光电倍增管知识

光电倍增管知识
光电倍增管知识

用于阵列探测器的多阳极光电倍增管特性研究

1光电倍增管的基本特性

1) 灵敏度和工作光谱区

光电倍增管的灵敏度和工作光谱区主要取决于光电倍增管阴极和打拿极的光电发射材料。当入射到阴极表面的光子能量足以使电子脱离该表面时才发生电子的光电发射,即1/2mv2=h?-ф,(

h?为光子能量,ф为电子的表面功函数,1/2mv2为电子动能)。当h?<ф时,不会有表面光电发射,而当h?=ф时,才有可能发生光电发射,这时所对应的光的波长λ=C/?称为这种材料表面的阈波长。随着入射光子波长的减小,产生光电子发射的效率将增大,但光电倍增管窗材料对光的吸收也随之增大。显然,光电倍增管的短波响应的极限主要取决于窗材料,而长波响应的极限主要取决于阴极和打拿极材料的性能。一般用于可见-红外光谱区的光电倍增管用玻璃窗,而用于紫外光谱区的用石英窗。光阴极一般选用表面功函数低的碱金属材料,如红外谱区选用银-氧-铯阴极,可见光谱区用锑-铯阴极或铋-银-氧-铯阴极,而紫外谱区则采用多碱光电阴极或梯-碲阴极。

光电倍增管的灵敏度S是指在1lm的光通量照射下所输出的光电流强度,即

S=i/F,单位为μA/lm。显然,灵敏度随入射光的波长而变化,这种灵敏度称为光谱灵敏度,而描述光谱灵敏度随波长而变化的曲线称为光谱响应曲线(见右图),由此可确定光电倍增管的工作光谱区和最灵敏波长。例如我们常用的R427光电倍增管,其曲线偏码为250S,光谱响应范围为160-320nm,峰值波长200nm,光阴极材料Cs-Te,窗口材料为熔炼石英,典型电流放大率3.3×106。

2) 暗电流与线性响应范围

光电倍增管在全暗条件下工作时,阳极所收集到的电流称为暗电流。对某种波长的入射光,光电倍增管输出的光电流为:i=KIi+i0

,式中,Ii对应于产生光电流i的入射光强度,k为比例系数,i0为暗电流。由此可见,在一定的范围内,光电流与入射光强度呈线性关系,即为光电倍增管的线性响应范围。当入射光强度过大时,输出的光电流随光强的增大而趋向于饱和(见右图)。线性响应范围的大小与光阴极的材料有关。

暗电流的来源主要是由于极间的欧姆漏阻、阴极或其他部件的热电子发射以及残余气体的离子发射、场致发射和玻璃闪烁等引起。

当光电倍增管在很低电压下工作时,玻璃芯柱和管座绝缘不良引起的欧姆漏阻是暗电流的主要成分,暗电流随工作电压的升高成正比增加;当工作电压较高时,暗电流主要来源于热电子发射,由于光电阴极和倍增极材料的电子溢出功很低,甚至在室温也可能有热电子发射,这种热电子发射随电压升高暗电流成指数倍增;当工作电压较高时,光电倍增管内的残余气体可被光电离,产生带正电荷的分子离子,当与阴极或打拿极碰撞时可产生二次电子,引起很大的输出噪声脉冲,另外高压时在强电场作用下也可产生场致发射电子引起噪声,另外当电子偏离正常轨迹打到玻壳上会出现闪烁现象引起暗电流脉冲,这一些暗电流均随工作电压升高而急剧增加,使光电倍增管工作不稳定,因此为了减少暗电流,对光电倍增管的最高

工作电压均加以限制。

3) 噪声和信噪比

在入射光强度不变的情况下,暗电流和信号电流两者的统计起伏叫做噪声。这是由光子和电子的量子性质而带来的统计起伏以及负载电阻在光电流经过时其电子的热骚动引起的。输出光电流强度与噪声电流强度之比值,称为信噪比。显然,降低噪声,提高信噪比,将能检测到更微弱的入射光强度,从而大大有利于降低相应元素的检出限。

4) 工作电压和工作温度

光电倍增管的工作电压对光电流的强度有很大的影响,尤其是光阴极与第一打拿极间的电压差对增益(放大倍数)、噪声的影响更大。因此,要求电压的波动不得超过0.05%,应采用高性能的稳压电源供电,但工作电压不许超过最大值(一般为-900v-1000v),否则会引起自发放电而损坏管子,工作环境要求恒温和低温,以减小噪声。

5) 疲劳和老化

在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。

2光电测量原理

光电检测的原理一般是通过光电接受元件将待测谱线的光强转换为光电流,而光电流由积分电容累积,其电压与入射光的光强成正比,测量积分电容器上的电压,便获得相应的谱线强度的信息。不同的仪器其检测装置具有不同的类型,但其测量原理是一样的。其光电检测系统主要有以下四个部分组成:1.光电转换装置,2.积分放大电路及其开关逻辑检测,3.A/D 转换电路,4.计算机系统。

3.多阳极光电倍增管文献一篇

紫外多阳极(128×128)微通道阵列光电倍增管

的研制

戴丽英李慧蕊黄敏徐华盛

摘要:详细报道了新研制的紫外多阳极微通道阵列光电倍增管。该器件采用了叠合式阵列阳极(128×128)、端窗式“日盲”紫外光电阴极(碲铷RbTe)、高增益的Z型微通道板组件、近贴聚焦结构等先进技术。器件的主要性能参数为:阴极发射灵敏度18 mA/W,增益2×106,暗电流0.5 nA,时间响应0.3 ns,单光子计数率2×105 s-1。

关键词:光电倍增管阵列阳极微通道板紫外阴极Development of Ultraviolet Multi-anode (128×128)Microchannel

Arrays Photomultiplier Tube

Dai Liying,Li Huirui,Huang Min,Xu Huasheng

(Nanjing Electronic Devices Institute,Nanjing,210016) Abstract:The ultraviolet multi-anode microchannel array (MAMA) photomultiplier has been successfully developed.Various advanced technologies,including an anode array with 128×128 pixels,head-on “solar blind” ultraviolet photocathode made of RbTe film,Z-type microchannel plates and the proximity focusing technique,were employed in the MAMA device.Major specifications of the device are as follows:cathode radiant sensitivity is 18 mA/W;current gain is 2×106;dark current is 0.5 nA;pulse rise time is 0.3 ns;single photon counting rate is 2×105 s-1.

