焊接冶金及金属焊接性课程标准

焊接冶金及金属焊接性课程标准
焊接冶金及金属焊接性课程标准

焊接技术及自动化专业

课程标准

课程名称:焊接冶金及金属焊接性制定人:杨虎

批准:焊接教研室

《焊接冶金及金属焊接性》课程标准

一、适用对象

本课程标准适用于三年制(高中起点)高职焊接技术与自动化专业(不包含五年制高职)。

二、课程性质

《焊接冶金及金属焊接性》课程是培养高职“焊接技术及自动化”专业高等技术应用性专门人才的一门专业基础课,《焊接冶金及金属焊接性》是一门专业基础课。焊接冶金基本原理、各种焊接材料焊接性及焊接工艺。能正确的分析材料的焊接性、制定合理的焊接工艺、选择适当的材料,并能进行焊接材料的设计。

三、参考课时

总课时:30学时

四、总学分

总学分:2学分。

五、课程目标

学生学完本课程后,在基本概念和理论知识方面应达到如下要求:

1、了解和掌握焊接冶金及金属焊接性的基本概念和理论知识。

2、能对常用焊接材料结构件进行焊接性分析、制定合理的焊接工艺、选择合适的焊接材料。

3、能进行结构钢焊条的配方设计。

4、团队协作能力,不断积累焊接经验,从个案中寻找共性的判断能力和良好的心理素质和吃苦耐劳的优良品质。

六、设计思路

焊接冶金及金属焊接性课程开发采用以行动为导向以项目为载体,构建任务驱动教学模式以“能力为中心,以理论知识服务于能力培养”为教学目标进行设计,其中每个项目都有自己的培养目标,通过学习后学生能掌握相应的理论知识能力,通过多媒体教室和现场工作任务教学达到培养学生职业素质的目标,项目设计以学生活动为中心进行,根据学生的情况来组织教学,体现因材施教,体现培养学生自主学习、独

立工作的能力。

本课程按项目分理论教学和现场实践教学两部分,总课时30学时,其中按项目教学26学时,现场实践教学4学时。

七、内容纲要

项目一、焊接冶金及金属焊接性的基本概念和理论知识

(一)适用对象

三年制(高中起点)高职焊接技术与自动化专业(不包含五年制高职)。(二)参考课时

12

(三)学习目标

1、了解焊接热过程与冶金过程;

2、焊条的组成及分类、焊条的工艺性能、冶金性能、焊条的配方设计;

3、焊接接头的组织与性能。

(四)工作任务

1、以常用工程材料为载体,学习材料的冶金性能及冶金过程;

2、焊条的工艺性能对金属材料焊接后力学性能的影响。

模块一焊接热过程与冶金过程

课时:8

1~1.学习目标

1、了解焊接热源及加热熔化过程;

2、焊接热源种类、焊材加热过程、熔池的形成过程。

1~2.工作任务

1、各种材料冶金性能。

2、了解焊材加热过程、熔池的形成过程。

1~3.相关实践知识

(1)焊后金属的冶金过程对性能的影响。

1~4. 相关理论知识

(1)焊接化学冶金过程,以手工电弧焊为主讲解焊接冶金反应的特点、气体对金属的作用、熔渣对金属的作用。

(2)掌握氢、氮、氧对金属的作用,掌握熔渣的氧化、还原作用;

模块二焊接材料对焊接接头的组织与性能的影响

课时:4

1~1.学习目标

1、了解各种焊接材料的组成及分类、

2、焊条的工艺性能、冶金性能、焊条的配方设计;

3、熔池结晶特点、焊缝成份不均匀性、焊接气孔、热影响区的组织性能变化。

1~2.工作任务

1、各种材料焊接后对性能的影响;

2、了解焊后组织性能的变化。

1~3.相关实践知识

(1)不同材料焊后的性能。

1~4. 相关理论知识

(1)熔池结晶特点、焊缝成份不均匀性、焊接气孔、热影响区的组织性能变化。

项目二、各种金属材料的焊接

(一)适用对象

三年制(高中起点)高职焊接技术与自动化专业(不包含五年制高职)。

(二)参考课时

18

(三)学习目标

1、低碳钢的焊接性及焊接工艺要点;

2、中碳调质钢的焊接性及焊接工艺要点;

3、奥氏体不锈钢的焊接性及焊接工艺要点;

4、灰口铸铁焊接性及焊接工艺要点;

5、铝及铝合金的焊接性及焊接工艺特点。

(四)工作任务

1、低碳钢的焊接;

2、中碳调质钢的焊接;

3、奥氏体不锈钢的焊接;

4、灰口铸铁焊接;

5、铝及铝合金的焊接。

模块一低碳调质钢的焊接

课时:4

1~1.学习目标

1、掌握低碳调质钢的焊接性及焊接工艺要点;

1~2.工作任务

1、低碳钢的焊接及其焊接性。

1~3.相关实践知识

熟悉低碳钢的焊接行。

1~4. 相关理论知识

1、了解材料中碳的含量对焊接性能的影响

模块二中碳调质钢的焊接

课时:4

1~1.学习目标

1、掌握中碳调质钢的焊接性及焊接工艺要点;

