醛与钢背复合润滑滑动轴承复合材料,已应用于汽车的制动系、传动系、转向系等轴承中。具有综合性能优于青铜合金,工艺稳定、生产率高、价格低廉等优点。此外,铜材质的散热器管材也逐渐被复合材料取代。目前一般采用30%GF 增强的PA66注射成型,并以机械方式与散热器接合,可明显提高设备的耐腐蚀性并节约了金属材料。用橡胶密封圈使接合面上达到密封的目的,还可以起到防振作用[8]。张泽书[9]用玻璃纤维和改性丙纶为原料,设计开发了GMT复合材料,并用于汽车内饰。产品规格为单位质量1150~1250g/m2,幅宽为2200mm。研究了GMT复合材料成型加工工艺参数与其力学性能之间的关系。结果发现,采用玻璃纤维和改性丙纶直接混合方法,用非织造布设备进行制备GMT复合材料,成功解决了玻璃纤维和改性丙纶均匀混合、梳理成网均匀等技术问题。 3展望 含有陶瓷纤维、玻璃纤维、高分子材料以及其他新型非金属原料的高性能复合材料在汽车制造业中的广泛研究与应用,极大减小了汽车材料对金属的依赖,实现汽车轻量化,有效缓解了对资源的压力。伴随我国汽车产业的迅猛发展,探索并开发高性能新型复合材料,进一步减轻重量,增强材料力学及加工性能,降低成本,促进汽车产业的节能减排,已经成为一种必不可挡的趋势。 参考文献 [1]黄茂松,贾润萍.中国汽车用聚氨酯材料发展方向[J].聚氨酯, 2012,3:61-66 [2]郑学森.国内汽车复合材料应用现状与未来展望[J].玻璃纤维, 2010,3:35-42 [3]刘军,王腾宁.复合材料在汽车中的应用[J].工程塑料应用, 1996,3:31-33 [4]刘国军.复合材料汽车车轮的强度分析及优化设计[D].哈尔滨:哈尔滨工业大学,2006 [5]曹令俊.复合材料在汽车工业中的应用及趋势[J].天津汽车, 2000,1:28-31 [6]罗鹰.复合材料在现代汽车发动机中的应用[J].汽车工程师, 2009,2:50-52 [7]韩鹏.碳纤维复合材料发动机罩优化设计研究[D].长春:吉林大学,2011 [8]向乐新,潘典三.树脂基复合材料及其在汽车中的应用[J].武汉工学院学报,1995,4:19-25 [9]张泽书.汽车内饰用GMT复合材料的制备与研究[D].郑州:中原工学院,2009 摘要:根据当前汽车制造业的发展趋势,从节能减排角度入手,分析了汽车轻量化是当今汽车工业发展的方向,综述了复合材料在我国汽车制造中的开发与应用。 关键词:复合材料;汽车制造;应用 110 --

