求不定积分的几种方法

求不定积分的几种方法
求不定积分的几种方法

求不定积分的几种方法

摘要:求不定积分的方法有很多种,针对不同类型的函数采用最适合的方法往往会起到事半功倍的效果,本文就不定积分的求解方法进行了归类,结合实例讨论了这些方法在不定积分求解中的可行性,对快速正确求解不定积分有一定意义。

关键词:不定积分直接积分法分部积分法方程法

Abstract: There are many kinds of methods to solve the indefinite integral. For different types of function using the most suitable method often can play a multiplier effect. In this paper, indefinite integral solutions are divided into several different types and the feasibility of the method of indefinite integral is discussed by integrating the practical examples, which is of certain significance to rapidly, correctly solving indefinite integral.

Key words: indefinite integral; direct integration method; integration by parts; equation method

不定积分是一元微积分中非常重要的内容之一,是积分学中最基本的问题之一,又是求定积分的基础,牢固掌握不定积分的理论和运算方法,不仅能使学生进一步巩固所学的导数和微分概念,而且也将为学习定积分,微分方程和多元函数的积分学以及其他课程打好基础,因此切实掌握求不定积分的方法非常重要。求不定积分的方法有很多,可用基本方法,如直接积分法求解、第一类换元积分法、第二类换元积分法、分部积分法;也可用特殊解法,如方程法、方程组法等方法求解。下面将介绍几种常见的基本方法和特殊解法。

一、基本方法

1 直接积分法

直接积分法是求不定积分的基本方法,是基本途径,也是其他积分方法的基础,这一方法是直接利用积分法则和公式得出结果,或将被积函数做恒等变形,使之符合基本法与公式,然后再利用积分法则与公式做出结果。

例1 求不定积分

解:把该式分子相乘得到

分项后得到-+dx-dx

然后,利用基本公式求得结果为x-ln|x|+-2

注:在分项积分后,每个不定积分的结果都含有任意常数。由于任意常数的代数和仍为任意常数,故只需在最后一个积分符号消失的同时,加上一个积分常数就可以了。

例2 求不定积分

解:因为此不定积分的被积函数是,由于分母是而=1,所以被积函数

+sec2x+csc2x从而= +=tanxcotx+c

注:此类题目的解题思路:尽量使分母简单,为此分子或分母乘以某个因子,把

分母化为sin k x(或cos k x)的单项式,或将分母整个看成一项。一般通用方法为将“1”化为某个特定的等式。

例3 求不定积分,

解:在分子上加上cosx,再减去cosx得到

再利用上例中的解法可得=2=2ln||ln|sinx|+C

②在分子上减去1,再加上1得到==+=x+arctanx+c

注:此类题目的解题技巧是将被积函数加(减)项,把积分变成几个比较简单的积分进行计算。

从上面的几个典型例子来看,直接积分法往往需要对被积函数进行适当的恒等变形,或化简,或拆项,使被积函数变成可积函数代数和形式,此种方法求不定积分比较常见。

2 第一换元积分法(凑微分法)

求一个函数的不定积分是积分学的一个基本问题,解决这类问题的方法多种多样,其中有一种方法就是第一换元法,换元法是求不定积分的基本方法。第一类换元积分法主要适用于复合函数,将被积变量凑成复合函数的中间变量的形式,再利用直接积分法求出积分。

第一类换元积分法:若且u = (x)有连续的导数,则有:(x)dx=

第一类换元积分法的关键是:将被积表达式凑成两部分,(x)dx,从而形成一部分是u = (x)的函数,将另一部分(x)dx凑成微分du,这样就可以从积分公式

中求出积分,再回代,就完成了积分。

例4 求不定积分

解:将dx凑为dx=d(1+2x),则

=(凑微分)

==+C(令1+2x=u)

=+C(还原u=1+2x)

注:凑微分时经常对被积表达式的系数进行调整,但要注意它必须是等值变换。例5 求不定积分 xdx

cos

2

解:设u=2x,du=2dx,dx=

2

1

du,则 ?xdx 2cos =21?udxu cos =21sinu+C=2

1sin2x+C 例6 求不定积分dx x x ?