1~2.工作任务

1、中碳钢的焊接及其焊接性。

1~3.相关实践知识

熟悉中碳钢的焊接性。

1~4. 相关理论知识

1、了解材料中碳的含量对焊接性能的影响

模块三奥氏体不锈钢的焊接

课时:4

1~1.学习目标

1、掌握奥氏体不锈钢的焊接性及焊接工艺要点1~2.工作任务

1、奥氏体不锈钢焊接及其焊接性

1~3.相关实践知识

熟悉奥氏体不锈钢的焊接性。

1~4. 相关理论知识

1、了解材料中合金元素的含量对焊接性能的影响模块四灰口铸铁焊接

课时:4

1~1.学习目标

1、掌握灰口铸铁的焊接性及焊接工艺要点;1~2.工作任务

1、灰口铸铁的焊接及其焊接性。

1~3.相关实践知识

熟悉灰口铸铁的焊接性。

1~4. 相关理论知识

1、了解材料中碳的含量对焊接性能的影响

模块五铝及铝合金的焊接

课时:2

1~1.学习目标

1、掌握铝及铝合金焊接性及焊接工艺要点;1~2.工作任务

1、铝及铝合金的焊接及其焊接性。

1~3.相关实践知识

熟悉铝及铝合金的焊接性。

1~4. 相关理论知识

1、了解有色金属材料的焊接性能

八、考核方式

九、建议使用教材及教学参考书

1、《熔焊原理及金属材料焊接》,机械工业出版社,英若采主编

十、实施建议

1、教师应依据工作任务中的典型产品为载体安排和组织教学活动。

2、教师应按照项目的学习目标编制项目任务书。项目任务书应明确教师讲授(或演示)的内容;明确学习者预习的要求;提出该项目整体安排以及各模块训练的时间、内容等。如以小组形式进行学习,对分组安排及小组讨论(或操作)的要求,也应作出明确规定。

3、教师应以学习者为主体设计教学结构,营造民主、和谐的教学氛围,激发学习者参与教学活动,提高学习者学习积极性,增强学习者学习信心与成就感。

4、教师应指导学习者完整地完成项目,并将有关知识、技能与职业道德和情感态度有机融合。

十一、教学条件

应在多媒体教室中和实训现场进行授课。

十二、学习评价

该课程为考查课,平时成绩占70分,出勤10分,期末考查试卷20分,满分100分。

平时成绩主要通过作业完成质量及平时学习表现综合评定。

期末考查采用随堂开卷考查,主要考核学生对课程中各项基本概念和相关知识的掌握程度。

执笔人:杨虎

审定人:李玉

(机械)(焊接)焊接冶金学(基本原理)习题

焊接冶金学(基本原理)习题 绪论 1.试述焊接、钎焊和粘接在本质上有何区别? 2.怎样才能实现焊接,应有什么外界条件? 3.能实现焊接的能源大致哪几种?它们各自的特点是什么? 4.焊接电弧加热区的特点及其热分布? 5.焊接接头的形成及其经历的过程,它们对焊接质量有何影响? 6.试述提高焊缝金属强韧性的途径? 7.什么是焊接,其物理本质是什么? 8.焊接冶金研究的内容有哪些 第一章焊接化学冶金 1.焊接化学冶金与炼钢相比,在原材料方面和反应条件方面主要有哪些不同? 2.调控焊缝化学成分有哪两种手段?它们怎样影响焊缝化学成分? 3.焊接区内气体的主要来源是什么?它们是怎样产生的? 4为什么电弧焊时熔化金属的含氮量高于它的正常溶解度? 5.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? 6.手弧焊时,氢通过哪些途径向液态铁中溶解?写出溶解反应及规律? 7.氢对焊接质量有哪些影响? 8既然随着碱度的增加水蒸气在熔渣中的溶解度增大,为什么在低氢型焊条熔敷金属中的含氢量反而比酸性焊条少? 9. 综合分析各种因素对手工电弧焊时焊缝含氢量的影响。 10.今欲制造超低氢焊条([H]<1cm3/100g),问设计药皮配方时应采取什么措施? 11. 氧对焊接质量有哪些影响?应采取什么措施减少焊缝含氧量? 12.保护焊焊接低合金钢时,应采用什么焊丝?为什么? 13.在焊接过程中熔渣起哪些作用?设计焊条、焊剂时应主要调控熔渣的哪些物化性质?为什么? 14.测得熔渣的化学成分为:CaO41.94%、28.34%、23.76%、FeO5.78%、7.23%、3.57%、MnO3.74%、4.25%,计算熔渣的碱度和,并判断该渣的酸碱性。 15.已知在碱性渣和酸性渣中各含有15%的FeO,熔池的平均温度为1700℃,问在该温度下平衡时分配到熔池中的FeO量各为多少?为什么在两种情况下分配到熔池中的FeO量不同?为什么焊缝中实际含FeO量远小于平衡时的含量? 16.既然熔渣的碱度越高,其中的自由氧越多,为什么碱性焊条焊缝含氧量比酸性焊条焊缝含氧量低? 17.为什么焊接高铝钢时,即使焊条药皮中不含,只是由于用水玻璃作粘结剂,焊缝还会严重增硅? 18. 综合分析熔渣中的CaF2在焊接化学冶金过程是所起的作用。 19.综合分析熔渣的碱度对金属的氧化、脱氧、脱硫、脱磷、合金过渡的影响。 20.什么是焊接化学冶金过程,手工电弧焊冶金过程分几个阶段,各阶段反应条件有何不同,主要进行哪些物理 化学反应? 21.什么是熔合比,其影响因素有哪些,研究熔合比在实际生产中有什么意义?