航空航天复合材料技术发展现状

航空航天复合材料技术发展现状 2008-11-25 中国复合材料在线[收藏该文章] 材料的水平决定着一个领域乃至一个国家的科技发展的整体水平;航空、航天、空天三大领域都 对材料提出了极高的要求;材料科技制约着宇航事业的发展。 固体火箭发动机以其结构简单,机动、可靠、易于维护等一系列优点,广泛应用于武器系统及航 天领域。而先进复合材料的应用情况是衡量固体火箭发动机总体水平的重要指标之 一。在固体发动机研制及生产中尽量使用高性能复合材料已成为世界各国的重要发展目标, 目前已拓展到液体动力领域。科技发达国家在新材料研制中坚持需求牵引和技术创新相结合,做到了需求牵引带动材料技术发展,同时材料技术创新又推动了发动机水平提高的良性发展。 目前,航天动力领域先进复合材料技术总的发展方向是高性能、多功能、高可靠及低成本。 作为我国固体动力技术领域专业材料研究所,四十三所在固体火箭发动机各类结构、功能复合材料研究及成型技术方面具有雄厚的技术实力和研究水平,突破了我国固体火箭发动 机用复合材料壳体和喷管等部件研制生产中大量的应用基础技术和工艺技术难关,为我国的 固体火箭发动机事业作出了重要的贡献,同时牵引我国相关复合材料与工程专业总体水平的 提高。建所以来,先后承担并完成了通讯卫星东方红二号远地点发动机,气象卫星风云二号 远地点发动机,多种战略、战术导弹复合材料部件的研制及生产任务。目前,四十三所正在 研制多种航天动力先进复合材料部件,研制和生产了载人航天工程的逃逸系统发动机部件。 二、国内外技术发展现状分析 1、国外技术发展现状分析 1.1结构复合材料 国外发动机壳体材料采用先进的复合材料,主要方向是采用炭纤维缠绕壳体,使发动机质量比有较大提高。如美国“侏儒”小型地地洲际弹道导弹三级发动机(SICBM-1 、-2、- 3 )燃烧室壳体由IM-7炭纤维/HBRF-55A 环氧树脂缠绕制作,IM-7炭纤维拉伸强度为 5 300MPa , HBRF-55A 环氧树脂拉伸强度为84.6MPa,壳体容器特性系数(PV/Wc )>3 9KM ;美国的潜射导弹“三叉戟II (D5 )”第一级采用炭纤维壳体,质量比达0.944,壳 体特性系数43KM,其性能较凯芙拉/环氧提高30% 国外炭纤维的开发自八十年代以来,品种、性能有了较大幅度改观,主要体现在以下两个方 面:①性能不断提高,七、八十年代主要以3000MPa的炭纤维为主,九十年代初普遍使用 的IM7、IM8纤维强度达到5300MPa,九十年代末T1000纤维强度达到7000MPa,并已开始工程应用;②品种不断增多,以东丽公司为例,1983年产的炭纤维品种只有4种,至U 1995 年炭纤维品种达21种之多。不同种类、不同性能的炭纤维满足了不同的需要,为炭纤维复合材料的广泛应用提供了坚实的基础。 芳纶纤维是芳族有机纤维的总称,典型的有美国的Kevlar、俄罗斯的APMOC,均已在多 个型号上得到应用,如前苏联的SS24、SS25洲际导弹。俄罗斯的APMOC纤维生产及其应 用技术相当成熟,APMOC纤维强度比Kevlar高38%、模量高20%,纤维强度转化率已达到75%以上。PBO纤维是美国空军1970年开始作为飞机结构材料而着手研究的产品,具有刚

复合材料层合板

复合材料层合板 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2000年2月10日 引言 本模块旨在概略介绍纤维增强复合材料层合板的力学知识;并推导一种计算方法,以建 立层合板的平面内应变和曲率与横截面上内力和内力偶之间的关系。虽然这只是纤维增强复 合材料整个领域、甚至层合板理论的很小一部分,但却是所有的复合材料工程师都应掌握的 重要技术。 在下文中,我们将回顾各向同性材料矩阵形式的本构关系,然后直截了当地推广到横观 各向同性复合材料层合板。因为层合板中每一层的取向是任意的,我们随后将说明,如何将 每个单层的弹性性能都变换到一个共用的方向上。最后,令单层的应力与其横截面上的内力 和内力偶相对应,从而导出控制整块层合板内力和变形关系的矩阵。 层合板的力学计算最好由计算机来完成。本文简略介绍了几种算法,这些算法分别适用 于弹性层合板、呈现热膨胀效应的层合板和呈现粘弹性响应的层合板。 各向同性线弹性材料 如初等材料力学教材(参见罗兰奈斯(Roylance )所著、1996年出版的教材1)中所述, 在直角坐标系中,由平面应力状态(0===yz xz z ττσ)导致的应变为 由于泊松效应,在平面应力状态中还有沿轴方向的应变:z )(y x z σσνε+?=,此应 变分量在下文中将忽略不计。在上述关系式中,有三个弹性常量:杨氏模量E 、泊松比ν和 切变模量。但对各向同性材料,只有两个独立的弹性常量,例如,G 可从G E 和ν得到 上述应力应变关系可用矩阵记号写成 1 参见本模块末尾所列的参考资料。

