EEV 电子膨胀阀系统指南03C220811_1.0

EEV 电子膨胀阀系统指南03C220811_1.0
EEV 电子膨胀阀系统指南03C220811_1.0

电子膨胀阀的工作原理及控制

电子膨胀阀的工作原理及控制 电子膨胀阀——吸气过热度控制吸气过热度控制系统由电子膨 胀阀、压力传感器、温度传感器、控制器组成,工作时,压力传感器将蒸发器出口压力 P1、温度传感器将压缩机吸气过热度传给控制器,控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,将阀开到需要的位置。以保持蒸发器需要的供液量。电子膨胀阀的步进电机是根据蒸发器出口压力 P1变化、压缩机吸气过热度变化实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制过热度。另外,电子膨胀阀从全闭到全开状态其用时仅需几秒钟,反应和动作速度快,开闭特性和速度均可人为设定电子膨胀阀可在10--100的范围内进行精确调节,且调节范围可根据不同产品的特性进行设定。选用电子膨胀阀——吸气过热度控制,机组无论在标准工况下、变工况、满负荷、变负荷运行维持较高的 COP 值水平。电子膨胀阀——吸气过热度控制制冷系统原理图电子膨胀阀——液位控制液位控制系统由电子膨胀阀、液位传感器、液位控制器组成。当蒸发器内的液面上下变化时,蒸发器内的液位传感器将液位变动的比例关系用4-20mA 信号传给液位控制器液位控制器将信号处理后,随后输出指令作用于电子膨胀主阀的步进电机,使其开度增大、减小,以保持制冷剂液位在限定的范围内。电子膨胀阀的步进电机是根据制冷剂液位变化

实时输出变化的动力,这个实时输出变化的动力能及时克服各种工况和各种负荷情况下主膨胀阀变化的弹簧力,使阀的开度满足蒸发器供液量的需求,进而蒸发器的供液量能实时与蒸发负荷相匹配,即电子膨胀阀可通过控制器人为设定,有效的控制蒸发液位。选用电子膨胀阀——液位控制,机组无论在标准工况下、变工况、满负荷、变负荷运行均维持较高的 COP 值水平。电子膨胀阀——液位控制一般应用在吸气过热度低于2℃的制冷装置,而电子膨胀阀——吸气过热度一般应用在吸气过热度5℃左右的制冷装置,因此前者比后者更能有效的利用蒸发面积,提高蒸发负荷,获取更高的 COP 值。

膨胀阀的工作原理.doc

膨胀阀的结构和工作原理 1 热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口 ,常称为膨胀阀 ,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后 ,成为低温低压的雾状的液压制冷剂 ,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂 ,经过蒸发器后 ,制冷剂由液态蒸发为气态 ,吸收热量 ,降低车内的温度。膨胀阀控制制冷剂的流量 ,保证蒸发器的出口完全为气态制冷剂 ,若流量过大 ,出口含有液态制冷剂 ,可能进入压缩机产生液击;若制冷剂流量过小 ,提前蒸发完毕 ,造成制冷不足; 2 热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同 ,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂 ,放置在蒸发器出口管道上 ,感温包和膜片上部通过毛细管相连 ,感受蒸发器出口制冷剂温度 ,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加 ,液压制冷剂在蒸发器提前蒸发完毕 ,则蒸发器出口制冷剂温度将升高 ,膜片上压力增大 ,推动阀杆使膨胀阀开度增大 ,进入到蒸发器中的制冷剂流量增加 ,制冷量增大;如果空调负荷减小 ,则蒸发器出口制冷剂温度减小 ,以同样的作用原理使得阀开度减小 ,从而控制制冷剂的流量。 2)外平衡式膨胀阀结构和工作原理:

膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同 ,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨胀阀中的感温包、毛细管和外平衡接管,提高了调节灵敏度,结构紧凑,抗振可靠。

空调膨胀阀工作原理

空调膨胀阀工作原理 Document number:PBGCG-0857-BTDO-0089-PTT1998

膨胀阀工作原理及正确维护 内容提要:膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角度,提出要对膨胀阀进行定期检查和调整。 膨胀阀的合理维护 叶明哲摘要膨胀阀工作状况的好坏,直接决定专业空调运行状况的好坏。本文介绍了膨胀阀的工作原理,并对膨胀阀的运行进行了具体分析,从增大制冷量、节约能源的角 度,提出要对膨胀阀进行定期检查和调整。 关键词膨胀阀MSS线匹配过热度 1.概述 热力膨胀阀是组成制冷装置的重要部件,是制冷系统中四个基本设备之一。它实现冷凝压力至蒸发压力的节流,同时控制制冷剂的流量;它的体积虽小,但作用巨大,它的工作好坏,直接决定整个系统的工作质量。但是在实际中,膨胀阀的运行情况往往被忽视,使膨胀阀成为空调运行与维护中的一个死角。而定期检查和调整膨胀阀,对空调的运行寿命,节约能源,降低运行成本,却有着重要的意义。 2.膨胀阀的工作过程分析 2.1.膨胀阀工作原理:

热力膨胀阀是控制蒸发器出口气态制冷剂的过热度来控制进入蒸发器的制冷剂流量。按照平衡方式不同,膨胀阀分为外平衡式和内平衡式。在专用空调空调中,由于蒸发器有分路并采用莲蓬头分液器,压降比较大,造成蒸发器进出口温度各不相同。在这种情况下,使用内平衡式膨胀阀会因蒸发器出口温度过低而造成热力膨胀阀过度关闭,以至膨胀阀丧失对蒸发器的供液调节功能。所以专用空调均采用外平衡式膨胀阀,目前所使用的风冷式专用空调,如HIROSS、STULZ、ISOVEL、AIREDELE和法亚均采用这种结构。采用外平衡式可以避免膨胀阀过度关闭的情况,保证有压降的蒸发器也得到正常的供液。膨胀阀的结构如图一所示:热力膨胀阀由感应机构、执行机构、调整机构和阀体组成。感应机构中充注氟利昂工质,感温包设置在蒸发器出口处。由于过热度的影响, 其出口处温度与蒸发温度之间存在温差,通常称为过热度。感温包感受到蒸发器出口温度后,使整个感应系统处于对应的饱和压力P b。如图一,该压力将通过膜片传给顶杆直到阀芯。在压力腔上部的膜片仅有P b存在,膜片的下方有调整弹簧的弹簧力P t和蒸发压力P0,三者处于平衡时有P b=P t+ P o ,当P b >P t +P o 时,表示蒸发器热负荷偏大,出口过热度偏高,通过膜片到