金属材料的焊接性能汇总

金属材料的焊接性能 (2014.2.27) 摘要:对各种常用金属材料的焊接性能进行研究,通过参考各类焊接丛书及焊接前辈多年的经验总结,对常用金属材料的焊接工艺可行性起指导作用。 关键词:碳当量;焊接性;焊接工艺参数;焊接接头 1 前言 随着中国特种设备制造业的不断发展,我们在制造产品时所用到的金属材料种类也在不断增加,相应地所必须掌握的各种金属材料的焊接性能也在不断研究和更新中,为了实际产品制造的焊接质量,熟悉金属材料的焊接性能,以制定正确的焊接工艺参数,从而获得优良的焊接接头起到至关重要的指导作用。 2 金属材料的焊接性能 2.1 金属材料焊接性的定义及其影响因素 2.1.1 金属材料焊接性的定义 金属材料的焊接性是指金属材料在采用一定的焊接工艺包括焊接方法、焊接材料、焊接规范及焊接结构形式等条件下,获得优良焊接接头的能力。一种金属,如果能用较多普通又简便的焊接工艺获得优良的焊接接头,则认为这种金属具有良好的焊接性能金属材料焊接性一般分为工艺焊接性和使用焊接性两个方面。 工艺焊接性是指在一定焊接工艺条件下,获得优良,无缺陷焊接接头的能力。它不是金属固有的性质,而是根据某种焊接方法和所采用的具体工艺措施来进行的评定。所以金属材料的工艺焊接性与焊接过程密切相关。 使用焊接性是指焊接接头或整个结构满足产品技术条件规定的使用性能的程度。使用性能取决于焊接结构的工作条件和设计上提出的技术要求。通常包括力学性能、抗低温韧性、抗脆断性能、高温蠕变、疲劳性能、持久强度、耐蚀性能和耐磨性能等。例如我们常用的S30403,S31603不锈钢就具有优良的耐蚀性能,16MnDR,09MnNiDR低温钢也有具备良好的抗低温韧性性能。

【免费下载】焊接冶金与焊接性

焊接冶金与焊接性 绪论 1,焊接的本质和途径: 焊接:通过加热,加压或两者共同作用,使所焊材料达到原子间结合,实现永久性连接的工艺。 焊接途径:1加热2加压 焊接本质:原子间结合焊接的结果:永久性连接 2,焊接接头的组成:是指被焊材料经焊接后,发生组织和性能变化的区域,焊缝;融合区;热影响区。 1)焊缝:是由被焊材料和添加材料经融化凝固后形成。 2)热影响区:是指受焊接热循环的作用,使母材发生微观组织和性能变化的区域。 3)融合区:是部分熔化的母材和部分未熔化的母材所组成的区域。 3焊接热循环:1)概念:在焊接过程中,某点工件上的温度随时间由低到高达到极值后, 又由高到低的变化过程。 2)主要参数:加热速度Vh,描述工件温度上升快慢。 峰值温度Tm,是热循环曲线上对应的最高温度。 高温停留时间Th,在某一较高温度以上的停留时间。 冷却速度或冷却时间Vc,T8、5 3)热循环的特点:1,加热速度非常快;2,峰值温度高;3,高温停留时间短;4,冷却速度快;5,加热具有局部性和移动性。 第一章焊接化学冶金 1,焊接化学冶金的反应区 1)药皮反应区:指开始化学反应的温度到药皮溶解(100——1200),主要反应有水分的蒸发,某些物质的分解及铁合金氧化。 2)溶滴反应区:溶滴形成,长大,过度到熔池的过程。主要反应有气体的溶解和分解,金属的蒸发,金属和合金的氧化还原,以及焊缝金属的合金化。 溶滴反应区特点:1,反应温度高;2,反应时间短;3,相接触面积大; 4,溶滴金属与熔渣发生强烈的混合。 3)熔池反应区:特点:1,反应温度略低;2,反应时间增长;3,反应具有不同步性; 4,熔池反应具有搅动作用。 2焊接熔渣及其性质 1)熔渣的作用:1,机械保护作用;2,冶金处理作用;3,改善焊接工艺性能。 2)熔渣的种类和成分:1盐型熔渣:由金属的卤化物和不含氧的化合物组成。 2盐——氧化物型熔渣:由金属的氟化物和氧化物组成。 3氧化物型熔渣:由各种金属氧化物组成 3焊接熔渣对金属的氧化 1)置换氧化:是指被焊金属与其他金属或非金属氧化物发生的置换反应 而导致的氧化。 2)扩散氧化:是指熔渣中的氧化物通过扩散进入被焊金属而使焊缝增氧。 (满足分配定律) 4焊缝金属的脱氧 1)先期脱氧:指焊条药皮中的脱氧剂与分解出的氧化性气体发生的反应. 2)沉淀脱氧(影响最大,最主要):是利用溶解在液态金属中的脱氧剂,将被焊金属及其合金从其氧化物中还原出来,并使脱氧产物浮到熔渣中去。

焊接冶金学-材料焊接性-课后答案 李亚江版

焊接冶金学材料-焊接性课后习题答案 第一章:概述 第二章:焊接性及其实验评定 1.了解焊接性的基本概念。什么是工艺焊接性?影响工艺焊接性的主要因素有哪些? 答:焊接性是指同质材料或异质材料在制造工艺条件下,能够焊接形成完整接头并满足预期使用要求的能力。影响因素:材料因素、设计因素、工艺因素、服役环境。 第三章:合金结构钢 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题? 答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以

上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接。 2.分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。 答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火