方括号内的量称为材料的柔度矩阵,记作S 或。 弄清楚矩阵中各项的物理意义十分重要。从矩阵乘法的规则可知,中第i 行第列的元素表示第个应力对第i 个应变的影响。例 如,在位置1,2上的元素表示方向的应力对j i S j i S j j y x 方向应变的影响:将E 1乘以y σ即得由y σ引起的方向的应变,再将此值乘以y ν?,得到y σ在x 方向引起的泊松应变。而矩阵中的 零元素则表示法向分量和切向分量之间无耦合,即互不影响。 如果我们想用应变来表示应力,则式(1)可改写为: 式中,已用G )1(2ν+E 代替。该式可进一步简写为: 式中,是刚度矩阵。注意:柔度矩阵S 中1,1元素的倒数即为杨氏模量,但是 刚度矩阵中的1,11 S D ?=D 元素还包括泊松效应、因此并不等于E 。 各向异性材料 如木材、或者如图1所示的单向纤维增强复合材料,其典型特征是:沿 纤维方向的弹性模量有纹理的材料,1E 将大于沿横向的弹性模量和。当2E 3E 321E E E ≠≠时,该材料称 为其力学性能是各向同性的,即为正交各向异性材料。不过常见的情况是:在垂直于纤维方向的平面内,可以足够精确地认 32E E =,这样的材料称为横观各向同性材料。这类各向异 同性材料的推广: 性材料的弹性本构关系必须加以修正, 下式就是各向同性弹性体通常的本构方程对横观各向 式中,参数12ν是主泊松比,如图1所示,沿方向1的应变将引起沿方向2的应变,后者与 前者之比的绝对值就是12ν。此参数值不象在各向同性材料中那样,限制其必须小于0.5。反 过来,沿方向2的应变将引起沿方向1的应变,后者与前者之比的绝对值就是21ν。因为方

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

工程复合材料

工程复合材料论文 学院(部) 材料科学与工程学院 专业材料学 班级 2017131 姓名周健 学号 2017131007 年月日 材料的复合是材料发展的必然规律,复合材料是把金属、无机非金属、高分子等材料组合成一种多相材料,从而赋予复合材料轻质高强以及其他的优越的综合性能。同时复合材料还具有复合效应,即经过复合以后产生各原始组分所不具备的性能。因此,在不少高技术领域。如航天、航空、信息等产业中获得重要的应用。目前复合材料已与金属、无机非金属、高分子并列为四大材料。 纳米复合材料是指分散相尺度至少在一维方向上小于100nm的复合材料,

分散相可以是非品质、半晶质、品质或者兼而有之,可以是有机、无机或两者都有。由于纳米粒子的小尺寸、大比表面积,使表面原子数、表面张力和表面能随粒径的减小急剧增加,从而具有显著的小尺寸效应、量子尺寸效应、表面效应和宏观量子隧道效应等,赋予材料许多新奇的特性和新的规律,为纳米复合材料的研究和应用展示了广阔的前景。 1.橡胶纳米复合材料 1.1黏土/橡胶纳米复合材料 黏土矿物是由硅氧四面体和铝氧八面体按比例叠垛而成的层状硅酸盐,其片层间距一般在几纳米到十几纳米之间,层间存在可交换性的正离子,层与层之间的结合力弱,通过离子交换的方法,将有机正离子引入层问,从而使通常亲水性的黏土矿物表面疏水化,改善黏土与橡胶基质之问的润湿作用。黏土/橡胶纳米复合材料制备关键是扩大黏土片层间距。将橡胶长链引入层间,其微观结构可分为插层型和完全剥离型,目前制备的黏土/橡胶纳米复合材料大多属于插层型。 1.2炭黑和白炭黑/橡胶纳米复合材料 作为纳米粉体。炭黑和白炭黑均具有纳米材料的大多数特性(如强吸附效应、自由基效应、电子隧道效应、不饱和价效应等)。根据纳米复合材料的定义,及炭黑和自炭黑的原生粒子以及它们在橡胶基质中的一次聚合体的尺寸,应当将炭黑和自炭黑增强橡胶归属为纳米复合材料的范畴。更严格地讲,应当是N660级别以上的炭黑增强橡胶。也正因为如此,炭黑和白炭黑的高增强地位一直很难被取代。尽管在橡胶基质中炭黑和白炭黑常以二次聚集体的形式存在.但这种聚集体是松散的物理结合体,如同“密度”较大的星云,并逐渐向外弥散。虽然二次聚集体会对其增强性能产生不同导向和不同程度的影响,但真正起作用的仍是其原生粒子和一次聚集体。另外,就目前报道的大多数纳米复合材料而言,连续相中局部存在分散相的聚集体是非常普遍的,如原位聚合法生成的黏土/尼龙6纳米复合材料,在分散相质量分数超过5%时,也很难做到黏土单晶层在整个基质中完全地、等间距地均匀分散,尽管晶层间距加大了,但仍以较紧密的单元分布在尼龙6基质中。最后,当用物理机械性能判断材料是否为纳米复合材料时,必须考虑分散相的形状问题。 1.3 ZnO(Al2O3)/橡胶纳米复合材料 纳米氧化锌因其粒径小,比表面积大,吸附活性强,从而具有表面效应和高