Keywords:Photomultiplier tube,Array anode,Microchannel plate,Ultraviolet photocathode▲

紫外微通道板光电倍增管是一种微弱紫外信号探测器件,它可广泛应用于高能物理研究、空间探测、激光雷达、光子计数、电子对抗等领域。在军事上,它主要用于紫外线制导、报警、干扰及通讯等。目前,它在军事上的应用意义更为重大。由于军用飞机和火箭排放的尾烟中含有200~320 nm范围的紫外光,因此可利用对此波段灵敏的探测器来进行空中目标的探测或制导。据报道,在1991年的海湾战争中,投入战斗的美国军用飞机已装备了由新型光电倍增管制成的紫外线报警器[1]。

普通微通道板光电倍增管一般为单一阳极结构,仅能进行定向信号的探测。为了能更精确并快速地定位或捕获空中目标,则需要具有成像功能的多阳极微通道阵列光电倍增管(即多阳极微通道阵列器件,

multi-anode microchannel array,简称MAMA器件)。早期的MAMA器件采用的是分立式、电阻耦合式等类型的阳极[2]。信号输出为一对一方式,即信号输出电极数与像素数相同,这严重限制了像素密度的提高。为了获得高分辨率的MAMA器件,出现了叠合式阵列阳极结构[3]。叠合式阵列阳极由于采用了特殊的电极编码技术,使得信号输出电极数量显著减少,比如,对像素为1024×1024的阵列阳极,它的输出电极仅为128个。因此叠合式阵列阳极技术使得高分辨率MAMA器件成为可能。

80年代后期国外就已研制出了具有叠合式阵列阳极的微通道板光

电倍增管,像素数达到1024×1024,像素尺寸最小为14 μm×14 μm。多种MAMA探测器,如:日盲紫外光谱测试仪、哥达德空间飞行中心的成

像光谱仪(STIS)等已安装在探空火箭上[4],进行星际图像等天体物理方面的测量研究工作,并投入军事应用。

国内90年代初才涉足微通道板光电倍增管的研制,近年开始了MAMA 器件的研制。分立式多阳极微通道板光电倍增管的工作已有报道[5],但叠合式阵列阳极MAMA器件的研制尚属首次。本文报道的MAMA器件采用了128×128阵列阳极、52个编码电极引出、PLCC接口输出、端窗式“日盲”紫外光电阴极、高增益的Z型微通道板组件,并且光电阴极、微通道板组件、阵列阳极之间呈近贴聚焦结构。所有这些新技术的采用,使得该器件具有体积小、探测灵敏度高、增益高、暗电流小、时间响应快、空间分辨能力高、单光子计数能力强、抗磁场干扰能力强等优点。

1 器件结构和工作原理

如图1所示,多阳极微通道阵列光电倍增管主要有输入光窗、光电阴极、微通道板组件、阵列阳极及编码电极组成。

图1 多阳极微通道阵列光电倍增管工作示意图

Fig.1 Schematics of multi-anode microchannel array

photomultiplier tube configuration

光信号透过输入光窗入射至光电阴极表面,产生大量的光电子,这些光电子经微通道板组件(Z-MCP)倍增形成电子云,由阵列阳极收集,通过X方向、Y方向的二维编码电极将获取的信号输出。

输入光窗材料为石英玻璃,图2给出了几种材料的透射比曲线。从图2可知,许多材料都具有透紫外能力,但石英玻璃在200~320 nm范围内具有高且均匀的透射比。另外输入光窗的材料决定了光电阴极的截止波长。

图2 几种材料的透射比曲线

Fig.2 spectral transmission of several window materials

光电阴极材料为碲铷薄膜。光电阴极的长波阈值特性由光电阴极材料及其表面性质决定。许多材料都具有较高的紫外光灵敏度,可仅对紫外光灵敏而对太阳辐射(λ>320 nm)没有反应的光电阴极,即“日盲”光电阴极,较实用的只有碲铯(CsTe)、碲铷(RbTe)两种阴极。但碲铷光电阴极的禁带宽度和电子亲和势之和大于碲铯阴极,即碲铷阴极具有更短的阈值波长。

作为电子倍增器的微通道板组件是由三块单通道型微通道板(简称MCP)级联而成的。MCP是由几十万根微通道组成的一个很薄的圆片,其微通道直径一般为10 μm左右,厚度约0.5 mm。MCP的主要特点是体积小,响应速度快。但是由于受离子反馈的影响,单块直通道型MCP的电流增益并不高,在正常工作电压下(约800 V),通常为103~104[6]。若将2块或3块MCP级联,并形成微通道弯曲,如图3所示,则离子反馈受到抑制,电流增益可达106以上。

图3 微通道板组件结构示意图

Fig.3 Schematics of tandem type MCP

阵列阳极为三层叠合式结构[7]。如图4所示,中间是介质层,上、下层分别为相互平行、分布均匀的金属像素条。上、下层的金属条相互垂直。图中1为无反馈MCP;2为上表面编码电极;3为不透明光阴极;4为输入面电极(约-2000 V);5为无反馈MCP(C型板);6为输出面电极绝缘层;8为上表面编码电极(-75 V);9为石英基底;

(0 V);7为SiO

2

10为下表面编码电极(-75 V);11为输出电荷群(约106电子/脉冲);12

为下表面编码电极;13为石英基底;14为叠合阳极阵列。

图4 阵列阳极结构示意图

Fig.4 Schematics showing details of coincident anode array

阵列阳极输出采用精细-精细电极编码方式[8]。如图5所示,阳极像素被分成了两组,即上部分的奇数位组和下部分的偶数位组。奇数位组中每个周期所包含的像素数与偶数位组不同,这样便形成了奇-偶周期错位排列,从而使每相邻的两个像素处于不同的数组中。也就是说,相邻的奇-偶两个像素的组合是唯一的,引出电极数仅为奇数位每个周期的像素数与偶数位每个周期的像素数之和。对128×128像素的阵列阳极而言,引出电极数为52个[9]。

图5 一维阳极信号阅读方式示意图

Fig.5 Construction of one-axis of fine-fine anode array

MCP与光电阴极及阵列阳极之间采用了近贴聚焦结构,这样可提高MCP光电倍增管的响应速度。

2 器件制作

器件制作工艺流程如下:

2.1 阵列阳极制作

(1)在石英基片上热蒸发NiCr-Au双层金属膜,NiCr和Au膜的厚度分别为50 nm和200 nm左右,经光刻形成下层电极条;

(2)磁控溅射SiO

隔离膜,膜厚约500 nm,经光刻形成下层电极引

2

出窗口;

(3)热蒸发NiCr-Au双层金属膜(膜厚同上),光刻形成上层电极条以及上、下层编码电极引出端。

2.2 微通道板级联

如图4所示,将三块微通道板叠合在一起,其间填充少量焊料,控制级联间隙在30 μm左右。在真空度为1×10-4Pa左右,温度为200 ℃的条件下,将它们压焊在一起,形成了Z型微通道板组件。

2.3 除气

将装有阵列阳极、微通道板组件的管壳及制作光电阴极用的输入光窗4等分别装入真空转移装置内相应位置,待真空度达到1×10-4Pa时,加温至350 ℃,烘烤2 h,以充分去除吸附在管壳零部件表面以及真空转移装置内壁的气体分子。但对微通道板来说,其内表面吸附的气体分子很难用常规的热烘烤去除。因此在热烘烤之后,必须使微通道板处于工作状态,用强紫外光进行冲刷。冲刷电流为1 μA,累计冲刷时间为24 h。

2.4 光电阴极制作

在石英输入光窗表面预先热蒸发Cr导电膜,膜的厚度以透射比损失10%~15%为限;采用Te-Rb层叠交替蒸发法制作RbTe光电阴极。每次蒸Te后,需经Rb源充分激活,直到光电流不再增大为止。这种方法与传统的一次蒸Te,一次激活的方法相比,灵敏度可从10 mA/W以下增加到15 mA/W以上。

2.5 热铟封

阴极制作完成之后,将输入光窗转移到预先填充好焊料铟的管壳上方,如图6所示。在一定的温度下,将两者封接起来。采用高频加热除气法炼制焊料,以提高其纯度,并预先在高温下将焊料烧制在管壳封接盘内。封接前输入光窗内侧封接面处预先进行金属化。