焊接冶金学—材料焊接性课后答案

第三章:合金结构焊接热影响区( HAZ最高硬度 1.分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:( 1)固溶强化,主要强化元素:Mn,Si 。( 2)细晶 强化,主要强化元素: Nb,V。(3)沉淀强化,主要强化元素:Nb,V. ;正火钢的强化方式:( 1)固溶强化, 主要强化元素:强的合金元素( 2)细晶强化,主要强化元素:V,Nb,Ti,Mo ( 3)沉淀强化,主要强化元素: Nb,V,Ti,Mo. ;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200 C以上的热影响区可能产生粗晶脆 化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制 A长大及组织细化作用被 削弱,粗晶区易出现粗大晶粒及上贝氏体、 M-A 等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。 2. 分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求。答:Q345钢属于热轧钢,其碳当量小 于0.4 %,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠 光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏 体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达 到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200 C以上的热影响区过热区可能产生粗晶脆 化,韧性明显降低,Q345钢经过600CX 1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂 SJ501,焊丝H08A/H08MnA电渣焊:焊剂HJ431、 HJ360焊丝H08MnMo A CO2气体保护焊:H08系列和YJ5系列。预热温度:100?150C。焊后热处理:电弧焊一般不进行或600?650 C回火。电渣焊 900?930 C正火,600?650 C回火 3. Q345与Q390焊接性有何差异? Q345焊接工艺是否适用于 Q390焊接,为什么?答:Q345与Q390都属 于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于 Q345,所以Q390 的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于 Q390的焊接, 因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。 4. 低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原 则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。 5. 分析低碳调质钢焊接时可能出现的问题?简述低碳调质钢的焊接工艺要点,典型的低碳调质钢如 (14MnMoNiB HQ70 HQ80)的焊接热输入应控制在什么范围?在什么情况下采用预热措施,为什么有最低预热温度要求,如何确定最高预热温度。(P81)答:焊接时易发生脆化,焊接时由于热循环作用使热影 响区强度和韧性下降。焊接工艺特点:①要求马氏体转变时的冷却速度不能太快,使马氏体有一自回火” 作用,以防止冷裂纹的产生;② 要求在800~500C之间的冷却速度大于产生脆性混合组织的临界速度。此外,焊后一般不需热处理,采用多道多层工艺,采用窄焊道而不用横向摆动的运条技术 ; 典型的低碳调质钢在 Wc> 0.18 %时不应提高冷速,Wc< 0.18 %时可提高冷速(减小热输入)焊接热输入应控制在小于 481KJ/cm;当焊接热输入提高到最大允许值裂纹还不能避免时,就必须采用预热措施,当预热温度过高时不仅对防止冷裂纹没有必要,反而会使800?500C的冷却速度低于出现脆性混合组织的临界冷却速度,使 热影响区韧性下降,所以需要避免不必要的提高预热温度,包括层间温度,因此有最低预热温度。通过实验后确定钢材的焊接热输入的最大允许值,然后根据最大热输入时冷裂纹倾向再来考虑,是否需要采取预热和预热温度大小,包括最高预热温度。 6. 低碳调质钢和中碳调质钢都属于调质钢,他们的焊接热影响区脆化机制是否相同?为什么低碳钢在调质 状态下焊接可以保证焊接质量,而中碳调质钢一般要求焊后热处理?答:低碳调质钢:在循环作用下, t8/5 继续增加时,低碳钢调质钢发生脆化,原因是奥氏体粗化和上贝氏体与M-A组元的形成。中碳调质钢:由

焊接冶金学试题

(适用于材料成型与控制工程专业焊接模块) 一、概念或解释(每题2分共10分) 1、联生结晶: 2、熔合比: 3、焊条药皮重量系数: 4、金属焊接性: 5、电弧热焊: 二、选择填空(可以多个选择,每题1分,共15分) 1、焊接区内的气体主要来源于( ) 。 ①焊接材料②母材③焊条药皮 2、焊接时, 不与氮气发生作用的金属,即不能溶解氮又不形成氮化物的金属,可用N 作为保护气体, 这种金属是( ) 。 ①铜②铝③镍 3、焊接熔渣的作用有( ) ①机械保护作用②冶金处理作用③改善工艺性能 4、焊接熔池的结晶时, 熔池体积小,冷却速度大,焊缝中以( ) 为主。 ①柱状晶②等轴晶③平面晶

5、熔合区的化学不均匀性主要是体现于(

①凝固过渡层的形成 ②碳迁移过渡层的形成 ③合金分层现象 6、焊缝中的气孔和夹杂主要害处是 ( ) 。 ①焊缝有效截面下降 ②应力集中,疲劳强度下降 ③抗氧化性下降 气孔,使致 密性下降。 7、 打底焊道最易产生热裂纹 , 也最易产生冷裂纹 , 其主要原因是 ( ) 。 ①冷却速度快 ②应力集中 ③过热 8、 焊接结构钢用熔渣的成分是由 ( ) 等组成。 ①氧化物 ②氟化物 ③氯化物 ④硼酸盐 9、 焊接冷裂纹按产生原因可分为 ( ) 。 ①淬硬脆化裂纹 ②低塑性脆化裂纹 ③层状撕裂 ④应力腐蚀开裂 裂纹 10、 有利于改善焊缝抗热裂纹性能因素主要有 ( ) 。 ①细化晶粒 ②减少 S 、P ③结晶温度大 ④加入锰脱硫 11、 热扎、正火钢焊接时,过热区性能的变化取决于 ( ) 等因素。 ①高温停留时间 ②焊接线能量 ③钢材类型 ④冷裂倾向 12、 铸铁焊接时,影响半熔化区冷却速度的因素有: ( ) 。 ①焊接方法 ②预热温度 ③焊接热输入 ④铸件厚度 13、下列哪些钢种具有一定的热应变脆化倾向。 ( ①低碳钢 ②16Mn ③15 MnV 14、焊缝为铸铁型时,影响冷裂纹的因素有 ( ) 。 ①基体组织 ②石墨形状 ③焊补处刚度,体积及焊缝长短 ④深透性 ⑤延迟