复合材料层合板强度计算现状

复合材料层合板强度计算现状 作者:李炳田 1.简介 复合材料是指由两种或者两种以上不同性能的材料在宏观尺度上组成的多相材料。一般复合材料的性能优于其组分材料的性能,它改善了组分材料的刚度、强度、热学等性能。复合材料从应用的性质可分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能,例如:导电复合材料,它是用聚合物与各种导电物质通过分散、层压或通过表面导 电膜等方法构成的复合材料;烧灼复合材料,它由各种无机纤维增强树脂或非金属基体构成,可用于高速飞行器头部热防护;摩阻复合材料,它是用石棉等纤维和树脂制成的有较高摩擦系数的复合材料,应用于航空器、汽车等运转部件的制动。功能复合材料由于其涉及的学科比较广泛,已不是单纯的力学问题,需要借助电磁学,化学工艺、功能学等众多学科的研究方法来研究。结构复合材料一般由基体料和增强材料复合而成。基体材料主要是各种树脂或金属材料;增强材料一般采用各种纤维和颗粒等材料。其中增强材料在复合材料中起主要作用,用来提供刚度和强度,而基体材料用来支持和固定纤维材料,传递纤维间的载荷。结构复合材料在工农业及人们的日常生活中得到广泛的应用,也是复合材料力学研究的主要对象,是固体力学学科中一个新的分支。在结构复合材料中按增强材料的几何形状及结构形式又可划分为以下三类: 1.颗粒增强复合材料,它由基体材料和悬浮在基体材料中的一种或多种金属或非金属颗 粒材料组合而成。 2.纤维增强复合材料,它由纤维和基体两种组分材料组成。按照纤维的不同种类和形状 又可划分定义多种复合材料。图1.1为长纤维复合材料的主要形式。 图1.1 3.复合材料层合板,它由以上两种复合材料的形式组成的单层板,以不同的方式叠合在 一起形成层合板。层合板是目前复合材料实际应用的主要形式。本论文的主要研究对象就是长纤维增强复合材料层合板的强度问题。长纤维复合材料层合板主要形式如图1.2所示。 图1.2 一般来说,强度是指材料在承载时抵抗破坏的能力。对于各向同性材料,在各个方向上强度均相等,即强度没有方向性,常用极限应力来表示材料的强度。对于复合材料,其强度的显著的特点是具有方向性。因此复合材料单层板的基本强度指标主要有沿铺层主方向(即纤维方向)的拉伸强度Xt和压缩强度Xc;垂直于铺层主方向的拉伸强度Yt和压缩强度Yc以及平面内剪切强度S等5个强度指标。对于复合材料层合板而言,由于它是由若干个单层