+)

ln 21(1

解:因为被积函数可分解为

x

ln 211

+和)ln 21(21x + 所以

dx x x ?+)ln 21(1

==

++?

dx x

x ln 21)ln 21(2

1

c x x

d x ++=++?ln 21ln 2

1

)ln 21(ln 21121 可见,凑微分法就是把被积式子中某一部分看成一个整体,而把被积式子凑成关于这个整体的积分公式[1]。 3 第二换元积分法

第二类换元积分法是通过适当选择置换式,使代换后的积分易于积出,它主要用来解决几种简单的无理函数的积分问题。

第二类换元积分法:设函数x=?(t)单调可导,且?(t)≠0,如果

??+='='-C x F dt t t f d t t f )]([)()]([t )()]([1?????其中t=)(1x -?是x=?(t)的反函

数。

第二类换元积分法是恰当选取积分变量x 作为新积分变量t 的一个函数:x=?(t),并要?(t)具有反函数。也就是使原积分变为基本积分表中已有的形式或便于求解的积分,从而求出结果。根据被积函数表达式的不同,第二类换元法又分为去根号法和倒代换法。 3.1去根号法

(1)简单的根式变换 ,可令; 例如:求,可令, (2)三角代换 ,令xasint 或xacost ;;令xasect 或xacsct ;;令xatant 或xacott (3)双曲代换 xasht 或xacht 例如:,可设xasht ;dx x

a x ?

-2

2

,可设xacht 比用三角代换简便

(4)?dx x x R )cos ,(sin ,一般采用万能代换,设。当然,对具体的问题也要采用灵活的方法处理。

例7 求不定积分dx x

x ?

+2

31

解:分析:因被积函数分母中含有根式,常用第二类换元积分法,但因分子上含有变量x ,因此也可用第一类换元积分法 解法1 应用第一类换元积分法

????

++-+++=++=+222

2222223

1)1(21)1(11211)1(211x

x d x d x x x x d x dx x x c x x x d x x d x ++-=++-++=??-22221

222

121)2(3

1)1()1(21)1()1(21 解法2 第二类换元积分法 令1

2,1,1,122-=

-=-==+t dt

dx t x t x t x

dt t dt t dt t t t t dx x x ????

-=---=+1

212111)1(2112

3

c t t +-=21

31

c x x ++-=221)2(3

1

解法3 用三角代换

令tdt dx t x 2sec ,tan ==

=+?

dx x x 2

3

1???-==)(sec )1(sec sec tan sec sec tan 2323t d t tdt t tdt t t

c t t +-=sec sec 313c x x ++-=221)2(31

解法4 用根式代换

令1

,1,1,12

222-=

-=-==+t tdt dx t x t x t x

=+?

dx x x 23

1c t t dt t tdt t t t t +-=-=---??

3222231

)1(11)1(c x x ++-=221)2(3

1

解法5 用双曲代换

令chtdt dx sht x ==,

=+?

dx x x 2

3

1c cht t ch dt t sh chtdt cht t sh +-==??33331

c t ch cht +-=)3(3

12c x x ++-=221)2(31

注:在使用换元积分法时,必须将结果中的新变量t 换回原来的变量x ,尤其在使用三角代换时,可利用直角三角形三边的关系换回原来的变量。 3.2倒代换法

对于某些被积函数,若分母中含有n x 因子时,可作倒代法,即令:t

x 1

=,从而可

积出积分。

例8 求不定积分dx x

x a ?

-4

2

2 (0>x ) 解:因为被积函数中分母含有4x ,可设t x 1=

,则dt t

dx 21

-=,从而dx x x

a ?-4

2

2=dt t t a dt t t t a ??--=--

21

222

4

22)1()1(11

,由于0>x ,故

dx x x a ?

-42

2dt t t a ?--=2

12

2)1(?---=)1()1(21222

12

22t a d t a a c x

a x a +-=

2

33

22

2

3)

( 注:第二换元积分法的换元表达式中,新变量t 处于自变量的地位,而在第一换元积分法的换元表达式中,新变量则处于因变量的地位[2]。此外,在使用第二换元积分法时,为保证)(t x ?=的反函数确实存在及原来的积分有意义,通常要求

)(t x ?=是单调函数、有连续导数且0)(≠'t ?。

4 分部积分法

分部积分法是乘积的微分公式的逆运算,其运算公式是

这个公式说明,积分不易求,而积分较容易求出时,可考虑此公式,使用分部积分时,必须把被积表达式化为u 与dv 的乘积,u 与dv 的选择显然没有一般的准则可以遵循,但是在某些情况下,也可归纳出一些规律来,一般被积函数是两种类型函数乘积的积分时可考虑分部积分法。