图6 热铟封结构简图

Fig.6 Schematics drawing of thermal indium seal

石英表面金属化所用材料与合金焊料的浸润能力要强,这样有利于提高封接质量。RbTe光电阴极对真空度要求很高,在真空系统内采用热铟封技术较好地实现了器件的气密性封接,保证了器件内部真空度优于1×10-4 Pa。

2.6 老炼工艺

从真空转移装置刚制出来的管子,其性能并不稳定。不稳定性主要表现在阴极发射灵敏度、暗电流和电流增益等直流参数上。其不稳定性主要由以下两个方面所致:

(1)RbTe光电阴极表面吸附着不稳定结构的Rb原子,这些Rb原子因管内少量气体产生的离子反馈或在电场作用下的迁移,使光电发射发生变化;

(2)微通道板内部和阳极表面吸附的气体分子,在光电子轰击下会出现解吸现象,使器件在初始工作阶段出现虚假增益及大的暗电流。

因此,器件正式使用之前必须进行老炼,以除去这些不稳定因素。老炼分微通道板老炼和器件老炼。

微通道板老炼:断开光电阴极,接通微通道板,使微通道板处于工作状态2 h。在此状态下,微通道板内部的气体分子受极间电场轰击而释放出来并被吸气丝吸收。这样便稳定了MCP的暗电流和增益,并避免了光电阴极受到离子轰击。

器件老炼:器件处于正常工作状态,在有光源和无光源这两种情况下,分别使器件工作2 h,这样可使阴极表面结构趋于稳定。

试验证明,经过以上老炼处理后,MAMA器件有了非常稳定的工作状态。

3 研制结果与分析

图7为研制成的器件外形照片。图8为阳极阵列照片。图9为典型的器件光谱曲线图,光谱范围为200~320 nm,峰值波长为240 nm,谱线在320 nm处响应小于1%,因而具有较好的日盲性能。图10为典型的器件增益曲线,从增益曲线可知,在2200 V电压时,器件增益已达1×106。图11为器件的脉冲上升时间波形,上升时间为曲线峰值的10%到90%间的时间间隔。从图中曲线上读得,上升时间为400 ps,去掉电缆、光源及示波器本身的上升时间,则器件的实际上升时间约为300 ps。图12为器件整个阳极(曲线1)和单个输出电极(曲线2)的单光子计数曲线。由于该器件的信号读出电路仍处于研制之中,因此尚不能进行图像演示。但从整个阳极和单个输出电极的单光子计数结果看,该MAMA器件已具备了成像功能。

图7 器件外形图

Fig.7 Outside view of device

图8 阳极阵列

Fig.8 Anode array

图9 典型的器件光谱曲线

Fig.9 Typical spectral response characteristics

图10 典型的器件增益曲线

Fig.10 Typical gain characteristic curve of tandem MCP

图11 脉冲上升时间波形

Fig.11 Output pulse waveform

图12 单光子计数曲线

Fig.12 Single-photon counting curves

器件达到的主要性能参数如下:光谱响应范围:200~320 nm;阴极发射灵敏度:18 mA/W;工作电压:2400 V;电流增益:2×106;暗电流:≤0.5 nA;上升时间:270 ps;有效工作面积:φ25 mm;阵列阳极像素:128×128;最大单光子计数率:2×105 s-1。

该器件在国内属首次研制,其型号为GDB-609型。其主要性能参数

与国内外同类产品的比较列于表1。从表中可以看出,所研制器件的阴极灵敏度、暗电流、脉冲上升时间等参数已达到日本滨松产品水平,而电流增益、有效面积、器件尺寸等参数已优于日本滨松产品。

表1 不同MCP-PMT的主要参数比较

Tab.1 Comparison of main parameters for different MCP-PMT

注:*此尺寸不含引出脚长度

4 结论

叠合式阵列阳极MAMA器件的研制在国内尚属首次,并且性能参数均达到了设计指标。这表明器件的结构设计和材料选取是合理的,器件的制作工艺也是可行的。■

作者单位:戴丽英(南京电子器件研究所南京210016)

李慧蕊(南京电子器件研究所南京210016)

黄敏(南京电子器件研究所南京210016)

徐华盛(南京电子器件研究所南京210016)

光电倍增管综述

光电倍增管综述

光电倍增管综述 摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。本文将从结构,特性,应用及发展前景几方面做阐述。 一结构 光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。下图所示为端窗型光电倍增管的剖面结构图。 其主要工作过程如下:当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。 二特性 一光谱响应 光电倍增管由阴极收入射光子的能量并将其转换为光子,其转换效率(阴极灵敏度)随入射光的波长而变。这种光阴极灵敏度与入射光波长之间的关系叫做光谱响应特性。 一般情况下,光谱响应特性的长波段取决于光阴极材料,短波段则取决于入射窗材料。光电倍增管的阴极一般都采用具有低逸出功能的碱金属材料所形成的光电发射面。光电倍增管的窗材料通常由硼硅玻璃、透紫玻璃(UV玻璃)、合成石英玻璃和氟化镁(或镁氟化物)玻璃制成。硼硅玻璃窗材料可以透过近红外至300nm垢可见入射光,而其它3种玻璃材料则可用于对紫外区不可见光的探测。

二光照灵敏度 由于测量光电倍增管的光谱响应特性需要精密的测试系统和很长的时间,因此,要为用户提 供每一支光电倍增管的光谱响应特性曲线是不现实的,所以,一般是为用户提供阴极和阳极 的光照灵敏度。 阴极光照灵敏度,是指使用钨灯产生的2856K色温光测试的每单位通量入射光产生的阴极光 电子电流。阳极光照灵敏度是每单位阴极上的入射光能量产生的阳极输出电流(即经过二次 发射极倍增的输出电流)。 三增益 光阴极发射出来的光电子被电场加速后撞击到第一倍增极上将产生二次电子发射,以便产生 多于光电子数目的电子流,这些二次发射的电子流又被加速撞击到下一个倍增极,以产生又 一次的二次电子发射,连续地重复这一过程,直到最末倍增极的二次电子发射被阳极收集, 这样就达到了电流放大的目的。这时光电倍增管阴极产生的很小的光电子电流即被放大成较 大的阳极输出电流。一般的光电倍增管有9~12个倍增极。 三应用 光电倍增管应用用下表简单表示。 光电倍增管的应用领域 光谱学----- 利用光吸收原理 应用领域光电倍增管特性适用管紫外/可见/近红外分光光度计 光通过物质时使物质的电子状态发生变化,而失去部分能量,叫做吸收。利用吸收进行定量分析。为确定样品物质的量,采用连续的光谱对物质进行扫描,并利用光电倍增管检测光通过被测物质前后的强度,即可得到被测物质程度,计算出物质的量。1.宽光谱响应 2.高稳定性 3.低暗电流 4.高量子效率 5.低滞后效应 6.较好偏光特性 R212 R6356,R6 R928,R955,R14 R1463 R374,R3 CR114,CR131 原子吸收分光光度计 广泛地应用于微量金属元素的分析。对应于分析的各种元素,需要专用 的元素灯,照射燃烧并雾化分离成原子状态的被测物质上,用光电倍增 管检测光被吸收的强度,并与预先得到的标准样品比较。 R928,R955 CR1 生物技术 应用领域光电倍增管特性适用管 细胞分类 细胞分类仪是利用荧光物质对细胞标定后,用激光照射,细胞的荧光、散乱光用光电倍增管进行观察,对特定的细胞进行选别的装置。1.高量子效率 2.高稳定性 3.低暗电流 4.高电流增益 5.好的偏振特性 R6353,R6357,R R928,R1477,R3 R2368 CR131 荧光计 细胞分类的最终目的是分离细胞,为此,有一种用于对细胞、化学物质进行解析的装置,它称为荧光计。它对细胞、染色体发出的荧光、散乱