金属的焊接性

金属的焊接性 一、金属焊接性 1.概念:金属焊接性就是金属是否能适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。 含义:一是金属在焊接加工中是否容易形成缺陷;二是焊成的接头在一定的使用条件下可靠运行的能力。 评价标准:如果某种金属采用简单的焊接工艺就可获得优质焊接接头并且具有良好的使用性能或满足技术条件的要求,就称其焊接性好;如果只有采用特殊的焊接工艺才能不出缺陷,或者焊接热过程会使接头热影响区性能显著变坏以至不能满足使用要求,则称其焊接性差。 2.影响焊接性的因素 1)材料因素 材料是指用于制造结构的金属材料及焊接所消耗的材料。前者称为母材或基本金属,即被焊金属。后者称为焊接材料包括焊条、焊丝、焊剂、保护气体等。 材料因素包括化学成分、冶炼轧制状态、热处理状态、组织状态和力学性能等。其中化学成分(包括杂质的分布与含量)是主要的影响因素。碳对钢的焊接性影响最大。含碳量越高,焊接热影响区的淬硬倾向越大,焊接裂纹的敏感性越大。也就是说,含碳量越高焊接性越差。除碳外钢中的一些杂质如氧、硫、磷、氢、氮以及合金钢中常用的合金元素锰、铬、钴、铜、硅、钼、钛、铌、钒、硼等都不同程度地增加了钢的淬硬倾向使焊接性变差。 若焊接材料选择不当或成分不合格,焊接时也会出现裂纹、气孔等缺陷,甚至会使接头的强度、塑性、耐蚀性等使用性能变差。 2)设计因素 设计因素是指焊接结构在使用中的安全性不但受到材料的影响而且在很大程度上还受到结构形式的影响。例如结构刚度过大或过小,断面突然变化,焊接接头的缺口效应,过大的焊缝体积以及过于密集的焊缝数量,都会不同程度地引起应力集中,造成多向应力状态而使结构或焊接接头脆断敏感性增加。 3)工艺因素 工艺因素包括施焊方法(如手工焊、埋弧焊、气体保护焊等)、焊接工艺(包括焊接规范参数、焊接材料、预热、后热、装配焊接顺序)和焊后热处理等。在结构材料和焊接材料选择正确、结构设计合理的情况下工艺因素是对结构焊接质量起决定性作用的因素。 4)使用因素 使用因素指焊接结构的工作温度、负荷条件(动载、静载、冲击、高速等)和工作环境(化工区、沿海及腐蚀介质等)。一般来讲环境温度越低钢结构越易发生脆性破坏,承受交变载荷的焊接结构易发生疲劳破坏。 二、如何分析金属的焊接性 (一)从金属的特性分析焊接性 1.化学成分 1)碳当量法 钢材中的各种元素,碳对淬硬及冷裂影响最显著,所以有人将钢材中各种元素的作用按照相当于若干含碳量折合并迭加起来,求得所谓的“碳当量”(C eq),以C eq值的大小估价冷裂纹倾向的大小,认为C eq值越小,钢材的焊接性能越好。 碳当量公式没有考虑元素之间的交互作用,也没有考虑板厚、结构拘束度、焊接工艺、含氢量等因素的影响。因而用碳当量评价焊接性是比较粗略的,使用时应注意条件。 2)焊接冷裂纹敏感系数

焊接冶金学(基本原理)

绪论 一、焊接过程的物理本质 1.焊接:被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子问的结合而形成永久性连接的工艺过程称为焊接。 物理本质:1)宏观:焊接接头破坏需要外加能量和焊接的的不可拆卸性(永久性)2)微观:焊接是在焊件之间实现原子间结合。 2.怎样才能实现焊接,应有什么外界条件? 从理论来讲,就是当两个被焊好的固体金属表面接近到相距原子平衡距离时,就可以在接触表面上进行扩散、再结晶等物理化学过程,从而形成金属键,达到焊接的目的。然而,这只是理论上的条件,事实上即使是经过精细加工的表面,在微观上也会存在凹凸不平之处,更何况在一般金属的表面上还常常带有氮化膜、油污和水分等吸附层。这样,就会阻碍金属表面的紧密接触。 为了克服阻碍金属表面紧密接触的各种因素,在焊接工艺上采取以下两种措施: 1)对被焊接的材质施加压力目的是破坏接触表面的氧化膜,使结合处增加有效的接触面积,从而达到紧密接触。 2)对被焊材料加热(局部或整体) 对金属来讲,使结合处达到塑性或熔化状态,此时接触面的氧化膜迅速破坏,降低金属变形的阻力,加热也会增加原于的振动能,促进扩散、再结晶、化学反应和结晶过程的进行。 二、焊接热源的种类及其特征 1)电弧热:利用气体介质放电过程所产生的热能作为焊接热源。 2)化学热:利用可燃和助燃气体或铝、镁热剂进行化学反应时所产生的热能作为热源。3)电阻热:利用电流通过导体时产生的电阻热作为热源。 4)高频感应热:对于有磁性的金属材料可利用高频感应所产生的二次电流作为热源,在局部集中加热,实现高速焊接。如高频焊管等。 5)摩擦热:由机械摩擦而产生的热能作为热源。 6)等离子焰:电弧放电或高频放电产生高度电离的离子流,它本身携带大量的热能和动能,利用这种能量进行焊接。 7)电子束:利用高压高速运动的电子在真空中猛烈轰击金属局部表面,使这种动能转化为热能作为热源。 8)激光束:通过受激辐射而使放射增强的光即激光,经过聚焦产生能量高度集中的激光束作为热源。 三、熔焊加热特点及焊接接头的形成 (一)焊件上加热区的能量分布 热源把热能传给焊件是通过焊件上一定的作用面积进行的。对于电弧焊来讲,这个作用面积称为加热区,加热区又可分为加热斑点区和活性斑点区; 1)活性斑点区活性斑点区是带电质点(电子和离于)集中轰击的部位,并把电能转为热能; 2)加热斑点区在加热斑点区焊件受热是通过电弧的辐射和周围介质的对流进行的。在该区内热量的分布是不均匀的,中心高,边缘低,如同立体高斯锥体. (二)焊接接头的形成: 熔焊时焊接接头的形成,一般都要经历加热、熔化、冶金反应、凝固结晶、固态相变,直至形成焊接接头。 (l)焊接热过程:熔焊时被焊金属在热源作用下发生局部受热和熔化,使整个焊接过程自始至终都是在焊接热过程中发生和发展的。它与冶金反应、凝固结晶和固态相变、焊接温度场和应力变形等均有密切的关系。