下面将适用于分部积分法的积分进行一些归类:

(1) 取u=,dv= (2) 取u=,dv= (3) 取u=,dv= (4) 取u=,dv=dx

(5)取u=arcsin(ax+b),dv=dx

(6)取u=arcos(ax+b),dv=dx

(7)取u=arctan(ax+b),dv=dx

(8),u,v可任取;,u,v可任取;

上式中为n多项式。k,a,b均为常数

另外,如果被积函数中只有一个因子(例如lnx,arcsinx,arccos等),而又不能用别的方法求出积分时,不放用分部积分法,此时可设被积函数为u,dv=dx

例9 求不定积分;②

解:设u=lnx,dv=dx,有dv=dx,v=x

dx=xlnx+C

②设u=lnx,dv=,有du=dx,v=-

=-+=-+C=-

注:计算熟练以后,就可以省略“设”的步骤,把所设的式子当作一个整体,在心里面想着它是一个变数,就可以使书写简化。

例10 求不定积分

分析:可以用两种方法凑微分,但用哪一种行得通?要试试看。

解;==2虽然还不能得到结果,但次数降低了,越变越简单。再进行

一次分部积分得到:=2+

=2+C

例11 求不定积分①;②

解:①=-=-+

=

=-ln()+C

②因为=

-+C 所以=--]arctanx

arctanxarctanx xC

注:有些积分,用一次分部积分不行的话,可进行两次、三次或更多次的分部积分。直到能用基本公式求出或是能转化成所求式子即可[3]。不过,在进行这种涉及繁复的代数计算时,一定要注意掌握一个原则,就是动手之前仔细观察,根据经验判断是否存在更为简单的方法,只有在确实找不到简单方法之后,再开始根据这种确定的计算程式来进行计算。

从以上解法可以看出求解积分时,不论采用什么思路、选用什么积分方法,最终还是归结应用基本积分公式求出结果。因此在学习积分内容时,首先要熟悉基本积分公式和常见的积分法,更为重要的是要根据已给积分的被积函数形式,善于应用相关变形方法转化为基本积分公式类型处理。所以我们在今后的学习中,要灵活运用上述方法。

二、特殊解法

不定积分的基本计算方法有直接积分发、换元积分法、分布积分法、部分积分法,只要能够准确 合理的运用以上方法,总可计算不定积分。但对部分不定积分的计算,使用基本方法计算量很大或很难计算出结果。如果利用方程或方程组,会使不定积分的计算简洁清晰。下面分别介绍这两种方法 1、 方程法

在不定积分计算中,会遇到部分积分很难直接计算出结果,或者利用分部积 分后还原为被积分项。如果得到系数不是1的所求积分项,这时将等式看作关于所求积分的方程,通过解此方程可间接得到其结果,这种方法称为方程法。下面举例说明这种方法的作用[4]。 例12 求不定积分?+=dx x x I 122

解法1:利用换元积分法,设t x tan =,则

??-=?=tdt t tdt t I 3532sec sec sec tan

因为????+-?==tdt tdt t t t td tdt 35335sec 3sec 3tan sec )(tan sec sec

则有??+?=tdt t t tdt 335sec 4

3

tan sec 41sec

故?-?=tdt t t I 33sec 4

1

tan sec 41

又因????+-?==tdt tdt t t t td tdt sec sec tan sec )(tan sec sec 33 则有

c t t t t tdt t t tdt +++?=+?=??tan sec ln 2

1tan sec 21sec 21tan sec 21sec 3

故c t t t t t t I ++-?-?=tan sec ln 81

tan sec 81tan sec 413 )a r c t a n (x t =

即c x x x x x I +++-++=)1ln(8

1

1)12(81222

解法2:利用方程法计算,由于13)1(223

2

+=+x x x dx

d ,

则由分部积分法,得

1ln )1(6

131)1(3113

1131)1(31)1(3

1)1(31)1(xd 312223

2

22223

2

23

223

223

2

++++--+=+-+-+=+-+=+=????x x x x I x x dx x dx x x x x dx

x x x x I 即得到关于I 的方程

1ln )1(6

131)1(3122232

++++--+=x x x x I x x I

解此方程,得:c x x x x x I +++-++=

)1ln(8

1

1)12(81222 注:比较以上两种方法,前者用基本计算方法,计算量大,计算过程复杂。而后者是得到关于所求积分的方程,解此方程就很容易得到所求积分。特别对被积函数中含有指数函数与三角函数的乘积时,往往可以采用这样方法进行积分[5]。