光电倍增管简介及使用特性

我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。 下面将讲解光电倍增管结构的主要特点和基本使用特性。 结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。 端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。

PMT基础知识之六(光电倍增管坪特性)

光电倍增管基础知识之六 (光电倍增管“坪特性”) 闪烁计数器的“坪”不是光电倍增管的固有特性,而是闪烁计数器在一定条件下所具有的特性,光电倍增管输出信号极噪声幅度随着夹在光电倍增管电压而变化,只有在一定电压范围内光电倍增管输出信号幅度大于仪器甄别阈,而噪声幅度又小于甄别阈是才产生计数坪,这种坪显然和脉冲幅度分布,晶体,光电倍增管的性能,仪器放大倍数,甄别阈(仪器参数)及其应用条件等因素有关。所以坪石综合因素的体现。但是它主要决定于光电倍增管的性能。这里只谈谈“坪”与管子性能的关系。 从理论上分析得知,管子性能不同其坪曲线也不相同。下面就讨论一下光电倍增管的阴极灵敏度(兰光灵敏度或蓝白比)阳极灵敏度(增益)和噪声与坪曲线的关系问题 电压(Kv) 图(1) 不同辐射源的坪曲线

图(2) 不同晶体尺寸Nal(Tl)晶体的坪曲线 A 阴极兰光灵敏度 闪烁计数中的碘化钠晶体的发光光谱处于光谱兰区,管子的蓝光灵敏度高,其光电转化效率就高,所以管子的蓝光灵敏度的大小就反映出坪特性的好坏。兰光灵敏度高,起坪时计数变化快,坪出现早。图(3) 给出了两支阳极灵敏度相同,而兰光灵敏度不同的GDB-38的坪曲线。1#管子兰光灵敏度高,起坪快,另外坪的上限与蓝白比有关(兰光灵敏度与白光灵敏度之比)有关。“蓝白比”在一定程度上反映出管子的热噪声水平,比值小的管子一般热噪声大,高温时尤为严重. 从图可以看出兰白比高的53比兰白比低的72的坪要长30V. 图(3)不同兰白比的坪曲线 B 阳极灵敏度 图给出了两支GDB-37光电倍增管的坪曲线。阳极灵敏度高的管子(28#)起坪早,结果也早,并且坪区比较窄(坪长较短250V);反之阳极灵敏度低的管子(37#)坪起的比较晚,结果也晚,

光电倍增管使用特性

页眉内容 光电倍增管简介及使用特性 我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,我在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT )是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。 下面将讲解光电倍增管结构的主要特点和基本使用特性。

结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。 端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。 电子倍增系统 光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得

光电倍增管

附录二光电倍增管 K——光阴极;F——聚焦极;D1~D10——打拿极;A——阳极。 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”)──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 根据打拿极的几何形状和排列方式,光电倍增管分为聚焦型(环

状、直线)和非聚焦型(百叶窗式、盒栅式)。本装置采用百叶窗式光电倍增管,过去采用GDB44F 型,现采用GDB43型。其优点为脉冲幅度分辨率较好,适用闪烁能谱测量。 它的主要指标应该包括以下几方面:光电转换特性、电子倍增特性、噪声或暗电流、时间特性等;在此主要介绍光电转换特性和电子倍增特性。 1. 光电转换特性——光阴极的光谱响应和灵敏度 光阴极是接收光子并放出光电子的电极,一般是在真空中把阴极材料蒸发在光学窗的内表面上,形成半透明的端窗阴极;光阴极材料的品种有数十种,但最常用的只是五、六种,如锑铯化合物等。一般光电倍增管光阴极前的光学窗有两种:硼玻璃窗或石英窗,前者适用于可见光,后者可透过紫外光。光阴极受到光照射后发射光电子的几率是波长的函数,称为光谱响应。在长波端的响应极限主要由光阴极材料的性质决定,而短波端的响应主要受入射窗材料对光的吸收所限制。了解光电倍增管的光谱响应特性有利于正确选择不同管子使之与闪烁体的发射光谱相匹配。 在实际应用中,光电转换特性通常使用另一个宏观定义,即一定通量F 的白光照射阴极所能获得的光电子流(i k )称为光阴极光照灵敏度: k k i S F (1) 其中i k 单位为微安;F 为光通量,单位为“流明”(lm)。 2. 电子倍增特性——光电倍增管的放大倍数及阳极灵敏度

光电倍增管

光电倍增管 1 概述 光电倍增管(PMT)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。 2 光电倍增管的一般结构 光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。其主要工作过程如下: 当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。 因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。 3 光电倍增管的类型 3.1 按接收入射光方式分类 光电倍增管按其接收入射光的方式一般可分成端窗型(Head-on)和侧窗型(si de-on)两大类。 侧窗型光电倍增管(R系列)是从玻璃壳的侧面接收入射光,两端窗型光电倍增管(CR系列)则从玻璃壳的顶部接收射光。 在通常情况下,侧窗型光电倍增管(R系列)的单价比较便宜(一般数百元/只),在分光光度计、旋光仪和常规光度测定方面具有广泛的应用。大部分的侧窗型光电倍增管使用不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这种结构能够使其在较低的工作电压下具有较高的灵敏度。 端窗型光电倍增管(CR系列)也称顶窗型光电倍增管。其价格一般在千元以上,它是在其入射窗的内表面上沉积了半透明的光阴极(透过式光阴极),这使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点是拥有从几十平方毫米到几百平方厘米的光阴极,另外,现在还出现了针对高能物理实验用的可以广角度捕获入射光的大尺寸半球形光窗的光电倍增管。 3.2 按电子倍增系统分类 光电倍增管之所以具有优异的灵敏度(高电流放大和高信噪比),主要得益于基于多个排列的二次电子发射系统的使用。它可使电子在低噪声条件下得到倍增。电子倍增系统,包括8~19极的叫做打拿极或倍增极的电极。

光电倍增管的作用

光电倍增管的应用领域非常广泛,主要分为以下十几种: 光谱学:紫外/可见/近红外分光光度计,原子吸收分光光度计,发光分光光度计,荧光分光光度计,拉曼分光光度计,其他液相或气相色谱如X光衍射仪、X光荧光分析和电子显微镜等。 质量光谱学与固体表面分析:固体表面分析,这种技术在半导体工业领域被用于半导体的检查中,如缺陷、表面分析、吸附等。电子、离子、X射线一般采用电子倍增器或MCP来测定。 环境监测:尘埃粒子计数器,浊度计,NOX、SOX 检测。 生物技术:细胞分类计数和用于对细胞、化学物质进行解析的荧光计。 医疗应用:γ相机,正电子CT,液体闪烁计数,血液、尿液检查,用同位素、酶、荧光、化学发光、生物发光物质等标定的抗原体的定量测定。其他如X光时间计,用以保证胶片得到准确的曝光量。 射线测定:低水平的α射线,β射线和γ射线的检测。 资源调查:石油测井,用于判断油井周围的地层类型及密度。工业计测:厚度计,半导体检查系统。 摄影印刷:彩色扫描,把彩色分解成三原色(红、绿、兰)和黑色,作为图象数据读出。高能物理——加速器实验:辐射计数器,TOF计数器,契伦柯夫计数器,热量计。中微子、正电子衰变实验,宇宙线检测:中微子实验,空气浴计数器,天体X线探测,恒星及星际尘埃散乱光的测定 激光:激光雷达,荧光寿命测定。 等离子体:等离子体探测,使用光电倍增管用来计测等离子中的杂质 在入射光强度过大或照射时间过长时,光电倍增管会出现光电流衰减、灵敏度骤降的疲劳现象,这是由于过大的光电流使电极升温而使光电发射材料蒸发过多所引起。在停歇一段时间后还可全部或部分得到恢复。光电倍增管由于疲劳效应而灵敏度逐步下降,称为老化,最后不能工作而损坏。过强的入射光会加速光电倍增管的老化损坏,因此,不能在工作状态下(光电倍增管加上高压时)打开光电直读光谱仪的外罩,在日光照射下,光电倍增管很快便损坏。