金属焊接性复习总结

第一章: 1. 金属焊接性:金属能否适应焊接加工而形成完整的、具备一定使用性能的焊接接头的特性。它的内涵:1、是否适合焊接加工?--金属在焊接加工中是否容易形成缺陷2、焊后使用可靠性?--性能焊成的接头在一定的使用条件下可靠使用的能力。 2.影响金属焊接性的因素:1、材料本身因素—母材和焊接材料的成分及性能2、工艺条件—焊接方法、工艺措施;3、结构因素—刚度、应力集中、多轴应力;4、使用条件—工作温度、负荷条件、工作环境。3.金属的焊接性的分析方法:(一)从金属特性分析金属焊接性1、利用金属本身的化学成分分析(1)碳当量法:指将各种元素按相当于若干含碳量折合并叠加起来求得所谓碳当量(CE和Ccq),用其来估计冷裂倾向的大小。CE=C+Mn/6+Ni+Cu/15+Cr+Mo+V/ (2)焊接冷裂纹敏感指数Pc=C+Si/30+Mn/20+Ni/60+Cr/20+Mo/15+V/10+5B+δ/600+H/60(%)式中δ—板厚(mm)H—焊缝中扩散氢含量(ml/100g). 2、利用金属本身的物理性能分析: 3、利用金属本身的化学性能分析4、利用合金相图分析(二)从焊接工艺条件分析焊接性: 1、热源特点2、保护方法3、热循环控制4、其他工艺因素 4. 选择或制定焊接性试验方法的原则: 1、焊接性试验的条件尽量与实际焊接时的条件相一致。 2、焊接性试验的结果要稳定可靠,具有较好的再现性。 3、注意试验方法的经济性。 5.焊接性试验的内容:(一)焊缝金属抗热裂的能力(二)焊缝及热影响区金属抗冷裂纹的能力(三)焊接接头抗脆性转变的能力(四)焊接接头的使用性能 6. 常用焊接性试验方法: (一)斜Y坡口焊接裂纹试验法:此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 (二) 插销试验:此法是测定钢材焊接热影响区冷裂纹敏感性的一种定量试验方法。测定加载16~24 h而不断裂的最大应力σcr (三)压板对接焊接裂纹试验法 (四)可调拘束裂纹试验法 第二章: 1.合金结构钢:在碳素结构钢的基础上添加一定数量的合金元素来达到所需要求的钢材。包括:结构钢、碳素结构钢、合金结构钢。 2.高强钢:可分为三种类型:热轧及正火钢、低碳调质钢、中碳调质钢。 3.专用钢:除通常的力学性能外,还必须要求特殊性能主要用于一些特殊的条件下工作的机械零件和工程结构,如耐高温、低温和耐腐蚀。大致可分为:珠光体耐热钢、低温钢、低合金耐蚀钢。 4.钢的强韧化: 固溶强化(置换固溶、间隙固溶)细晶强化第二相强化位错强化: 5.钢的相变:成分和工艺(温度、时间)影响奥氏体的稳定性,通过控制冷却速度和第二次处理得到组织。※热轧及正火钢 1、热轧钢 供货状态:热轧态 性能特点:强度最低σs294~392MPa,具有满意的综合力学性能和加工工艺性能,价格便宜 成分特点:热轧钢属于C- Mn 或Mn-Si系的钢种,有时用一些V、Nb等代替部分Mn。 基本成分:C≤0.2%,Si≤0.55,Mn≤1.5% 强化机制:主要以固溶强化为主 典型钢种:Q345(16Mn)、14MnNb、Q294(09MnV) 2、正火钢 (1 )正火态供货的钢 性能特点:最低强度σs343~450MPa,具有比热轧钢更高的强度和塑韧性 成分特点:0.15~0.2%C,在C-Mn、Mn-Si系的基础上加入一些碳化物和氮化物生成元素V、N b、Ti等 强化机制:在固溶强化的基础上,通过沉淀强化和细化晶粒来进一步提高强度和保证韧性 典型钢种:Q390(15MnTi、15MnVN)等。

常用金属焊接性之高温合金的钎焊复习过程

常用金属焊接性之高温合金的钎焊 高温合金是在高温下具有较好的力学性能、抗氧化性和抗腐蚀性的合金。这类合金可分为镍基、铁基和钴基三类;在钎焊结构中用得最多的是镍基合金。镍基合金按强化方式分为固溶强化、实效沉淀强化和氧化物弥散强化三类。固溶强化镍基合金为面心立方点阵的固溶相,通过添加铬、钴、钨、钼、铝、钛、铌等元素提高原子间结合力,产生点阵畸变,降低堆垛层错能,阻止位错运动,提高再结晶温度来强化固溶体。沉淀强化镍基合金钢是在固溶强化的基础上添加较多的铝、钛、铌、钽等元素而形成的。这些元素除形成强化固溶体外,还与镍形成Ni3(Al、Ti)γ’或Ni3(NbAlTi)γ”金属间化合物相;同时钨、铜、硼等元素与碳形成各种碳化物。TD-Ni和TD-NiCr合金是在镍或镍铬基体中加入2%左右弥散分布的ThO2颗粒,产生弥散强化效果的新型高温合金。 一:钎焊性 高温合金均含有较多的铬,加热时表面形成稳定的Cr2O3,比较难以去除;此外镍基高温合金均含铝和钛,尤其是沉淀强化高温合金和铸造合金的铝和钛含量更高。铝和钛对氧的亲和力比铬大得多,加热时极易氧化。因此,如何防止或减少镍基高温合金加热时的氧化以及去除其氧化膜是镍基高温合金钎焊时的首要任务。镍基高温合金钎焊时不建议用钎剂来去除氧化物,尤其是在高的钎焊温度下,因为钎剂中的硼砂或硼酸在钎焊温度下与母材起反应,降低母材表面的熔化温度,促使钎剂覆盖处的母材产生溶蚀;并且硼砂或硼酸与母材发生反应后析出的硼可能渗入母材,造成晶间渗入。对薄的工件来说是很不利的。所以镍基高温合金一般都在保护气氛,尤其是在真空中钎焊。母材表面氧化物的形成和去除与保护气氛的纯度以及真空度密切相关。对于含铝和钛低的合金,热态真空度不应低于10-2Pa;对于含铝钛较高的合金,表面氧化物的去除不仅与真空度有关,而且还与加热温度有关。 无论是固溶强化,还是沉淀强化的镍基高温合金,都必须将其合金元素及其化合物充分固溶于基体内,才能取得良好的高温性能。沉淀强化合金固溶处理后还必须进行时效处理,已达到弥散强化的目的。因此钎焊热循环应尽可能与合金的热处理相匹配,即钎焊温度尽量与热处理的加热温度相一致,以保证合金元素的充分溶解。钎焊温度过低不能使合金元素完全溶解;钎焊温度过高将使母材的晶粒长大,这些均对母材