例13 求不定积分?=xdx e I x sin

解:利用分部积分法,得

I

x e x e xdx e x e x e e xd x e e xd I x x x x x x x x --=--=-==???cos sin sin cos sin )(cos sin )()(sin

解关于I 的方程I x e x e I x x --=cos sin ,得

c x e x e I x x +-=)cos sin (2

1

2、 方程组法

为了计算不定积分I ,可以先找到另一个不定积分J 以及实数,,,,d c b a 使

bJ aI +和dJ cI +的计算比较容易,这样可先计算bJ aI +和dJ cI +,然后再用代数方法解关于I 和J 的二元一次方程组,从而得到I ,这种方法称为方程组法。下面举例说明这种方法在不定积分计算中的作用。

例14 求不定积分?+=dx x

x x

I cos 3sin 2sin

解法1:本题是形如?dx x x R )cos ,(sin 的三角函数有理式的不定积分,

可采用基本方法计算。令t x

=)2

tan(,则得到有理函数积分

dt t t t t

I ?

-++=)

343)(1(422利用部分分式法,得

22

2122

22343ln 2134323arctan 2)1ln(2

3

1233432

3136123132c t t dt t t t c t t dt t t dt

t t t dt t t I +--=---+++=++----++=

???? 则c t t t t I ++--+=arctan 13

43431ln 1332

2 )136

132(21c c c -= 将t x =)2tan(代入,得到c x x x I ++-=cos 3sin 2ln 13

3

132

解法2:利用方程组法计算,先考虑容易计算的积分?++dx

x

x x

x cos 3sin 2cos 3sin 2和dx x x x x cos 3sin 2sin 3cos 2+-,令?+=dx x x x J cos 3sin 2cos 则 132cos 3sin 2cos 3sin 2c x J I dx x x x

x +=+=++? (1) (2)

由(1),(2)得到关于I 和J 的方程组?

??+=+-+=+x x J I c x J I cos 3sin 2ln 23321

解此方程组,得c x x x I ++-=

cos 3sin 2ln 133132 )13

6

132(21c c c -= 注:比较上述两种方法,前者使用基本方法,虽然每一位初学者都容易想到此方法,但是该方法过程复杂,计算量很大。而后者只借助两个非常简单的积分和一个二元一次方程组就很容易得到结果[6]。

例15 计算不定积分?+=3

1x dx

I

分析:本题是有利函数积分,而且分母可以进行标准分解,可利用部分分式法计算,这是一种基本计算方法,很容易想到,但是计算过程

复杂。如果考虑到积分dx x x x ?++-3211和dx x x x ?+++3

2

11就很容易计算了,可设dx x

x x J ?+-=3

2

1,得到关于I 和J 的方程组。 2cos 3sin 2ln 23cos 3sin 2sin 3cos 2c x x J I dx x x x x ++=+-=+-?

解:令dx x x x J ?+-=3

2

1,则有 ??++=+=++-=-1321ln 11

11c x dx x

dx x x x J I 2

3322321ln 31)21(3

2arctan 3211111c x x dx x x dx x x dx x x x J I ++--=+-+-=+-+=+???得到方程组 1

23

1ln 31)21(32arctan 321ln ???

??++--=+++=-c x x J I c x J I 解此方程组,得

c x x x I ++++-=

3311ln 21)21(3

2arctan 31 )2(21c

c c +=

总之,在求不定积分时,以上几种方法都可以用,但针对不同的被积函数要选

择适当的方法,有些不定积分需要综合运用换元积分法和分部积分法求解,有些不定积分则需要巧妙的应用方程和方程组法才能更简捷的求出结果。在我们遇到具体问题时要仔细分析,选择一个合适而简便的方法来解答,这就需要熟练地掌握这几种方法,才能便于解决求不定的积分的问题[7]。

参考文献

[1] 华东师范大学数学系.数学分析[M].北京:高等教育出版社,2001. [2] 朱会杰.浅析不定积分的解法[J].科技传播.2011(02). [3] 王晗宁.浅谈不定积分的解法[J].中国商报.2010(02). [4] 李晓瑾.探讨不定积分的特殊解法[J].晋东南师范专科学校学报.2006(04) [5] 马文素.浅谈不定积分的积分方法[J].青海师专学报.2006(05). [6] 高振兴.几类函数不定积分的解题技巧[J].电大理工.2006(04) .