光电倍增管原理、特性与应用

光电倍增管原理、特性与应用 摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。文中以北京滨松光子技术有限公司生产的R/CR系列产品为代表,介绍光电倍增管的一般原理、使用特性及其应用。并特别给出了在各种领域所适用的光电倍增管的型号。 关键词:光子技术光电倍增管使用特性 1 概述 光电子应用技术是一门新兴的高新技术,当前还处于发展阶段。相信它在21世纪必将有重大创新并迅速崛起。光电子技术产业也必将发展成为一种新兴的知识经济,从而在新兴技术领域形成巨大的生产力。 光电倍增管(PMT)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。 2 光电倍增管的一般结构 光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。图1所示为端窗型光电倍增管的剖面结构图。其主要 工作过程如下: 摘要:光电倍增管是一种能将微弱的光信号转换成可测电信号的光电转换器件。文中以北京滨松光子技术有限公司生产的R/CR系列产品为代表,介绍光电倍增

管的一般原理、使用特性及其应用。并特别给出了在各种领域所适用的光电倍增管的型号。 关键词:光子技术光电倍增管使用特性 1 概述 光电子应用技术是一门新兴的高新技术,当前还处于发展阶段。相信它在21世纪必将有重大创新并迅速崛起。光电子技术产业也必将发展成为一种新兴的知识经济,从而在新兴技术领域形成巨大的生产力。 光电倍增管(PMT)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。 2 光电倍增管的一般结构 光电倍增管是一种真空器件。它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。典型的光电倍增管按入射光接收方式可分为端窗式和侧窗式两种类型。图1所示为端窗型光电倍增管的剖面结构图。其主要工作过程如下: 当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。 因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。 3 光电倍增管的类型

光电倍增管和半导体光电器件新应用举例

光电倍增管(PMT)研究进展及应用 ——记2004年北京HAMAMATSU技术交流会 前言 “2004年北京HAMAMATSU技术交流会”于2004年10月27日~2004年10月29日在浙江杭州召开的。北京HAMAMATSU技术交流会是由北京滨松光子技术有限公司承办的技术交流活动,每年举办一次,邀请各个科研机构和生产单位的专家和技术人员参加,主要介绍滨松公司的产品和研究进展,解答用户的技术问题,交流讨论光电器件在科研和生产中的应用问题。我代表西安交通大学生物医学与分子光子学研究室和西安天隆科技有限公司有幸参加了这次交流活动。 HAMAMATSU(滨松)是总部设在日本的一家主要生产光器件的跨国公司。它在亚洲、欧洲和北美设有七家分支机构。日本滨松下设四个生产部门:电子管事业部,主要生产以光电倍增管为主的各种真空探测器,真空光源等相关仪器设备。半导体事业部,主要生产以光电二极管为主的各种半导体光电器件。系统事业部,主要生产以滨松公司自产器件为中心的各种分析和测量仪器,应用在半导体芯片,生物工程和医疗等各种领域。激光器事业部,主要生产科研和产业用的大功率半导体激光器。北京滨松光子技术有限公司是1988年由中国核工业总公司北京核仪器厂与日本滨松光子学株式会社共同投资成立的。 在2004年交流会中来自日本滨松总部、电子管事业部、半导体事业部的五位专家做了五场专题报告,分别是大冢副社长做的“HPK(滨松)与光产业的现状和未来”,夸田敏一先生做的“PMT新产品介绍”,久米英浩先生做的“PMT应用技术产品及应用领域”,伊藤先生做的“半导体光检测新产品介绍”和石原繁树做的“光源产品介绍”。会议过程中还穿插有技术交流活动,为来自各个科研院所和生产单位的技术人员提供了一个交流的平台。 光电倍增管技术的进展 图1 滨松生产的PMT

PMT基础知识之一(A)光电倍增管的工作原理、特点及应用)解析

光电倍增管基础知识之一 (光电倍增管的工作原理、特点及应用) 一光电倍增管的工作原理 光电倍增管是一种真空光电器件(真空管)。它的工作原理是建立在光电效应(光电发射)、二次电子发射、电子光学理论基础上的。它昀工作过程是:光子通过光窗入射到光电阴极L产生光电子,光电子通过电子光学输入系统进入倍增系统,电子得到倍增,最后阳极把电子收集起来,形成阳极电流或电压。因此一个光电倍增管可以分为几个部分: (1)入射光窗、 (2)光电阴极、 (3)电子光学输入系统、 (4)二次倍增系统、 (5)阳极。

光电倍增管结构如图(1)所示。 图(1)光电倍增管结构示意图 1入射光窗: 让光通过的光窗一般有 (1) 硼硅玻璃(300nm)、 (2) 透紫玻璃(185nm)、 (3) 合成(熔融)石英(160nm)、 (4) 蓝宝石(Al2O3)150nm、 (5) MgF2(115nm)。 光电倍增管光谱短波阈由入射 光窗决定。

2光电阴极 光电阴极是接收光子而放出光电子的电极。一般分为半透明(入射光和光电子同一方问)的端面或四面窗阴极和不透明(入射光的方向与光电子方向相反)。见图(2)电子轨迹图。 图(2)电子轨迹图

光电阴极的材料多用低逸出功的碱金属为主的半导体化合物,到目前为止,实用的先电阴极材料达十种之多: (1) Sb-Cs 特点是: 阴极电阻低,允许强光下有大电流流过阴极的场合下工作) (2) 双碱(Sb-RbCs、Sb-K-Cs) 特点是: 灵敏度较高 暗电流小-热电子发射小) (3) 高温双碱(Sb-K-Na) 特点是: 耐高温-200℃ (4) 多碱(Sb-K-Na-Cs). 特点是: 宽光谱 灵敏度高 (5) Ag-O-Cs多碱 特点是: 光谱可到近红外 灵敏度低)