膨胀阀的结构和工作原理

膨胀阀的结构和工作原理 2009年10月25日 14:19 本站整理作者:佚名用户评论(1) 关键字: 膨胀阀的结构和工作原理 1 热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足; 2 热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂,放置在蒸发器出口管道上,感温包和膜片上部通过毛细管相连,感受蒸发器出口制冷剂温度,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加,液压制冷剂在蒸发器提前蒸发完毕,则蒸发器出口制冷剂温度将升高,膜片上压力增大,推动阀杆使膨胀阀开度增大,进入到蒸发器中的制冷剂流量增加,制冷量增大;如果空调负荷减小,则蒸发器出口制冷剂温度减小,以同样的作用原理使得阀开度减小,从而控制制冷剂的流量。

2)外平衡式膨胀阀结构和工作原理: 膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨

电子膨胀阀与热力膨胀阀比较

热力膨胀阀与电子膨胀阀的控制原理 1. 概述 节能和环保是人类亟待解决的两大问题。2002年8月26日至9月4日在南非约翰内斯堡举行了可持续发展世界峰会。在该次会议上国际制冷学会发表了《制冷业对于可持续发展和减缓大气变化的承诺》,在此文件中阐明制冷业主要的挑战来自全球气候变暖。造成制冷业影响全球气候变暖的80%的原因是二氧化碳的排放。这些间接的排放是部分是由制冷装置运行所需能量的生产引起的。制冷、空调和热泵这些设备所消耗的电能约占全世界生产电能的15%,这表明间接排放的影响是非常的严重。此文件还提出在下一个20年制冷业必须树立雄心去达到目标之一:每个制冷设备耗能减少30~50%。制冷业者为保护环境,应把节能贯穿到制冷设备的使用周期中去。作为制冷循环的四大部件之一,节流装置在系统中起着非常关键的作用,通过选择应用合适的节流机构与制冷系统匹配是整个制冷设备降低能耗的重要一环。本文将对节流机构的工作原理和运行能量匹配进行分析,重点对电子膨胀阀的工作原理进行分析。 2. 传统节流机构的工作原理及匹配 节流的工作原理是制冷工质流过阀门时流动截面突然收缩,流体流速加快,压力下降,压力下降的大小取决于流动截面收缩的比例。节流机构的作用: 1、节流降压。当常温高压的制冷剂饱和液体流过节流阀,变成低温低压的制冷剂液体并产生少许闪发气体。进而实现向外界吸热的目的。 2、调节流量:节流阀通过感温包感受蒸发器出口处制冷剂过热度的变化来控制阀的开度,调节进入蒸发器的制冷剂流量,使其流量与蒸发器的热负荷相匹配。当蒸发器热负荷增加时阀开度也增大,制冷剂流量随之增加,反之,制冷剂流量减少。 3、控制过热度:节流机构具有控制蒸发器出口制冷剂过热度的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液损坏压缩机的事故发生。 4、控制蒸发液位:带液位控制的节流机构具有控制蒸发器液位的功能,既保持蒸发器传热面积的充分利用,又防止吸气带液降低吸气过热度。 若节流机构向蒸发器的供液量与蒸发负荷相比过大,部分液态制冷剂一起进入压缩机,引起湿压缩或冲缸事故。相反若供液量与蒸发器负荷相比太少,则蒸发器部分传热面积未能充分发挥其效能,甚至会造成蒸发压力降低,而且使制冷系统的制冷量降低,制冷系数减小,制冷装置能耗增大。节流机构流量的调节对制冷装置节能降耗起着非常重要的作用。大型中央空调冷水机组常用的节流机构有手动节流阀、孔板、热力膨胀阀、浮球+主节流阀。

DPF电子膨胀阀产品说明书-2003

制冷空调用直动式电子膨胀阀 产品说明书 上海俊乐制冷自控元件有限公司 2003年3月

1 适用范围 本说明书介绍了俊乐公司直动式电子膨胀阀的型式、基本参数、主要技术要求和使用注意事项。 2 产品型号规格 2.1 产品型号表示方法 2.2 产品规格 推荐配用机型 型号 (R22,制冷量kW) DPF1.5 2.0~3.5 DPF1.6 2.0~3.6 DPF1.8 2.5~5.0 DPF2.0 3.5~6.0 DPF2.2 5.0~8.0 DPF2.4 6.0~10.0 DPF3.0 8.0~15.0 3 基本参数 3.1 适用环境温度:-30℃~+60℃。 3.2 适用介质温度:-30℃~+70℃。 3.3 适用环境湿度:95%RH以下。 3.4 安装方向:线圈在上,阀体竖直前后左右±15°以内。 3.5 使用压力:0 MPa~2.95MPa。 3.6 流动方向:正反皆可。 3.7 线圈绝缘等级:E级。 3.8 驱动方式:四相永磁型步进电机,直动式,电压:DC12V±15%;励磁方式:1-2相励磁; 励磁频率:30~90PPS。 3.9 驱动电流:口径2.4mm以下的膨胀阀,线圈电流小于0.25A;口径2.4mm以上(包括2.4mm)、 3.0mm以下(包括3.0mm)的膨胀阀,线圈电流小于0.35A; 3.10 阀开度:0为全闭;500为全开。