金属焊接性总结

1.金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2.工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3.使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4.影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5.评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6.实验方法应满足的原则:1、可比性2、针对性3、再现性4、经济性 7.常用焊接性试验方法 A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:“小铁研”实验的目的是什么,适用于什么场合?了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些? 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小雨20%时。用于一般焊接结构是安全的) 三合金结构钢的焊接 低碳调质钢的焊接性分析 低碳调质钢主要是作为高强度的焊接结构用钢,因此含碳量限制的较低,在合金成分的设计上考虑了焊接性的要求。低碳调质钢碳的质量分数不超过0.18%,焊接性能远优于中碳调质钢。由于这类钢的焊接热影响区是低碳马氏体,马氏体转变温度Ms较高,所形成的马氏体具有“自回火”特性,使得焊接冷裂纹倾向比中碳调质钢小。 焊缝强韧性匹配: 焊缝强度匹配系数S=(σb)w/(σb)b,是表征接头力学非均质性的参数之一,(σb)w为焊缝强度,(σb)b为母材强度。当(σb)w/(σb)b>1时,为高强匹配;=1为等强匹配。<1为低强匹配低碳调质钢热影响区获得细小的低碳马氏体(ML)组织或下贝氏体(B L)组织时,韧性良好,而韧性最佳的组织为ML与低温转变贝氏体组织(B L)的混合组织下贝氏体的板条间结晶位相差较大,有效晶粒直径取决于板条宽度,比较微细,韧性良好,当ML与B L混合生成时,原奥氏体晶粒被先析出的B L有效地分割,促使ML有更多的形核位置,且限制了ML的生长,因此ML+B L混合组织有效晶粒最为细小。 Ni是发展低温钢的一个重要元素。为了提高钢的低温性能,可加入Ni元素,形成含Ni的铁素体低温钢,如1.5Ni钢等在提高Ni的同时,应降低含碳量和严格限制S、P的含量及N、H、O的含量,防止产生时效脆性和回火脆性等。这类钢的热处理条件为正火、正火+回火和淬火+回火等。 ○1在低温钢中由于含碳量和杂质S、P的含量控制的都很严格,所以液化裂纹在这类钢中不是很明显。○2另一个问题是回火脆性,要控制焊后回火温度和冷却速度。 低温钢焊接的工艺特点:除要防止出现裂纹外,关键是要保证焊缝和热影响区的低温韧性,这是制定低温钢焊接工艺的一个根本出发点。 9Ni钢具有优良的低温韧性但用与9Ni钢相似的铁素体焊材时所得焊缝的韧性很差。这除了与铸态焊缝组

焊接冶金与焊接性

1.铝及铝合金焊接时存在的主要问题是什么? 答:主要存在气孔和热裂纹和软化问题 (1)气孔的存在降低了焊缝的致密性和耐蚀性,易形成应力集中从而降低了接头的强度,塑性、气孔可分为;临近焊缝表面的皮下气孔、焊缝中部或根部的密集气,熔合区边界的氧化膜气孔。(2)热裂纹可能出现在焊缝,焊接热影响区、以及焊缝的弧坑处,焊缝中的热裂纹属于结晶裂纹,热影响区中的热裂纹主要是液化裂纹。(3)热处理强化铝合金及焊前经过冷作硬化的非热处理强化铝合金,热影响区的强度和硬度相对于原来的母材会有不同程度的降低及软化;软化可分为:非时效强化铝合金的软化,时效强化铝合金的软化。 2. 铝及铝合金的焊接工艺要点是什么? 答:(1)焊接方法:应根据合金牌号,焊件厚度,产品结构以及焊接质量要求加以选择,其方法包括:钨极氩弧焊、熔化极氩弧焊、变极性等离子弧焊、激光和电子束焊、搅拌摩擦焊等(2)焊接材料:选择时要充分考虑接头的力学性能,抗裂性及抗腐蚀性,并结合母材及成分,产品的具体实施条件和结构的刚性等(3)接头设计:应根据材料的厚度,焊接方法、焊接位置有无衬垫和是否清根等条件进行接头设计,合理选择接头类型和坡形式。(4)焊接参数:焊接参数的选定要考虑接头的形式,尺寸及焊缝成型的要求,同时要考虑对气孔、裂纹和接头软化成程度的影响。(5)焊前准备:主要包括焊前清理,施加垫板,焊前预热(6)焊后处理:主要为及时清理焊后留在焊缝区及临近区的残存熔滴和焊渣。 3.钛及钛合金的类型和牌号有那些? 答:工业纯钛(TA0.TA1.Ta3)α型钛合金(TA4 TA6 TA7),α+β型钛合金(TC3.TC1.TC4.TC6.TC11)β型钛合金(TB2.TB4) 4.钛及钛合金的焊接性 答:(1)间隙渣滓引起的接头力学性能变化。钛及钛合金在常温下能与氧气形成致密的氧化膜而保持很高的稳定性和耐蚀性,但是在高温下,钛及钛合金吸收氧气氮气和氢气能力很强,对焊接接头力学性能产生较大的影响。(2)焊接裂纹;钛及钛合金中S P 和C等渣滓很少,晶界上低熔点共晶不易形成,结晶温度区间窄,加之焊接凝固时收缩小,因此出现焊接热裂纹可能性很小。(3)气孔;气孔是焊接钛合金时比较为普遍的缺陷,其特点是分布在融合线附近,主要为氢气孔,是由于氢气在钛中的溶解度在凝固时存在突变和随温度的升高而降低造成的(4)焊接热影响区的组织变化,包括相和晶粒尺寸的变化 5.钛及钛合金的焊接工艺要点是什么? 答:(1)焊接方法;选择焊接方法时,主要考虑钛合金的物理性能,化学性能和冶金学特点,还要兼顾工件与结构的尺寸,应选择能量集中的焊法,同时采用很好的保护方法(2)焊接材料;钛及钛合金一般可以选择与母材成分相同的焊丝,也可选择强度略低于母材的焊丝,以提高结构的韧性。(3)焊前准备;主要包括板材切割、坡口设计和加工、表面清理,(4)焊接参数;钛及钛合金焊接时都有晶粒粗化的倾向,尤其β型钛合金最为显著,为防止晶粒粗化,应采用较小的焊接热输入,但也要注意输入过低造成的不利影响(5)焊后处理;焊后热处理可以调整钛及钛合金焊缝级热影响区的微观组织,从而改善焊接接头的性能,一般采用真空退火工艺,而对α+β型钛合金来讲,可以采用淬火+时效+焊接+局部退火或者淬火+焊接+退火。 6.焊接灰铸铁时主要存在的问题是什么? 答:(1)焊接接头容易出现白口(渗碳组织)及淬硬组织(2)焊接接头易出现裂纹。(3)低碳钢和镍基铸铁焊接时易出现热裂纹。 7. 灰铸铁异质焊缝的电弧冷焊的工艺要点 答:焊前准备工作要做好,焊接电流要适当的小,采用焊道断续分散焊接。焊接是时候要用小锤敲击减少应力。