光电倍增管应用

光电倍增管(PMT)研究进展及应用 光电倍增管技术的进展 图1 滨松生产的PMT 近些年得到广泛应用的MCP-PMT(Microchannel Plate Photomultiplier),金属封装PMT,多通道PMT代表了光电倍增管的最新研究进展: 1.高量子效率,高灵敏度,高响应速度,探测波长向红外延伸。某些型号PMT光谱响应范围可延伸置1200nm。 2.采用金属封装,多通道结构,提高有效光电面积。已有的平板型PMT,其有效光电面积可达89%。 3.采用平板化、多阳极技术,可以小型化,具有二维高分辨率。已有的10×10道阳极, 44的MCP-PMT厚度仅有1 4.8mm。 4.努力降低暗电流和自身噪声,减少放射性物质。暗电流最小可达0.5nA,自身噪声可减置5个暗计数/2 cm sec。 5.将电子管真空技术与半导体技术,微细加工技术,电子轨道技术和周边电路技术相结合。HPD(Hybrid Photo Detector)就是一种结合了电子管真空技术与半导体技术的复合器件。光电转换后的电子经过电场加速,直接照射在CCD或APD上,引起“电子入射倍增效应”。 6.使用简单化,价格降低。 光电倍增管的应用领域 光电倍增管的应用领域非常广泛,主要分为以下十几种: 光谱学:紫外/可见/近红外分光光度计,原子吸收分光光度计,发光分光光度计,荧光分光光度计,拉曼分光光度计,其他液相或气相色谱如X光衍射仪、X光荧光分析和电子显微镜等。 质量光谱学与固体表面分析:固体表面分析,这种技术在半导体工业领域被用于半导体的检查中,如缺陷、表面分析、吸附等。电子、离子、X射线一般采用电子倍增器或MCP来

光电倍增管知识讲解

光电倍增管

附录二光电倍增管 K——光阴极;F——聚焦极;D1~D10——打拿极;A——阳极。 光电倍增管是一种常用的灵敏度很高的光探测器,它由光阴极、电子光学输入系统、倍增系统及阳极组成,并且通过高压电源及一组串联的电阻分压器在阴极──打拿极(又称“倍增极”)──阳极之间建立一个电位分布。光辐射照射到阴极时,由于光电效应,阴极发射电子,把微弱的光输入转换成光电子;这些光电子受到各电极间电场的加速和聚焦,光电子在电子光学输入系统的电场作用下到达第一倍增极,产生二次电子,由于二次发射系数大于1,电子数得到倍增。以后,电子再经倍增系统逐级倍增,阳极收集倍增后的电子流并输出光电流信号,在负载电阻上以电压信号的形式输出。 根据打拿极的几何形状和排列方式,光电倍增管分为聚焦型(环状、直线)和非聚焦型(百叶窗式、盒栅式)。本装置采用百叶窗式光电倍增管,过去采用

GDB44F 型,现采用GDB43型。其优点为脉冲幅度分辨率较好,适用闪烁能谱测量。 它的主要指标应该包括以下几方面:光电转换特性、电子倍增特性、噪声或暗电流、时间特性等;在此主要介绍光电转换特性和电子倍增特性。 1. 光电转换特性——光阴极的光谱响应和灵敏度 光阴极是接收光子并放出光电子的电极,一般是在真空中把阴极材料蒸发在光学窗的内表面上,形成半透明的端窗阴极;光阴极材料的品种有数十种,但最常用的只是五、六种,如锑铯化合物等。一般光电倍增管光阴极前的光学窗有两种:硼玻璃窗或石英窗,前者适用于可见光,后者可透过紫外光。光阴极受到光照射后发射光电子的几率是波长的函数,称为光谱响应。在长波端的响应极限主要由光阴极材料的性质决定,而短波端的响应主要受入射窗材料对光的吸收所限制。了解光电倍增管的光谱响应特性有利于正确选择不同管子使之与闪烁体的发射光谱相匹配。 在实际应用中,光电转换特性通常使用另一个宏观定义,即一定通量F 的白光照射阴极所能获得的光电子流(i k )称为光阴极光照灵敏度: k k i S F (1) 其中i k 单位为微安;F 为光通量,单位为“流明”(lm)。 2. 电子倍增特性——光电倍增管的放大倍数及阳极灵敏度 1) 光电倍增管的放大倍数(增益)M 由于打拿极的倍增作用,从光阴极发射出来的电子不断被倍增,最后可在阳极上得到大量电子。从光阴极射出,到达第一打拿极的一个电子,经过多次倍增后在阳极得到的电子数,称为光电倍增管电流放大倍数(增益)。

光电倍增管选择及使用

光电倍增管选择及使用 光电倍增管选择及使用 摘要:放射性测井项目是地层评价主要测井方法,随着该方法广泛应用,对光电倍增管的需求也成倍地增加。核测井仪器研制和维修人员应了解光电倍增管的特性、指标参数和应用要求等,因此必须掌握如何合理地选择及正确使用光电倍增管,该文对相关工作人员的工作会有很大的帮助,也是十分必要的。 关键词:光电倍增管坪区光照灵敏度 高温光电倍增管采用Sb、K、Na等高温双碱阴极材料。该阴极材料老化后能稳定工作在摄氏175℃甚至200℃的环境温度下。倍增极材料采用铜铍合金,其特点是温度性能好,在摄氏400℃时二次发射系数稳定。 核测井对高温光电倍增管的最基本的要求是光电倍增管自身在工作点处的计数率要稳定,不因井下高温和高压条件而变化,尽量使测得的计数率变化能唯一反映地层性质的变化。 1坪特性 当辐射强度一定时,其计数率随着光电倍增管的高压的变化而变化,但继续增加高压会使计数率迅速增加,我们把这种特性称为闪烁计数器的“坪特性”。闪烁晶体计数器的“坪”不是光电倍增管固有的特性,而是在一定条件下所具有的特性。光电倍增管输出信号及噪声幅度随着加在光电倍增管上的电压的变化而变化。只有在一定电压范围内,光电倍增管输出信号幅度大于仪器甄别阈,而噪声幅度又小于甄别阈时才产生“计数坪”。这种坪与脉冲幅度分布、射线能量、晶体、光电倍增管的性能、仪器的放大倍数甄别阈及其应用条件等因素有关。为了表征闪烁计数器的坪特性,通常采用“坪长”、“坪斜”两个参数。以VA和VB分别表示坪两端处的电压,以NA和NB分别表示在该电压下的计数率,则: 表示坪斜。 式中,为坪区内的平均计数率。

2“坪”与脉冲幅度分布的关系 高压坪曲线是在一定甄别阈US下改变高压而测得的。它只记录闪烁计数器输出脉冲幅度大于US的脉冲,实际上是对整个幅度分布谱进行积分计算的。随着高压增加,大于US的脉冲数也要增加。很显然坪曲线与脉冲幅度分布有关。 如果脉冲幅度分布只有一种或几种幅度的脉冲,小幅度脉冲是噪声的贡献,大幅度与小幅度之间计数很少,这时无论是计数率随甄别阈的变化,还是计数率随高压的变化,都可得到一段坪区。低计数区的计数多(光峰比少),坪斜就大些。如果各种幅度的脉冲都有,那么计数率随甄别阈减小而增加,不出现坪台。 不同辐射类型和不同辐射能量使输出脉冲幅度(辐射能谱)不同,其信噪比也不同,所以坪曲线也不同。即使辐射能量相同,由于管子性能(峰谷比、分辨率)不同,其脉冲幅度也不一样,坪曲线也不相同。 3坪与管子性能的关系 从理论分析可知,管子性能不同,其坪曲线也不相同。下面着重讨论光电倍增管的阴极光照灵敏度、阳极光照灵敏度(增益)、噪声及温度与坪曲线的关系问题。 3.1阴极光照灵敏度 核测井中的NaI(Tl)晶体的发光光谱处于光谱区。管子的阴极光照灵敏度高,其光电转换效率也高,所以管子的阴极光照灵敏度的大小能反映坪特性的好坏。阴极光照灵敏度高,起坪时计数变化快,坪出现较早。 3.2阳极光照灵敏度 阳极光照灵敏度高的管子起坪早,结束也早,并且坪区比较窄。反之,阳极光照灵敏度较低的管子,起坪较晚,结束也晚,坪区比较宽。阳极光照灵敏度越低的管子坪越长,坪斜也小。这只能说明这种管子对电压不敏感,并不是在所有情况下都能给出最稳定的计数,更不能说这种管子最好。 3.3噪声 从坪曲线可知,坪的终端一般是光电倍增管的噪声所致。因为过