3.11 线圈接线方式及励磁顺序 黄 红 蓝 动作顺序:1→2→3→4→5→6→7→8 关阀;8→7→6→5→4→3→2→1 开阀。  4 主要技术要求  4.1 外形尺寸及外观质量  膨胀阀的外形及安装尺寸应符合规定程序批准的图样要求;外观应光洁平整,零部件无损伤,标志清晰。 4.2 气密性  膨胀阀在3.3MPa的气体(干燥氮气)压力下,应无渗漏。 4.3 耐压强度  膨胀阀应能承受4.42MPa的压力,不应有泄漏及变形现象。 4.4 破环压力  膨胀阀应能承受液压12MPa,1min的破坏压力试验,不应破裂。 4.5 最大开阀压差及工作电压范围  膨胀阀能承受的最大开阀压差不小于2.26MPa。电源电压在额定电压的85%~115%范围内,膨胀阀应能正常工作。 4.6 泄漏量  正向:膨胀阀A 端口(横管或弯管)接1.0MPa 氮气,B 端口(竖管)通大气;反向:膨胀阀B 端口接1.47MPa 氮气,A 端口通大气。泄漏量的值应符合表1的规定。  表1 不同口径膨胀阀的泄漏量  规格型号 正向 ml/min 反向 ml/min DPF1.5 <250 <1500 DPF1.6 <250 <1500 DPF1.8 <250 <1500 DPF2.0 <350 <1800 DPF2.2 <350 <1800 DPF2.4 <450 <2000 DPF3.0  <600  <2500

电子膨胀阀的控制原理及优势分析

电子膨胀阀的控制原理及优势分析 空调系统设计中,电子膨胀阀作为电子控制元件,因其精度高,动作快速、准确、节能效果明显,可以实现系统的优化控制,在制冷空调中有广泛的应用。 那么电子膨胀阀的动作原理究竟如何,怎样才能实现精确控制呢?下面为大家详细解读下电子膨胀阀的工作原理及设计。 1、结构与分类 对于电子膨胀阀的研究早在70年代末期日本就已经开始对其进行研究,当时它是靠施加不同的电压(0~12V)对双金属片加热量的不同,造成双金属片膨胀不同而带动阀针的升降。 这种膨胀阀有较大的缺陷,后来已不大使用。除日本外其它国家在80年代也进行了电子膨胀阀的研究和开发工作,其主要针对电磁式和电动式(步进电机驱动)电子膨胀阀。

电磁式膨胀阀在电磁线圈通电前,阀针处于开的位置,阀针的开度取决于线圈上施加的控制电压,从而调节膨胀阀的流量。该阀动作响应快,但在制冷系统中工作时一直需要供电。 电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的目的。 这种电子膨胀阀又可分为直动型和减速型两种。 直动型是步进电机直接带动阀针,减速型是步进电机将动力通过减速齿轮组来推动阀针的动作。通过减速齿轮组可以产生较大的推力,所以目前许多步进电机驱动的电子膨胀阀都是采用的这一种驱动方式。 2、电子膨胀阀控制 电子膨胀阀的形式有多种,但都需要有电信号来控制,为在制冷循环中实施现代微机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都有自己的优势。但步进电机驱动的电子膨胀阀因其更适用微机控制、并有较好的稳定性,而为更多的制冷系统所采用。 由于电子膨胀阀采样速度快、精度高等特点,易于实现先进的控制以达到舒适、节能等控制目标,因而在中小型制冷设备中应用越来越广泛,特别是在家用空调系统中的应用。

中央空调电子膨胀阀的控制原理

空调电子膨胀阀的控制原理及优势分析 空调系统设计中,电子膨胀阀作为电子控制元件,因其精度高,动作快速、准确、节能效果明显等优点;电子膨胀阀在制冷系统中的运用,可以实现系统 的优化控制,在制冷空调中有广泛的应用。而电子膨胀阀的动作原理究竟如何,怎样才能实现精确控制呢?下面美景舒适家为大家详细解读下电子膨胀阀的工作原理及设计。 一、空调电子膨胀阀:结构与分类 对于电子膨胀阀的研究早在70年代末期日本就已经开始对其进行研究, 当时它是靠施加不同的电压(0~12V)对双金属片加热量的不同,造成双金属片 膨胀不同而带动阀针的升降。 这种膨胀阀有较大的缺陷,后来已不大使用。除日本外其它国家在80年 代也进行了电子膨胀阀的研究和开发工作,其主要针对电磁式和电动式(步进电机驱动)电子膨胀阀。

电磁式膨胀阀在电磁线圈通电前,阀针处于开的位置,阀针的开度取决于线圈上施加的控制电压,从而调节膨胀阀的流量。该阀动作响应快,但在制冷系统中工作时一直需要供电。 电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的目的。 这种电子膨胀阀又可分为直动型和减速型两种。 直动型是步进电机直接带动阀针,减速型是步进电机将动力通过减速齿轮组来推动阀针的动作。通过减速齿轮组可以产生较大的推力,所以目前许多步进电机驱动的电子膨胀阀都是采用的这一种驱动方式。 二、空调电子膨胀阀控制 电子膨胀阀的形式有多种,但都需要有电信号来控制,为在制冷循环中实施现代微机控制提供了可能。同时因系统、控制方法不同,每种形式的电子膨胀阀都有自己的优势。但步进电机驱动的电子膨胀阀因其更适用微机控制、并有较好的稳定性,而为更多的制冷系统所采用。 由于电子膨胀阀采样速度快、精度高等特点,易于实现先进的控制以达到舒适、节能等控制目标,因而在中小型制冷设备中应用越来越广泛,特别是在家用空调系统中的应用。