[7] 张骞.计算不定积分的两种特殊方法[J].雁北师范学院学报.2004(05).

不定积分知识点总结

不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F' (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m ( b-a ) ≤∫abf(x)≤dx≤M ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c ( a 定积分的应用 求平面图形的面积(曲线围成的面积) 直角坐标系下(含参数与不含参数) 极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式 S=R2θ/2)

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

2018考研高数重点复习定积分与不定积分定理总结

2018考研高数重点复习定积分与不定积 分定理总结 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。本文为同学们整理了高数部分的定积分与不定积分定理定义汇总。 ?不定积分 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x ∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。 ●分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ?定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2)变速直线运动的路程 2、函数可积的充分条件 ●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 ●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。 3、定积分的若干重要性质 ●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 ●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。

●推论|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx ≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 ●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。 4、关于广义积分 设函数f(x)在区间[a,b]上除点c(a ?定积分的应用 1、求平面图形的面积(曲线围成的面积) ●直角坐标系下(含参数与不含参数) ●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2) ●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程) ●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积) ●功、水压力、引力 ●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

不定积分技巧总结

不定积分技巧总结 作者:蔡浩然 题记题记::不定积分不定积分,,是一元函数积分学的基础是一元函数积分学的基础,,题型极多题型极多,,几乎是每一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律一道题就一种题型。乍一看感觉思路很乱,很难把握其中的规律,,结果是一做题就凭感觉乱闯结果是一做题就凭感觉乱闯,,运气好运气好,,有时可以闯出来有时可以闯出来,,有很多时候是闯不出来候是闯不出来,,或者碰到了庞大的计算量便到此为止了或者碰到了庞大的计算量便到此为止了。。为了在求不定积分时有一个确切简单的思路,我在此作以如下总结。首先,除了那些基本积分公式,还要熟记推广公式的有: ? ???????→????????+??? ?????→+→+∫∫∫x c a ac x c a d x c a ac dx x c a c dx c ax arctan 11 111111222即??? ? ????→ +∫x c a ac dx c ax arctan 1 1 2 【相乘开根作分母,前比后,开根作系数】 另外,[] x x x x dx tan sec ln tan sec 21 sec 3 ++=∫最好也可以记下来最好也可以记下来,,因为经常要用到因为经常要用到,,并且也不难记并且也不难记, ,括号里面是x sec 的原函数和导数之和。 一、一、三角函数篇 三角函数篇原则是:尽量凑微分,避免万能代换。

1.11.1、 、正余弦型1.1.11.1.1、分母二次带常数,分子不含一次项型 、分母二次带常数,分子不含一次项型∫ +dx x A 2 sin 1 或 dx x A x ∫ +2 2 sin cos 右式可通过变形,分离常数化为左式。而 ()→++→+→+∫∫∫ A x A x d dx x x A x dx x A 2 2222tan 1tan tan sec sec sin 1()C x A A A A +??? ?????++→ tan 1arctan 11 1.1.21.1.2、分母一次带常数,分子常数型 、分母一次带常数,分子常数型∫∫ ??→+dx x A x A dx x A 2 2sin sin sin 1()∫∫+?+?→dx x A x d dx x A A 2 222cos 1cos sin 特别的,当 1 =A 时,原式就可化为 ∫∫+→dx x x d dx x A 2 2cos cos cos 1.1.31.1.3、分母一次无常数,分子常数型 、分母一次无常数,分子常数型