光电倍增管原理

光电倍增管探测器 文字〖大中小〗错误!未找到引用源。自动滚屏(右键暂停) 主要特点 ◆侧窗式,具有电、磁、光屏蔽。 ◆可与我公司生产的谱仪系列、样品室、滤光片轮等匹配连接 ◆内置E678-11A专用管座并焊接分压电阻 ◆标准BNC插头输出信号 ◆专用耐高压BNC插头输入稳定高压 ◆可内置R212、R212UH、1P28、CR131、R105、1P21、R105UH、931A、CR114等 光电倍增管。 (如光电倍增管室内置CR131型光电倍增管,则型号为PMTH-S1-CR131) 应用范围 ◆荧光分光光度计、拉曼光谱仪、气相液相色谱仪、浊度计、直读光谱仪、生化医疗 检测仪器、油水分析、测汞仪、硫、氮氧化物环境检测仪器、化学发光仪器 主要技术指标 ●波长范围:185-650nm ●最大响应度:340nm ●阴极灵敏度:48mA/W ●阴极面积:8×24mm ●打纳极增益:1×107 ●阳极暗电流:5×10-9A ●阳极和阴极间最大电压:1250V 参数PMTH-S1-1P28 PMTH-S1-CR131 PMTH-S1-R1527 PMTH-S1-R1527P 单位波长范围185-650 185-900 185-680 185-680 nm 最大响应波长340 400 400 400 nm 阴极灵敏度48 74 60 60 mA/W 阴极面积8×24 8×24 8×24 8×24 ㎡打纳级增益1×1071×107 6.7×106 6.7×106 阳极暗电流5×10-93×10-9- - A 暗计数(@25℃) - - - 20 cps 级间最大电压1250 1250 1500 1500 PMT产品选型表 型号描述备注PMTH-S1V2-CR131 电压输出,阳极灵敏度:1000-2000A/lm PMTH-S1V1-CR131 电压输出,阳极灵敏度>2000A/lm

光电倍增管综述

光电倍增管综述 班级1302202 学号130220226 姓名赵夏静 学院名称信息与电气工程学院专业名称测控技术与仪器 指导教师孙正鼐 2016年6月9日

摘要 光电倍增管是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。光电倍增建立在外光电效应、二次电子发射和电子光学理论基础上,结合了高增益、低噪声、高频率响应和大信号接收区等特征,是一种具有极高灵敏度和超快时间响应的光敏电真空器件,可以工作在紫外、可见和近红外区的光谱区。日盲紫外光电倍增管对日盲紫外区以外的可见光、近紫外等光谱辐射不灵敏,具有噪声低(暗电流小于1nA)、响应快、接收面积大等特点。光电倍增管高灵敏度和低噪声的特点使它在光测量方面获得广泛应用。本文针对光电倍增管的综合能力以及发展市场进行论述。 关键词:概述重要性性能分析发展前景

目录 1.绪论 1.1光电倍增管的概述---------------------------------------1 1.2光电倍增管的基本结构---------------------------------1 1.3 光电倍增管的原理--------------------------------------2 1.4 光电倍增管的基本特性参数--------------------------2 1.5 光电倍增管的特点--------------------------------------2 1.6 光电倍增管的应用--------------------------------------2 2.光电倍增管的重要性-----------------------------------------3 3.光电倍增管的性能分析--------------------------------------3 4.光电倍增管的发展前景--------------------------------------3结束语-------------------------------------------------------------4参考文献----------------------------------------------------------4

光电倍增管选择及使用

光电倍增管选择及使用 摘要:放射性测井项目是地层评价主要测井方法,随着该方法广泛应用,对光电倍增管的需求也成倍地增加。核测井仪器研制和维修人员应了解光电倍增管的特性、指标参数和应用要求等,因此必须掌握如何合理地选择及正确使用光电倍增管,该文对相关工作人员的工作会有很大的帮助,也是十分必要的。 关键词:光电倍增管坪区光照灵敏度 高温光电倍增管采用Sb、K、Na等高温双碱阴极材料。该阴极材料老化后能稳定工作在摄氏175℃甚至200℃的环境温度下。倍增极材料采用铜铍合金,其特点是温度性能好,在摄氏400℃时二次发射系数稳定。 核测井对高温光电倍增管的最基本的要求是光电倍增管自身在工作点处的计数率要稳定,不因井下高温和高压条件而变化,尽量使测得的计数率变化能唯一反映地层性质的变化。 1坪特性 当辐射强度一定时,其计数率随着光电倍增管的高压的变化而变化,但继续增加高压会使计数率迅速增加,我们把这种特性称为闪烁计数器的“坪特性”。闪烁晶体计数器的“坪”不是光电倍增管固有的特性,而是在一定条件下所具有的特性。光电倍增管输出信号及噪声幅度随着加在光电倍增管上的电压的变化而变化。只有在一定电压范围内,光电倍增管输出信号幅度大于仪器甄别阈,而噪声幅度又小于甄别阈时才产生“计数坪”。这种坪与脉冲幅度分布、射线能量、晶体、光电倍增管的性能、仪器的放大倍数甄别阈及其应用条件等因素有关。为了表征闪烁计数器的坪特性,通常采用“坪长”、“坪斜”两个参数。以V A和VB分别表示坪两端处的电压,以NA和NB分别表示在该电压下的计数率,则: 表示坪斜。 式中,为坪区内的平均计数率。 2“坪”与脉冲幅度分布的关系 高压坪曲线是在一定甄别阈US下改变高压而测得的。它只记录闪烁计数器输出脉冲幅度大于US的脉冲,实际上是对整个幅度分布谱进行积分计算的。随着高压增加,大于US的脉冲数也要增加。很显然坪曲线与脉冲幅度分布有关。 如果脉冲幅度分布只有一种或几种幅度的脉冲,小幅度脉冲是噪声的贡献,大幅度与小幅度之间计数很少,这时无论是计数率随甄别阈的变化,还是计数率随高压的变化,都可得到一段坪区。低计数区的计数多(光峰比少),坪斜就大些。如果各种幅度的脉冲都有,那么计数率随甄别阈减小而增加,不出现坪台。

基于光电倍增管的弱光检测..