MOP热力膨胀阀工作原理

MOP热力膨胀阀工作原理 少数的人明了热力膨胀阀之最大作业压力(maximum operating pressure, MOP)的运作原 理─此种压力也系许多膨胀阀设计的共同点。 热力膨胀阀(thermostatic expansion valve, TEV) 在冷媒压缩循环系统中,系一项令人迷惑的组件。这种迷惑不仅来自于对膨胀阀构造本身的不了解,也来自于对其「最大作业压力(maximum operating pressure, MOP)」运用原理的误解。因此,甚么是"最大作业压力"?其功能何在?其系如何在膨胀阀内运作呢? 由于马达是压缩机运转时的承载部分,许多阀类制造商也将 MOP 视为 "马达超载的保护装置 (motor overload protection)"。MOP 通常也系被运用来防止「系统过量循环(system flooding)」或「压缩机超载(compressor overload)」,或者被使用来限制循环系统的起动流量 (当系统在微负载的情况下起动)。这一类功能与传统的曲轴箱所使用的压力限制阀或旧式机械式压力控制阀等的功能相似。 当冷媒的蒸发压力超过预设之控制压力时,调温控制装置内(具MOP特性)的气体则作出关阀的动作。关阀的目的系在将系统压力限制在预设之"最大作业压力"的范围内。一般冷气机与热泵装置通常皆需要这一类具有「最大作业压力, MOP」控制功能的装置,来限制冷媒压缩机的循环负载(亦即减低压缩机冷媒吸入端的压力)。在这一类的装置中,控制阀内的 "填充气体 (pressure limiting charge)"会使膨胀阀趋乎于关闭的状态,直到"冷媒的蒸发压力(system evaporator pressure)低于填充气体的"最大作业压力"。此般功能可以帮助压缩机稳定系统的压力(pull down capabilities of the system compresso r),详图一。 如何运作(How it works) 热力膨胀阀具有一个温度感应球,感应球内的"填充气体(gas charge)"会因为感应到*冷媒的蒸发高温而呈现"过热状态(superheated)"。过热状态的气体会经由管线传输至膨胀阀的隔膜部分,进而抑制膨胀阀"隔膜装置(diaphragm assembly)"所施之开阀力量。当感应球的温度趋向预设之控制温度时,膨胀阀也将趋向关闭的状态,但是其仍会允许适量的冷媒通过阀口。 (注:温度感应球的安置位置通常系位于压缩机冷媒吸入端。)

热力膨胀阀工作原理及调节

热力膨胀阀工作原理及调节 2010-10-18 09:15:57| 分类:空调制冷| 标签:|字号大中小订阅 水环热泵/空气源热泵热水器的中宇 □节流降压 □调节流过蒸发器的制冷剂流量 □控制蒸发器出口过热度 过热度=回气温度-蒸发温度 ◇避免过热度偏小时产生湿压缩 ◇避免过热度过大,蒸发器相变面积减小,蒸发器效率降低,回气过热造成压缩机排气温度过高 内平衡热力膨胀原理: 感温包压力=弹簧压力+蒸发器进口压力 外平衡热力膨胀原理: 感温包压力=弹簧压力+蒸发器出口压力 当蒸发器的阻力较大时,蒸发器进口压力远大于蒸发器出口压力,内平衡热力膨胀阀较外平衡热力膨胀阀需更大的开阀压力,即增加了过热度,影响蒸发器传热效果。因此外平衡热力膨胀用于蒸发器阻力 较大的系统。 感温包的位置 ◇一般建议感温包安装在水平方向的回气管上 管径小于等于22mm,感温包位于12点时钟位置 管径大于22mm,感温包位于4点或8点时钟位置

热力膨胀阀的调节 当过热度偏大或偏小,需要对过热度进行调整时,可通过热力膨胀阀静态过热度调整杆进行调整。 通过对调整杆的扭转可对弹簧压力进行调整,进而调整静态过热度调整过热度时,要先取下保护帽 顺时针扭转调整杆,制冷剂流量减小过热度增大 逆时针扭转调整杆,制冷剂流量增大热度减小过 调整杆旋转一周过热度变化大约1℃~2℃ 热力膨胀阀调整时应耐心,细致,当调整后可能需要30分钟系统才能稳定 调整完后,应将保护帽上好 9.2 热力膨胀阀 热力膨胀阀普遍用于氟利昂制冷系统中,这种阀的开启度通过感温机构的作用,可随蒸发器出口处制冷剂的温度变化而自动变化,达到调节制冷剂供液量的目的。热力式膨胀阀主要由阀体、感温包和毛细管组成。热力式膨胀阀按膜片平衡方式不同有内平衡式和外平衡式两种类型。 在密闭容器内液体蒸发或沸腾而汽化为气体分子,同时由于气体分子之间以及气体分子与容器壁之间发生碰撞,其中一部分又返回到液体中去,当在同一时间内两者数量相等,即汽化的分子数与返回液体中的分子数相平衡时,这一状态称为饱和状态,饱和状态的温度就称为饱和温度,饱和温度时的压力称为饱和压力。 在制冷工程中,制冷剂在蒸发器和冷凝器内的状态,我们在宏观上视为饱和状态。也就是说蒸发器内的蒸发温度及冷凝器的冷凝温度均视为饱和温度,因此蒸发压力和冷凝压力也就视为饱和压力。 在饱和压力的条件下,继续使饱和蒸气加热,使其温度高于饱和温度,这种状态称为过热。这种蒸气称为过热蒸气。此时的温度称为过热温度,过热温度与饱和温度的差为过热度。在制冷系统中,压缩机的吸气往往是过热蒸气,若忽略管道的微波压力损失,那么压缩机吸气温度与蒸发温度的差值就是在蒸发压力下制冷剂蒸气的过热度。例如R12,当蒸发压力为0.15MPa时,蒸发温度为-20℃,若吸气温度为-13℃,那么过热度为7℃。 制冷压缩机排气管内的蒸气均为在冷凝压力下的过热蒸气,排气温度与冷凝温度的差值也是蒸气的过热度。 饱和液体在饱和压力不变的条件下,继续冷却到饱和温度以下称为过冷。这种液体称为过冷液体。过冷液体的温度称为过冷温度,过冷温度与饱和温度的差值称之为过冷度。例如R717在1.19MPa压力下,其饱和温度为30℃,若此氨液仍在1.19MPa压力下继续放热被降温,就形成过冷氨液,如果降低了5℃,则过冷氨液温度为25℃,其过冷度为5℃。 大多数热力膨胀阀在出厂前把过热度调定在5~6℃,阀的结构保证过热度再提高2℃时,阀就处于全开位置,与过热度约为2℃时,膨胀阀将处于关闭状态。控制过热度的调节弹簧,其调节幅度为3~6℃。 一般说来,热力膨胀阀调定的过热度越高,蒸发器的吸热能力就降低,因为提高过热度要占去蒸发器尾部相当一部分传热面,以便使饱和蒸气在此得到过热,这就占据了一部分蒸发器传热面积,使制冷剂汽化吸热的面积相对减少,也就是说蒸发器的表面未能得到充分利用。但是,过热度太低,有可能使制冷剂液体带入压缩机,产生液击的不利现象。因此,过热度的调节要适当,既能确保有足够的制冷剂进入蒸发器,又要防止液体制冷剂进入压缩机。 当制冷剂流经蒸发器的阻力较小时,最好采用内平衡式热力膨胀阀;反之,当蒸发器阻力较大时,一般为超过0.03MPa时,应采用外平衡式热力膨胀阀。 9.2.1 内平衡式热力膨胀阀 内平衡式热力膨胀阀由阀体、推杆、阀座、阀针、弹簧、调节杆、感温包、联接管、感应膜片等部件组成,如图9-2a所示。热力膨胀阀对制冷剂流量的调节,是通过膜片上的三