汽车复合材料的历史和现状

汽车复合材料的历史和现状 作为一种新型的轻量化材料,树脂基复合材料正日益成为汽车制造业中的新宠。 汽车复合材料的历史 自开始制造汽车以来,复合材料,包括天然复合材料和人工合成复合材料便以各种形式应用于汽车中。早在1908年,美国福特汽车公司第一款大批量开发生产的T型车,其引擎盖就是采用天然复合材料——木头制造而成的。其后,很多汽车的车身框架、车底板和汽车装饰品等也均由木质材料制成。在汽车制造史上,复合材料被大规模地应用于汽车部件生产的一个典型例子是汽车的轮胎。众所周知,轮胎的橡胶基体中含有大约50%的碳黑,它不仅使轮胎呈黑色,更主要的是,碳黑的加入显著地提高了轮胎的耐磨性。通过在轮胎纵向方向加入纤维和钢丝,还大大增加了轮胎的结构强度,这是典型的人工合成复合材料在汽车领域的应用案例。尽管现代轮胎的制造技术己取得了巨大进步,但从福特公司T型车诞生以来,轮胎的基本配方和结构形式却一直都没有改变。因此我们可以认为,汽车制造业的发展史,实际上也是复合材料在汽车上的应用史。当然,本文主要介绍的是树脂基汽车复合材料,其历史应该追溯到树脂基复合材料诞生之后。 树脂基复合材料(以下简称“复合材料”)自1932年在美国诞生以来,至今已有近75年的发展历史。然而,其真正批量化应用于汽车工业则始于1953年。据资料记载,1951年,时任通用汽车公司车身设计负责人的Harley Early先生从通用汽车公司展示的玻纤增强复合材料概念车中得到启发,他憧憬着有朝一日能够设计出一款供批量生产的全玻纤增强复合材料车身的跑车,这款跑车可以结合所有欧洲汽车的优点。很快,他的想法得到了通用汽车公司副总裁Harlow Curtice先生的支持。1952年,通用汽车公司将一款原准备采用常规的钢材制造的跑车改为采用玻纤增强复合材料来制造,并将原名“Opel”改为“Corvette”,Corvette的英文原意是“轻巡洋舰”,其涵义充分表达了轻型、快速和操控性强的设计理念。 第一批Corvette车身采用手糊工艺制作而成:首先将剪切好的玻纤增强材料铺设在开放式的模具内,然后通过树脂浸渍、滚压赶泡、固化反应及脱模等一系列工序制作完成,这在当时是一种全新的车身制造工艺。经过全员努力,1952年12月22日,通用汽车公司成功地完成了该车身的开发制造。 1953年1月17日,一辆锃亮的配有红色内饰的白色Chevrolet Corvette跑车在美国纽约的Waldorf宾馆首次向观众展示(如图1所示),这是世界上第一款全复合材料车身的两座位跑车,这一天也因此成为了汽车复合材料史上值得永远纪念的日子。1953年6月30日,第一批试生产的300辆Corvette车在美国的Michigan投产。1954年,其生产地被移至美国的 St.Louis。从1984年至今,Chevrolet Corvette车型一直在Bowling Green生产。

复合材料英语

复合材料英语 复合材料专业术语 高性能的长纤维增强热塑性复合材料:(LF(R)T)Long Fiber Reinforced Thermoplastics 玻璃纤维毡增强热塑性复合材料:(GMT)Glass Mat Reinforced Thermoplastics 短玻纤热塑性颗粒材料:(LFT-G)Long-Fiber Reinforce Thermoplastic Granules 长纤维增强热塑性复合材料:(LFT-D)Long-Fiber Reinforce Thermoplastic Direct 玻纤:Glass Fiber 玄武岩纤维:Basalt Fibre (BF) 碳纤维:CFRP 芳纶纤维:AFRP ( Aramid Fiber) 添加剂:Additive 树脂传递模塑成型:(RTM)Resin Transfer Molding 热压罐:autoclave 热压罐成型:autoclave moulding 热塑性复合材料缠绕成型:filament winding of thermoplastic composite 热塑性复合材料滚压成型:roll forming of thermoplastic composite 热塑性复合材料拉挤成型:pultrusion of thermoplastic composite 热塑性复合材料热压罐/真空成型:thermoforming of thermoplastic composite 热塑性复合材料液压成型:hydroforming of thermoplastic composite 热塑性复合材料隔膜成型:diaphragm forming of thermoplastic composite 离心浇注成型:centrifugal casting moulding 泡沫贮树脂成型:foam reserve resin moulding 环氧树脂基复合材料:epoxy resin matrix composite 聚氨酯树脂基复合材料:polyurethane resin matrix composite 热塑性树脂基复合材料:thermoplastic resin matrix composite 玻璃纤维增强树脂基复合材料:glass fiber reinforced resin matrix composite 碳纤维增强树脂基复合材料:carbon fiber reinforced resin matrix composite 芳纶增强树脂基复合材料:aramid fiber reinforced resin matrix composite 混杂纤维增强树脂基复合材料:hybrid fiber reinforced resin matrix composite 树脂基复合材料层压板:resin matrix composite laminate 树脂基纤维层压板:resin matrix fiber laminate 树脂基纸层压板:resin matrix paper laminate 树脂基布层压板:resin matrix cloth laminate