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

定积分求面积

找一个函数来描述要求解的曲面一侧的高度,然后描述无穷小单元的面积。其实,不管是什么样的坐标,思路都是一样的。事实上,最原始的方法可以用方格子图纸来计算面积。用定积分计算平面图形的面积、旋转体的体积和平面曲线的弧长。Mbth是一种积分,它是函数f(X)在区间[a,b]上的积分和的极限。 这里要注意定积分和不定积分的关系:如果有定积分,就是一个具体的数值,而不定积分是一个函数表达式,只有一个数学计算关系(牛顿-莱布尼兹公式)。定积分定义:设函数f(X)在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1],(x1,x2],(x2,x3],…。,(xn-1,xn],其中x0=a,xn=b。可以知道,每个区间的长度依次为x1=x1-x0,并且每个子区间(xi-1,xi]中的任意点ξi(1,2,…,n)被用作求和公式。 这个求和公式称为积分和。设λ=max{x1,x2,…,xn}(即,λ是最大间隔长度)。如果当λ→为0时存在积分和极限,则这个极限称为函数f(X)在区间[a,b]上的定积分,记为,函数f(X)在区间[1]内,其中:a称为积分下限,b称为积分上限,区间[a,b]称为积分区间,函数f(X)称为被积函数,x称为积分变量,f(X)dx称为被积函数表达式,∫称为整数。 之所以叫定积分,是因为积分后得到的值是定的,是常数,不是函数。

根据上述定义,如果函数f(X)可以在区间[a,b]内积分,则存在n等分的特殊除法: 特别地,根据上述表达式,当区间[a,b]恰好是区间[0,1]时,区间[0,1]的积分表达式如下: 1.当a=b时, 2.当a>b时, 3.在整数前可以提到常量。 4.代数和的积分等于积分的代数和。 5.定积分的可加性:如果将积分区间[a,b]分成两个子区间[a,c]和[c,b],则有由于性质2,如果f(X)在区间d上可积,则区间d(可能不在区间[a,b]上)中的任何c都满足条件。 6.如果f(X)在区间[a,b]内≥0。 7.积分中值定理:如果f(X)在[a,b]上连续,则在[a,b]中至少有一个点ε

不定积分解法总结

不定积分解题方法总结 摘要:在微分学中,已知函数求它的导数或微分是需要解决的基本问题。而在实际应用中,很多情况需要使用微分法的逆运算——积分。不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。希望本文能起到抛砖引玉的作用,为读者在学习不定积分时提供思路。文中如有错误之处,望读者批评指正。 1 换元积分法 换元积分法分为第一换元法(凑微分法)、第二换元法两种基本方法。而在解题过程中我们更加关注的是如何换元,一种好的换元方法会让题目的解答变得简便。 1.当出现 22x a ±,22a x -形式时,一般使用t a x sin ?=,t a x sec ?=, t a x tan ?=三种代换形式。 C x a x x a dx C t t t t a x x a dx +++=+++==+? ??222 22 2 ln tan sec ln sec tan 2.当根号内出现单项式或多项式时一般用t 代去根号。 C x x x C t t t tdt t t tdt t x t dx x ++-=++-=--==???sin 2cos 2sin 2cos 2) cos cos (2sin 2sin 但当根号内出现高次幂时可能保留根号, c x dt t dt t t dt t t t dt t t t t x x x dx +- =--=--=--=??? ? ??-?-? = --? ????66 12 12 5 12 6 212 12arcsin 6 1 11 6 1 111 11 1 11 1 3.当被积函数只有形式简单的三角函数时考虑使用万能代换法。 使用万能代换2 tan x t =,

浅谈无理函数不定积分的求解方法

浅谈无理函数不定积分的求解方法 摘要:我们将自变量包含在根式之下的函数称为无理函数。这样的特点使得无理函数不定积分,在通常情况下求解较为复杂。对于一个无理函数来说,大多数情况下,较常见的情况是同一个无理函数有多个求不定积分的方法,如何从多种不定积分求解方法中选出最优的解法,就是一个我们需要考虑的问题了。 本文旨在将以往的无理函数不定积分求解方法进行综述,探讨各个方法在求解上的应用与具体使用过程。同时,总结了对一些常见的无理函数不定积分类型的常用解法。为无理函数不定积分的求解提供一种思路。 关键字:无理函数不定积分计算方法 Abstract:We usually call the function which have one or more arguments under the radical as irrational function. The feature of irrational function makes the irrational function integral become tough problem for we to solve. For an irrational function, in most cases, the more common situation is the same irrational function with multiple indefinite integral method. So, how to select an optimal solution from a variety of indefinite integral method, is a problem that we need to consider. This article aims to past the irrational function of indefinite integral solution method to carry on the summary, discusses the application of various methods on solving the use with specific process. At the same time, summarizes the irrational function of some common indefinite integral types of commonly used method. In order to provide a way to solve the irrational function indefinite integral problems. key words:irrational function indefinite integral method