EK312A.操作手册.

. EK312.安装使用手册 -----2016.08.25 1 概述 EK312A是得麦科技开发的1款电子膨胀阀控制器,采用过热度控制膨胀阀开度。驱动器采用恒流驱动。可控制ALCO、DANFOSS、SPORLAN、Carel等各种恒流驱动的电子膨胀阀。 EK312A既可与得麦科技的螺杆机控制器联机使用,也可单独使用(与其他厂家控制器组成控制系统)。 1.1 EK312A外观图 1.2 EK312A外形尺寸图

. . 1.3 EK312A 电气连接示意图 EK312A电气连接示意图 B-G A++- G TI DO W3W2W4AI +24 G DI Com Com W1Motor B-GND A+ON OFF 1234 ON OFF 1234 O N O F F SW2 JP2JP1JP3JP4 JP5 SW1 VCC Iout SW1地址123 4 OFF OFF 1ON OFF 2OFF ON 3ON ON 4N L AC220V O N O F F SW2 1234 5V 10V 举例1:1 23451 234123 123456 12 JP2-5设置为4-20mA输入 O N O F F SW2 1234 C V 5V 10V 举例2: JP2-5设置为0-10V输入 O N O F F SW2 1234 C V 5V 10V 电子膨胀阀接线说明: ALCO膨胀阀:W4:白色W3:黑色W2:棕色W1:蓝色Danfoss膨胀阀:W4:黑色W3:白色W2:绿色W1:红色 SPORLAN膨胀阀:W4:白色W3:黑色W2:绿色W1:红色Carel膨胀阀:W4:黄色W3:白色W2:棕色W1:绿色 地址拔码说明:模拟输入拔码说明: 报警输出启停开关 电子膨胀阀 24V电源输入 压力传感器 温度传感器通讯线运行故障通讯 确认向上向下 C V 0|10V 0|5 V 电压型电流型使用按键显示板 备 用 注1:压力传感器接线: 注2:压力传感器接线处,板内供电是24V ,如果传感器不是24V 供电,则要外接电源,之后将电源的负极接到板上的地(JP2-4)即可。

膨胀阀的工作原理

膨胀阀的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

膨胀阀的结构和工作原理 1热力膨胀阀的作用: 热力膨胀阀安装在蒸发器入口,常称为膨胀阀,主要作用有两个: 1)节流做用:高温高压的液态制冷剂经过膨胀阀的节流孔节流后,成为低温低压的雾状的液压制冷剂,为制冷剂的蒸发创造条件; 2)控制制冷剂的流量:进入蒸发器的液态制冷剂,经过蒸发器后,制冷剂由液态蒸发为气态,吸收热量,降低车内的温度。膨胀阀控制制冷剂的流量,保证蒸发器的出口完全为气态制冷剂,若流量过大,出口含有液态制冷剂,可能进入压缩机产生液击;若制冷剂流量过小,提前蒸发完毕,造成制冷不足; 2热力膨胀阀的种类: 热力膨胀阀按照平衡方式不同,分内平衡式和外平衡式;外平衡式热力膨胀阀分F型和H型两种结构型式。 1)内平衡式膨胀阀结构和工作原理: 内平衡式F型热力膨胀阀结构图。感温包内充注制冷剂,放置在蒸发器出口管道上,感温包和膜片上部通过毛细管相连,感受蒸发器出口制冷剂温度,膜片下面感受到的是蒸发器入口压力。如果空调负荷增加,液压制冷剂在蒸发器提前蒸发完毕,则蒸发器出口制冷剂温度将升高,膜片上压力增大,推动阀杆使膨胀阀开度增大,进入到蒸发器中的制冷剂流量增加,制冷量增大;如果空调负荷减小,则蒸发器出口制冷剂温度减小,以同样的作用原理使得阀开度减小,从而控制制冷剂的流量。 2)外平衡式膨胀阀结构和工作原理:

膜片下面感受到的是蒸发器出口压力。 外平衡式膨胀阀与平衡式膨胀阀原理基本相同,区别是: 内平衡式膨胀阀膜片下面感受到的是蒸发器入口压力;而外平衡式膨胀阀膜片下面感受到的是蒸发器出口压力。 3)H型膨胀阀 H型热力膨胀阀有四个接口与制冷系统连接,其中两个接口与普通热力膨胀阀相同,一个连接储液干燥器,一个连接蒸发器进口;另外两个接口,一个连接蒸发器出口,一个连接压缩机进口。感温包直接处在蒸发器出口的制冷剂气流中。该膨胀阀由于取消了F型热力膨胀阀中的感温包、毛细管和外平衡接管,提高了调节灵敏度,结构紧凑,抗振可靠。

电子膨胀阀控制器

? MVC电子膨胀阀控制器/驱动器 MVC电子膨胀阀控制器是集成了数据采集、逻辑运算、限流驱动为一体的控制器。该控制器与电子膨胀阀配套使用,能根据环境负荷的动态变化自动调整阀的开度,使冷冻系统达到最佳运行状态。此控制器控制过热度达到0.5℃的精度,具有按键手动操作功能,数码管显示阀开度,通过设定不同的参数以满足各种冷媒、机型的使用要求。

控制器特色 z适用于GOLDAIR的不同系列的SEV电子膨胀阀 z数码管显示阀开度及报警信号 z制冷制热过热度可分别设定 z MOP控制调节 z排气温度控制调节 z支持热泵时逆向融霜的流量要求 z泵集功能 z可应用于低温(-40℃蒸发温度)冷冻场合 z自带备用电池,在突然停电时可使阀完全关闭 z支持软件在线下载,灵活方便。 控制器功能 控制器控制过热度和吸气压力(蒸发/翅片温度)。GOLDAIR电子膨胀阀能够提供比传统 电磁阀更优异的关闭功能,只要当压缩机停止运转,就没有制冷剂流过SEV。在有冷量需求 及压缩机起动时自动接受来自控制器反馈到的信号。控制器可以在不同的运行条件下通过PID精确控制电子膨胀阀开度来实现对制冷剂流量的控制。 1、MOP控制功能(最高运行压力控制) 在蒸发器负载高于可能达到的冷量时,控制器能够自动识别减少制冷剂流量使使蒸发压力限制在一定范围内。 2、过热度控制功能 根据压力传感器和温度传感器测得的数据,控制器依检测到的数据自动计算实际过热度并与预先设定的过热度进行比较,采用增量模糊逻辑输出,向电子膨胀阀发出不同的指令以便在不同运行状态下保持住所希望的过热度。 (如热泵机组控制器需要一个制冷制热开关量信号输入) 3、完全关闭功能 控制器在任何(即使在停电)时候都能够使电子膨胀阀完全关闭。 当压缩机停机时,控制器按内置的程序自动使电子膨胀阀关闭。 外部电源中断时,控制器会自动切换到备用电池,使电子膨胀阀完全关闭。 (控制器需要一个启动停止开关量信号输入,一般用冷冻水泵的开关信号) 4、手动操作功能 可以通过按钮操作调节阀的开度,可供冷冻机出厂前打压、抽真空、充氟或调试等工作。 5、除霜状态自识别功能 依开关量状态DI3信号自动识别除霜状态,进入除霜状态时,控制器会自动将其阀开度调整到80%,除霜结束后,阀的开度恢复到设定的开度,再自动延时调节。 (控制器需要一个除霜信号开关量输入,可用四通阀的开关信号) 6、排气温度调节 排气温度过高时(大于120℃),则会自动限制关阀(当不装排气温度传感器时,此功能无效)。 7、低温冷冻蒸发 蒸发压力传感器测量吸气压力,转换为蒸发温度,但当低温蒸发时的蒸发压力分辨率已经很小,无法精确测量过热度,此时用温度传感器测量蒸发温度更为精确。

电子膨胀阀控制系统原理,安装调试——丹弗斯

电子膨胀阀控制系统原理,安装调试 1, 电子膨胀阀系统原理 1.1 系统组成 ?电子膨胀阀阀体ETS ?控制器EKC312 ?压力传感器AKS33 ?温度传感器AKS11 1.2 各个部件的作用 ?电子膨胀阀,负责根据接受到的 脉冲信号控制膨胀阀开度,保证 适量的供液量和合适过热度。 ?压力传感器:负责检测蒸发压 力,并将蒸发压力值转变成4-20mA的电流信号。 ?温度传感器:可以根据温度的不同电阻值也不同。(温度和电阻值对照表参见附件 1)。 ?控制器:控制器是该系统的核心器件,作用类似于人体大脑。控制器可以接受压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号。根据这些信号,通过内部的计算发出脉冲信号来控制电子膨胀阀的开度,保证系统供液量和过热度。正常运转时,控制器显示系统的实际过热度。 1.3 系统工作原理 ?控制器采样压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号,计算出当前实际过热度; ?参考设定参数,计算出应当达到的要求过热度; ?根据实际过热度和要求过热度,结合控制器的参数设定,以一定的反映方式,来调节电子膨胀阀开度,使其尽量靠近要求过热度。 ?反复检测两个过热度之间的差异,逐步时事调整膨胀阀开度。 说明,在系统稳定的情况下尽量减小要求过热度,以提高系统效率。 2,电子膨胀阀系统调试 2.1系统安装 ?电子膨胀阀:安装之前必须参考丹佛斯电子膨胀 阀的安装指南,每一个电子膨胀阀包装那都有一 份安装指南。注意4个电线的颜色和对应连接。 ? ?控制器:按右图连接对应电线,尤其注意电源符 合要求(24V交流)。 ?压力传感器:按下图接线。压力传感器接线必须 牢固,压力接口最好在水平铜管的上方,以免杂