基于光电倍增管的弱光检测 摘要:本文基于光电倍增管设计了一种弱光检测电路。文章首先介绍了光电倍增管的结构、原理及应用方法,然后给出了微弱电流转换与放大电路的设计。 关键词:光电倍增管;分压电路;I/V转换 L ow-light-level detection based on Photomultiplier tube Abstract:This paper presents the design of a system for low-light-level detection.The structure and principle of PMT are briefly introduced ,and the application method on PMT is discussed. The design of low current transformation and amplification circuit is also performed. Keywords:Photomultiplier tube(PMT);voltage divider; I/V transformation 1. 引言 光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。当光照射到光阴极时,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,并通过进一步的二次发射得到的倍增放大。然后把放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光电探测器中,具有极高的灵敏度和极低的噪声。另外,光电倍增管还具有响应快速、成本低、阴极面积大等优点。基于外光电效应和二次电子发射效应的电子真空器件。它利用二次电子发射使逸出的光电子倍增,获得远高于光电管的灵敏度,能测量微弱的光信号。光电倍增管包括阴极室和由若干打拿极组成的二次发射倍增系统两部分(见图1)。

PMT基础知识之四(光电倍增管的稳定性)

光电倍增管基础知识之四 (光电倍增管的稳定性) 尽管光电倍增管在光和核探测的各个方面得到广泛应用。但存在一个重要的困难是它的增益(输出信号)随时间的漂移—疲劳(不稳),不断影响了测量的准确进行。 光电倍增光的稳定性是比较复杂的问题。它涉及到“内部”及“外部”的各种因素,所谓“内部因素”是指管子的材料及制造管子过程中的“工艺”;“外部因素”是指使用管子的工作条件的选择问题;本讲课主要谈一谈内部因素的问题。 从试验得知,光电倍增管疲劳(稳定性)表现为两个过程:“块变化”,“慢变化”。所不同的是过程的建立时间不同而已,而以后表现为稳定的平衡工作过程。 第一过程有人称之为“建立时间”。稳定性好的管子的建立时间大约从几分钟到半小时左右,稳定性差的管子一般是几个小时。 从试验可以看出输出电流于时间关系(稳定性)的变化趋势一般有三种: 1下降趋势(大多数) 2先上升,后下降趋势(少量) 3一直上升趋势(少量) 分析稳定性问题涉及到“外部因素”,和内部因素,这里不谈外部因素,只谈内部因素。 A管子材料 B. 管子结构 C. 激活工艺 1不良的真空技术(真空度低) 管子没有足够抽气或并没有充分烘烤,管内的剩余气体可能会阴极或(倍增级)里C S起化学反应。(如果管内装有消气剂,没有空气被抽走的气体会被消气剂作用而消除)。当然当较高的真空系统,剩余气体很少,就不会恶化阴极。纵使还有一些剩余气体(一般都是惰性气体,大概是氢气,氮气)不存在同Cs进行化学反应。 2剩余Cs 如果管子会有过量的剩余Cs在激发过程中没有起化学反应也没有被物质吸收。这些剩余Cs或迟或早都会凝结在阳极或倍增极上而降低灵敏度,因此要求Cs最佳数量很严格(如果有过量剩余Cs只能加强烘烤赶走过量C。, A提高烘箱烘烤温度,即提高Cs蒸汽压使多余Cs蒸汽抽走。提高的温度可根据管内存在的Cs量多少,泵的抽速以及烘烤过程的持续时间来决定。从稳定角度出发,排除过量Cs是必不可少的。 B 用吸Cs消气剂

光电倍增管原理简介

光电倍增管原理简介 我们做化学发光的仪器检测部分都是用光电倍增管来检测我们化学反应所发出的微弱的光信号,在这里给大家介绍一下光电倍增管的一些参数,仅供大家参考。 介绍 今天我们使用的光电器件中,光电倍增管(PMT)是一种具有极高灵敏度和超快时间响应的光探测器件。典型的光电倍增管如图1所示,在真空管中,包括光电发射阴极(光阴极)和聚焦电极、电子倍增极和电子收集极(阳极)的器件。 当光照射光阴极,光阴极向真空中激发出光电子。这些光电子按聚焦极电场进入倍增系统,通过进一步的二次发射得到倍增放大。放大后的电子被阳极收集作为信号输出。 因为采用了二次发射倍增系统,光电倍增管在可以探测到紫外、可见和近红外区的辐射能量的光电探测器件中具有极高的灵敏度和极低的噪声。光电倍增管还有快速响应、低本底、大面积阴极等特点。

下面将讲解光电倍增管结构的主要特点和基本使用特性。 结构 一般,端窗型(Head-on)和侧窗型(Side-on)结构的光电倍增管都有一个光阴极。侧窗型的光电倍增管,从玻璃壳的侧面接收入射光,而端窗型光电倍增管是从玻璃壳的顶部接收入射光。通常情况下,侧窗型光电倍增管价格较便宜,并在分光光度计和通常的光度测定方面有广泛的使用。大部分的侧窗型光电倍增管使用了不透明光阴极(反射式光阴极)和环形聚焦型电子倍增极结构,这使其在较低的工作电压下具有较高的灵敏度。 端窗型(也称作顶窗型)光电倍增管在其入射窗的内表面上沉积了半透明光阴极(透过式光阴极),使其具有优于侧窗型的均匀性。端窗型光电倍增管的特点还包括它拥有从几十平方毫米到几百平方厘米的光阴极。

端窗型光电倍增管中还有针对高能物理实验用的,可以广角度捕集入射光的大尺寸半球形光窗的光电倍增管。 电子倍增系统 光电倍增管的优异的灵敏度(高电流放大和高信噪比)得益于基于多个排列的二次电子发射系统的使用,它使电子低噪声的条件下得到倍增。电子倍增系统包括从8至19极的被叫做打拿极或倍增极的电极。 现在使用的电子倍增系统主要有以下几类: 1)环形聚焦型 环形聚焦型结构主要应用于侧窗型光电倍增管。其主要特点为紧凑的结构和快速时间响应特性。

pmt基础知识之七

光电倍增管基础知识之七 (光电倍增管的选择) 由于光电倍增管应用的广泛性,一种型号的光电倍增管不可能对任一应用都是适用的。因此正确地选择管子的型号(甚至是选择管子)是很必要的。随着光电倍增管品种的增加和性能提高,也提供了广泛选择的可能性。 选择管子一般应考虑下面几个方面。 一光电阴极 光电阴极的初步选择要考虑窗材料,阴极材料、阴极大小和阴极形式这四个因素。进一步的选择还要考虑阴极的光电参数的情况。 1 窗材料 选择光电倍增管具有良好的光谱匹配是首要的。在所研究的光信号的波长或波长范围内,应该使被选择的阴极给出高的光电子(量子)产额。粗略地说,光电倍增管的光谱特性取决于窗材料和阴极材料的组同合。长波截止波长取决于阴极材料,短波截止波长取决于窗材料的光谱透过率。常用的窗材料主要有三种:硼硅玻璃、透紫玻璃和石英玻璃。它们的短波截止波长分别为300nm、190nm、160nm。 2 阴极材料 阴极材料除决定了光谱响应的长波截止波长外,一般说来,还决定量子效率和热电子发射的大小。各种阴极材料的光谱响应、量子效率和热电子发射有很大的不同。常用的阴极材料有锑绝(SbC S)、锑钾绝(SbKCs)、锑钾钠(SbKNa)锑钾钠绝(SbKNaCs)。下面给出粗略的数据,也给用户有一个数量的概念 。 表(1)各种阴极材料的特性(硼硅玻璃窗材料) (1)对红外响应在800nm左右红外光谱测量而言,Ag-O-Cs阴极不是唯一的,ⅢⅣ 族化合物光电阴极(GaAsP)是候选者。由于(S-1)Ag-O-Cs阴极在室温下热电子发射高,大多数应用来说必须对(S-1)阴极进行冷却至干冰或更低温度。如果不需要红外响应则绝不选用(S-1)阴极,这不仅是因为在室温下它的热电子发射远远超过其它阴极,而且也因为在较短的波长它的量子效率低。

相关文档
最新文档