不定积分总结

不定积分

一、原函数 定义1 如果对任一I x ∈,都有 )()(x f x F =' 或 dx x f x dF )()(= 则称)(x F 为)(x f 在区间I 上的原函数。 例如:x x cos )(sin =',即x sin 是x cos 的原函数。 2 211)1ln([x x x +='++,即)1ln(2x x ++是 2 11x +的原函数。 原函数存在定理:如果函数)(x f 在区间I 上连续,则)(x f 在区间I 上一定有原函数,即存在区间I 上的可导函数)(x F ,使得对任一I x ∈,有)()(x f x F ='。 注1:如果)(x f 有一个原函数,则)(x f 就有无穷多个原函数。 设)(x F 是)(x f 的原函数,则)(])([x f C x F ='+,即C x F +)(也为)(x f 的原函数,其中C 为任意常数。 注2:如果)(x F 与)(x G 都为)(x f 在区间I 上的原函数,则)(x F 与)(x G 之差为常数,即C x G x F =-)()((C 为常数) 注3:如果)(x F 为)(x f 在区间I 上的一个原函数,则C x F +)((C 为任意常数)可表达)(x f 的任意一个原函数。 二、不定积分 定义2 在区间I 上,)(x f 的带有任意常数项的原函数,成为)(x f 在区间I 上的不定积分,记为?dx x f )(。 如果)(x F 为)(x f 的一个原函数,则 C x F dx x f +=?)()(,(C 为任意常数)

x y o )(x F y = C x F y +=)( 三、不定积分的几何意义 不定积分的几何意义如图5—1所示: 图 5—1 设)(x F 是)(x f 的一个原函数,则)(x F y =在平面上表示一条曲线,称它为 )(x f 的一条积分曲线.于是)(x f 的不定积分表示一族积分曲线,它们是由) (x f 的某一条积分曲线沿着y 轴方向作任意平行移动而产生的所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x 的点处有互相平行的切线,其斜率都等于)(x f . 在求原函数的具体问题中,往往先求出原函数的一般表达式C x F y +=)(,再从中确定一个满足条件 00)(y x y = (称为初始条件)的原函数)(x y y =.从几何上讲,就是从积分曲线族中找出一条通过点),(00y x 的积分曲线. 四、不定积分的性质(线性性质) [()()]()()f x g x dx f x dx g x dx ±=±??? ()() kf x dx k f x dx =??k ( 为非零常数)

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

不定积分知识点总结

不定积分知识点总结 不定积分知识点总结 不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F'(x)=f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 定积分 1、定积分解决的典型问题 (1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积

3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论|∫abf(x)dx|≤∫ab|f(x)|dx 性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m (b-a )≤∫abf(x)≤dx≤M (b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)(b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点c (a

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

利用定积分求曲线围成的面积

12.9 利用定积分求曲线围成的面积 武汉外国语学校 汪家硕 一.复习回顾: 1.定积分的几何意义:当()0f x ≥时,积分()b a f x dx ?在几何上表示由()y f x =、x a =、x b =与x 轴所围成的曲边梯形的面积。 当()0f x ≤时,由()y f x =、x a =、x b =与x 轴所围成的曲边梯形位于x 轴的下方。 2.牛顿—莱布尼茨公式 定理(微积分基本定理)如果()f x 是区间[,]a b 上的连续函数,并且'()()F x f x =,则 ()()()b a f x dx F b F a =-? 二.曲线围成的面积 1.设f 和g 是区间[,]a b 上的连续函数且对任意的[,]x a b ∈有()()f x g x ≥,则直线x a =和直线x b =以及曲线间围成的面积可以表示为: ()()()()b b b a a a f x dx g x dx f x g x dx -=-? ?? 例1.求抛物线2y x =和直线2y x =所围成的区域面积。 解:先求出P 点坐标。 解方程组22y x y x ?=?=? ? 02x x =??=? ∴ P 点的坐标是(2,4)。 ?b a f (x )dx =?c a f (x )dx +?b c f (x )dx 。