电子膨胀阀控制

采用电子膨胀阀的控制说明 1、停机状态,电子膨胀阀最小开度50度; 2、驱动器适用于下列电子膨胀阀 全开脉冲:480 最大脉冲开度:520 额定电压:DC12+/-10% 最大驱动电流:0.375A/相 励磁方式:1-2相励磁,四相八拍 接插件:XH-5,XH-6 励磁速度:31.3pps 3 注: a)制冷节流后温度传感器位置为板换入口; b)制热节流后温度传感器位置默认为分流头前;如果位置在盘管弯管上,则过热度 修正值为0; c)制冷回气过热度Tssuph=Ts-(Te-Tss);制热回气过热度Tssuph=Ts-(Tc-Tss) ; 4、电子膨胀阀初始化 当模块得电时,阀门首先初始化到零点,480脉冲的电子膨胀阀阀闭阀520个脉冲。 然后根据模块选择的运行模式开启对应电子膨胀阀相应的初始开度(可设定)。初始化完毕之后才能开启压缩机。 5、电子膨胀阀自动控制 热泵机组当压缩机开启之后,首先保持当前开度120秒(可设)保持不变。 然后根据系统的吸气过热度进行调节。调节过程中,阀门的位置最小开度为50度(可设),最大为阀门的最大开度。 制冷时膨胀阀控制 表1

注: (1)Tss为回气过热度设定值,可调(0-10); (2)Ts为实时计算过热度,计算公式:回气温度-蒸发温度; (3)Te(蒸发温度)=Tee(节流后温度)-Ds,修正值见过热度度修正值;(适 用于没有压力传感器机型) (4)脉冲调整1(1-20可调)度/周期(默认90)(10-120s可调),1度为2 步; (5)电子膨胀阀调整速度调整因子,见表1; (6)EEV调节间隔时间10-120可调; (7)当Te≥10℃时,EEV不再根据过热度开大; (8)当排气温度≥〖开度只增排气(温度点)〗(默认110,60-120可调), 则 膨胀阀不再关小; (9)在正常运行过程中,膨胀阀最小开度不小于50度(并联单压缩机),80 度(并联双压缩机或非并联机组); 制热膨胀阀控制 表2 注: 1.Ts为回气过热度设定值,可调(0-10); 2. Tsup为实时计算过热度,计算公式:回气温度-蒸发温度; 3.蒸发温度为板换入口温度修正值,修正值见蒸发温度修正表;(适用于没有压力传感 器机型) 4.脉冲调整1(1-20可调)度/周期(默认90)(10-120s可调),1度为2步; 5.电子膨胀阀调整速度调整因子,见表1; 6.EEV调节间隔时间10-120可调; 7.当Te≥10℃时,EEV不再根据过热度开大;

气动膨胀阀的工作原理

气动膨胀阀 一、概述 气动膨胀阀是依靠压缩空气实现紧 密密封的特殊阀门,适用于处理含气尘 体、磨琢性散装物料和浆体;气动膨胀阀 利用充压密封能穿过静止料柱、或流动的 料流,关闭并密封。 1、运行原理: 气动膨胀阀阀芯在密封圈松弛(非膨胀)状态下闭合于密封圈下方,在密封圈与阀芯间形成一定间隙(如图1)。受阀芯关闭动作的作用,并取决于料性,某些物料将穿过或进入该间隙。阀芯处于闭合位置后,高压空气或其它气体将进入密封圈背面与内圈间的空间,促使密封圈表面膨胀并环贴于阀芯表面(如图2)。密封圈将紧贴阀芯内陷颗粒物料,无论其粒径或形状如何。密封圈将在阀开启前松弛,重新形成一定间隙,随后阀芯运动至开启位置。密封圈是件松弛的部件,由密封圈座圈和通过螺栓装配到主阀体的另一侧阀体夹持到位,密封圈的拆卸检查十分简易。 图1(密封前) 图2(密封后) 2、为什么气力输送时选择使用气动膨胀阀: 因为其它阀在用于压力容器进料时都需另配阀截断物料流,以便下位阀能够密闭。若只用一台阀则将卡塞物料,无法密封。容器内通常还需安装水平料位计,探测料位,以确定上流阀关闭时间。气动膨胀阀则能截断密实的物料流,无需上位

截料阀。气动膨胀阀的全通道无阻碍进料非常连贯。这实现了压力容器的按时进料,压力罐无需水平料位计。 某些气动输送设备采用双蝶阀、碟阀(仍为硬密封)、滑板阀等阀。为减少 磨损延长寿命,阀的开关频次通常被限制在10~15 次/小时。这要求相应的发送罐体积较大。输送管道不变大发送罐较大,则流化设备和/或助推器就必不可少;否则管道将过载,并发生管堵。而气动膨胀阀在启闭时阀芯与密封圈之间保持一定的间隙,有效地减少了磨损,使阀的开关频次得以提高。 二、结构特点 1、全启式:气动膨胀阀为全通道阀门,可完全开启,因而阀开启时物料的流动也将顺畅无阻。其内部实际通道面积大于阀门的公称尺寸。 2、该阀采用冲气式密封圈,阀门启闭时,阀芯与密封圈之间无接触; 3、当阀门切换完成后,密封圈充气实现弹性变形进行密封; 4、该阀设有到位开关,并可将开关信号送入PLC,进行远程控制; 5、该阀采用气动执行器驱动,切换方便迅速,结构简单,维护方便; 6、阀芯为半球形,回转阻力小,阀芯与管道平滑过度,无曲率变化,从而减轻了介质对阀芯和阀体的磨损,延长了使用寿命; 7、可膨胀密封圈的特点: 1)密封性好:可膨胀密封圈的密封效果比硬尼龙密封的阀门更有效。可膨胀密封圈受压膨胀后将紧贴闭合的阀芯球体,密封圈表面可以内陷任何颗粒,从而防止由于压差的作用造成颗粒在密封面上的移动,物料不运动也就不会造成密封面的磨损。可膨胀密封圈在关断料流和压差工作环境中长时间运行后仍能保证不产生泄漏。2)具备磨损补偿:可膨胀密封圈受到密封压缩空气的 作用贴紧阀芯密封面。当密封圈表面受磨损或厚度变 小时,密封圈的膨胀作用可以提供更多的补偿量,而 不影响密封。 3)零接触:可膨胀密封圈在阀芯闭合和开启过程中都 不与其接触,而只在其完全闭合后才贴附到其表面, 如此减少磨损的可能性。 4)防渗漏:连续运行后的可膨胀密封圈仍能保证良好的密封性能。