航空航天复合材料设计要求比较

航空航天复合材料结构设计要求的比较 复合材料是指由有机高分子、无机非金属或金属等几类不同材料通过复合工艺组合而成的新型材料,它既能保留原有组分材料的主要特色,又通过材料设计使各组分的性能互相补充并彼此关联与协同,从而获得原组分材料无法比拟的优越性能, 复合化是当代材料技术发展的重要趋势之一,而大量采用高性能复合材料是航空航天飞行器发展的重要方向。航空航天追求性能第一的特点,使其成为先进复合材料技术的率先实验和转化的战场,航空航天工业的发展和需求推动了先进复合材料的发展,而先进复合材料的发展和应用又促进了航空航天的进步。先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。将先进复合材料用于航空航天结构上可相应减重20%~30%,这是其他先进技术很难达到的效果。美国NASA的Langley 研究中心在航空航天用先进复合材料发展报告中指出,各种先进技术的应用可以使亚音速运输机获得51%的减重(相对于起飞重量)效益,其中,气动设计与优化技术减重4·6%,复合材料机翼机身和气动剪裁技术减重24·3%,发动机系统和热结构设计减重13.1%,先进导航与飞行控制系统减重9%,说明了先进复合材料的应用减重最明显。这不仅带来相当大的经济效益,而且可以增加装备的机动性,还可以提高其抗疲劳、耐腐蚀性能。 由于航天与航空的使用环境和应用范围存在区别,因而造成复合

材料在航空飞行器与航天飞行器上使用的设计要求也有很多不同之处。而且由于任务目标和使用环境差异,飞机结构的要求不能直接作为空间飞行器的结构设计要求。空间飞行器的飞行环境和承受的载荷很特殊,并且几乎没有可能再去检查和维修航天器的结构或在其任务条件下验证其结构的性能。因此,空间飞行器复合结构设计必须比飞机复合材料结构设计更加稳定可靠。虽然如此,飞机行业的复合材料结构设计方面的经验仍然可以为航天器的复合材料结构设计提供一定的参考和借鉴。 航空和航天复合材料结构设计要求具体在哪些方面存在差异呢? 第一点是两者的生成规模差别很大。航空产品通常进行大规模生产,不仅整机生产数量多,而且因为需要维修等等,这样更换损坏的零件同样数量巨大;而航天产品则大多生产较少。因此在结构设计时,航空产品对结构设计时需要对加工工艺等配套设施进行细致的考虑,以达到成本、周期。效益的均衡,而航天结构设计则大多不需要考虑。同时生产数量的差异也使后续的设计工作产生了很大不同。 第二点是初始设计要求。飞机工业需要通过测试数量庞大的样本总结设计出一套模块建立的方法。但航天器的生产数量很有限,因此用于航空专业的样本采集到模块建立的方法,要想应用于航天器,从成本和进度的角度来看,是不切实际的。 第三点是强度要求。在航空和航天器中,对于强度的要求二者是一致的,但因工作环境不同存在一定的区别。航空和航天器复合材料

改性塑料粒子复合材料项目计划书(项目投资分析)

第一章项目概述 一、项目概况 (一)项目名称 改性塑料粒子复合材料项目 (二)项目选址 xxx工业园 场址选择应提供足够的场地用以满足项目产品生产工艺流程及辅助生产设施的建设需要;场址应具备良好的生产基础条件而且生产要素供应充裕,确保能源供应有可靠的保障。节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积26833.41平方米(折合约40.23亩)。 (四)项目用地控制指标 该工程规划建筑系数74.85%,建筑容积率1.56,建设区域绿化覆盖率5.39%,固定资产投资强度196.17万元/亩。

(五)土建工程指标 项目净用地面积26833.41平方米,建筑物基底占地面积20084.81平 方米,总建筑面积41860.12平方米,其中:规划建设主体工程28573.71 平方米,项目规划绿化面积2257.41平方米。 (六)设备选型方案 项目计划购置设备共计132台(套),设备购置费2233.56万元。 (七)节能分析 1、项目年用电量1124478.12千瓦时,折合138.20吨标准煤。 2、项目年总用水量22801.52立方米,折合1.95吨标准煤。 3、“改性塑料粒子复合材料项目投资建设项目”,年用电量1124478.12千瓦时,年总用水量22801.52立方米,项目年综合总耗能量(当量值)140.15吨标准煤/年。达产年综合节能量44.26吨标准煤/年, 项目总节能率23.09%,能源利用效果良好。 (八)环境保护 项目符合xxx工业园发展规划,符合xxx工业园产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成

相关文档
最新文档