所求的面积= 2 23 22 00 84 24 333 x x x dx x ?? -=-=-= ?? ?? ? 例1 例2.计算曲线 21 y x =+和2 4 y x =-,以及直线1 x=和1 x=-所围成的区域面积。 解:所求面积= 1 113 222 111 214 4(1)323 33 x x x dx x dx x --- ?? --+=-=-= ?? ?? ?? 例2 2.前面的例题都是一个曲线总在另外一个曲线的上方,如果它们交叉会是什么结果? 考虑区间112233 [,],[,],[,],[,] a c c c c c c b ,阴影部分面积可以表示为: 123 123 ()()()()()()()() c c c b a c c c f x g x dx g x f x dx f x g x dx g x f x dx -+-+-+- ???? 例3:求 3 () f x x =和() g x x =所围成的封闭区域面积。 解:当()() f x g x =时图像的交点, 即 332 0(1)0 x x x x x x =?-=?-= 01 x ∴=± 或 例3

不定积分知识点总结

三一文库(https://www.360docs.net/doc/c013054316.html,)/总结 〔不定积分知识点总结〕 引导语:不定积分一直是很多人都掌握不好的一个知识点,那么不定积分要怎么学好呢?接下来是小编为你带来收集整理的不定积分知识点总结,欢迎阅读! ▲不定积分 1、原函数存在定理 定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F (x),使对任一x∈l都有F (x) =f(x);简单的说连续函数一定有原函数。 分部积分法 如果被积函数是幂函数和正余弦或幂函数和指数函数 的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数 的乘积,就可设对数和反三角函数为u。 2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。 ▲定积分 1、定积分解决的典型问题

(1)曲边梯形的面积(2 )变速直线运动的路程 2、函数可积的充分条件 定理设f(x)在区间[a上]上连续,则f(x)在区间[a,b]上可积,即连续=可积。 定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积 3、定积分的若干重要性质 性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。 推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx 推论| ∫abf(x)dx|≤∫ab|f(x)|dx 性质设及分别是函数f(x)在区间[a,b]上的最大值和最小值,则 ( b-a ) ≤∫abf(x)≤dx≤ ( b-a ),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分 值的大致范围。 性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在点ξ。使下式成立:∫abf(x)dx=f(ξ)( b-a )。 4、关于广义积分 设函数f(x)在区刚[a,b]上除点 ( ab )外连续,而在点的邻域内无界,如果两个广义积分∫af(x)dx与∫bf(x)dx 都收敛,则定义∫af(x)dx=∫bf(x)dx ,否则 (只要其中一

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

74简单无理函数的不定积分与三角函数的不定积分

§7.4简单无理函数的不定积分与三角函数的不定积分 一、简单无理函数的不定积分 对被积函数带有根号的不定积分,它的计算是比较麻烦的。但对某些特殊情况,我们可通过作变量替换,将其转化为有理函数的不定积分,这样就可以用上述的方法计算。 下面总假设),(y x R 表示关于变量y x ,的有理函数。 1.??? ? ??++n d cx b ax x R ,型函数的不定积分。其中0≠-bc ad 解法:作变量替换n d cx b ax t ++=,即dt t dx t ct a b dt x n n )(,)(φφ'==--=,于是 []??'=??? ? ??++dt t t t R dx d cx b ax x R n )(),(,φφ, 转化为有理函数的不定积分。 例1.求 ?++dx x x x x 14 158217 1 分析:要把被积函数中的几个根式化为同次根式。 ()2 14 7 7 1x x x = = ,()7 14 2 1x x x = =,() 16 14 7 8 7 8x x x = = ,() 15 14 14 15x x = 作变量替换14x t =,即dt t dx t x 1314 14,==,就可以把原不定积分化为有理函数的不定积分。 解:作变量替换14x t =,即dt t dx t x 1314 14,==,则 =++=?++=++???dt t t dt t t t t t dx x x x x 111414513 15167214 1582 1 71 例2.求 ? -?+-dx x x x 2 3 ) 2(1 22 解:设,223t x x =+- 则33122t t x +-=,dt t t dx 2 32 ) 1(12+-=,所以 ??? =-=+-???? ? ??+--?=-?+- dt t dt t t t t t dx x x x 323223323 1 43) 1(1212221)2(122 2.() c bx ax x R ++2,型函数的不定积分,其中042≠-ac b (即方程02 =++c bx ax 无重根) 分两种情况讨论: (1)042 >-ac b 时,方程02 =++c bx ax 有两个不等的实数根α、β

相关文档
最新文档