三花商用电子膨胀阀说明书

电子膨胀阀 1 命名规则 设计顺序号,用阿拉伯数字表示:01,02,03… 适用制冷剂代号,A:表示R22,可省略;B:表示R407C; C:表示R410A 阀口径,用阿拉伯数表示 O:O系列 电子膨胀阀基本代号 2.2 O系列电子膨胀阀简介 2.2.1 功能:主要用于变频空调系统中,实现制冷剂流量的自动调节,从而使空调系统始终保持在最佳的工况下运行,达到快速制冷、温度精确控制、省电等目的,还可用于其它空调。该阀具有可逆性,能实现制冷,制热状态下流量的自动控制; 2.2.2 组成:主要由阀体和线圈组成,由空调系统的电子控制器控制电子膨胀阀中步进电机转子的旋转,转子上的齿轮带动齿轮减速器,并通过螺纹副的轴向传动及波纹管传递,带动阀针作轴向移动,改变阀口开启程度,从而自动调节制冷剂流量; 2.2.3 主要特点:低噪音,高精度,高寿命。

2.3 外观图 2.4 基本参数 规格型号 通径(mm ) R22名义容量 Kw (U.S.R.T ) 全开脉冲 最大动作压差 阀口泄露 最高使用压力 线圈温升 噪音 寿命 DPF (O )1.3 1.3 5.28(1.5) DPF (O )2.0 2.0 8.8(2.5) DPF (O )2.4 2.4 10.56(3.0) DPF (O )3.2 3.2 14.1(4.0) DPF (O )3.2 3.2 17.6(5.0) DPF (O )4.0 4.0 21.2(6.0) DPF (O )5.2 5.2 28.1(8.0) DPF (O )6.4 6.4 35.5(10.0) 2000 2.26MPa(R22) 2.48MPa (R407C ) 3.43MPa(R410A) ≤600mL/min (阀口径≤Φ2.4)≤1000mL/min (阀口径>Φ2.4) 3.0MPa(R22) 3.3MPa(R407C)4.2MPa(R410A) ≤60K ≤45dB(A)(300mm)5万次 2.5 工作条件 2.5.1 适用制冷剂:R22、R407C 、R410A ; 2.5.2 介质温度:-30℃~+70℃(通电率50%以下); 2.5.3 环境温度:-30℃~+60℃(通电率50%以下); 2.5.4 相对湿度:95%以下; 2.5.5 额定电压:DC12V ,矩形波; 2.5.6 电压变化:额定电压的90%~110%范围以内; 2.5.7 驱动方式:4相步进电机驱动; 2.5.8 励磁方式:2-2相励磁; 2.5.9 励磁速度:100PPS~250PPS (开阀励磁速度≤闭阀励磁速度); 2.5.10冷媒流动方向:正反皆可; 2.5.11安装方式:阀体中轴线垂直水平面±15°。

电子膨胀阀控制系统原理 调试和故障诊断

电子膨胀阀控制系统原理,安装调试和故障诊断 1, 电子膨胀阀系统原理 1.1 系统组成 ?电子膨胀阀阀体ETS ?控制器EKC312,驱动器EKD316 ?压力传感器AKS33 ?温度传感器AKS11 1.2 各个部件的作用 ?电子膨胀阀,负责根据接受到的 脉冲信号控制膨胀阀开度,保证 适量的供液量和合适过热度。 ?压力传感器:负责检测蒸发压 力,并将蒸发压力值转变成4-20mA的电流信号。 ?温度传感器:可以根据温度的不同电阻值也不同。(温度和电阻值对照表参见附件 1)。 ?控制器:控制器是该系统的核心器件,作用类似于人体大脑。控制器可以接受压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号。根据这些信号,通过内部的计算发出脉冲信号来控制电子膨胀阀的开度,保证系统供液量和过热度。正常运转时,控制器显示系统的实际过热度。 ?驱动器:接受外部电压或电流信号,驱动电子膨胀阀运行。 1.3 系统工作原理 1.3.1 过热度控制 ?控制器采样压力传感器送来的4-20mA电流信号,和温度传感器的电阻值信号,计算出当前实际过热度; ?参考设定参数,计算出应当达到的要求过热度; ?根据实际过热度和要求过热度,结合控制器的参数设定,以一定的反映方式,来调节电子膨胀阀开度,使其尽量靠近要求过热度。 ?反复检测两个过热度之间的差异,逐步时事调整膨胀阀开度。 说明,在系统稳定的情况下尽量减小要求过热度,以提高系统效率。 1.3.2 外部信号控制 ?控制器型号:EKC312, EKD316; ?可接受信号类型: EKC312: 4-20mA EKD316: 0-20mA,4-20mA, 0-10V,1-5V(设置见附 件5)。 2,电子膨胀阀系统调试 2.1系统安装

相关文档
最新文档