金属材料焊接性知识要点

金属材料焊接性知识要点 1. 金属焊接性:指同质材料或异质材料在制造工艺条件下,能够形成完整接头并满足预期使用要求的能力。包括(工艺焊接性和使用焊接性)。 2. 工艺焊接性:金属或材料在一定的焊接工艺条件下,能否获得优质致密无缺陷和具有一定使用性能的焊接接头能力。 3. 使用焊接性:指焊接接头和整体焊接结构满足各种性能的程度,包括常规的力学性能。 4. 影响金属焊接性的因素:1、材料本因素2、设计因素3、工艺因素4、服役环境 5. 评定焊接性的原则:(1)评定焊接接头中产生工艺缺陷的倾向,为制定合理的焊接工艺提供依据;(2)评定焊接接头能否满足结构使用性能的要求。 6. 实验方法应满足的原则:1可比性 2针对性 3再现性 4经济性 7. 常用焊接性试验方法: A:斜Y坡口焊接裂纹试验法: 此法主要用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。 B:插销试验 C:压板对接焊接裂纹试验法 D:可调拘束裂纹试验法 一问答:1、“小铁研”实验的目的是什么,适用于什么场合了解其主要实验步骤,分析影响实验结果稳定性的因素有哪些 答:1、目的是用于评定用于评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性。评定碳钢和低合金高强钢焊接热影响区对冷裂纹的敏感性时,影响结果稳定因素焊接接头拘束度预热温度角变形和未焊透。(一般认为低合金钢“小铁研实验”表面裂纹率小于20%时。用于一般焊接结构是安全的) 2、影响工艺焊接性的主要因素有哪些 答:影响因素:(1)材料因素包括母材本身和使用的焊接材料,如焊条电弧焊的焊条、埋弧焊时的焊丝和焊剂、气体保护焊时的焊丝和保护气体等。 (2)设计因素焊接接头的结构设计会影响应力状态,从而对焊接性产生影响。 (3)工艺因素对于同一种母材,采用不同的焊接方法和工艺措施,所表现出来的焊接性有很大的差异。 (4)服役环境焊接结构的服役环境多种多样,如工作温度高低、工作介质种类、载荷性质等都属于使用条件。 3、举例说明有时工艺焊接性好的金属材料使用焊接性不一定好。 答:金属材料使用焊接性能是指焊接接头或整体焊接结构满足技术条件所规定的各种使用性能主要包括常规的力学性能或特定工作条件下的使用性能,如低温韧性、断裂韧性、高温蠕变强度、持久强度、疲劳性能以及耐蚀性、耐磨性等。而工艺焊接性是指金属或材料在一定的焊接工艺条件下,能否获得优质致密、无缺陷和具有一定使用性能的焊接接头的能力。比如低碳钢焊接性好,但其强度、硬度却没有高碳钢好。 4、为什么可以用热影响区最高硬度来评价钢铁材料的焊接冷裂纹敏感性焊接工艺条件对热影响区最高硬度有什么影响 答:因为(1).冷裂纹主要产生在热影响区; (2)其直接评定的是冷裂纹产生三要素中最重要的,接头淬硬组织,所以可以近似用来评价冷裂纹。 一般来说,焊接接头包括热影响区,它的硬度值相对于母材硬度值越高,证明焊接接头的

焊接冶金学题

一.名词解释 1.焊接:被焊工件的材质(同质或异质),通过加热或加压或二者并用,并且 用或不用填充材料,使工件的材质达到原子间的结合而形成永久性的连接的工艺过程。 2.熔合比:在焊缝金属中局部融化的母材所占的比例称为熔合比。 3.交互结晶:熔合区附近加热到半融化状态基本金属的晶粒表面,非自发形核 就依附在这个表面上,并以柱状晶的形态向焊缝中心生长,形成所谓交互结晶。 4.焊缝扩散氢:由于氢原子和离子的半径很小,这一部分氢可以在焊缝金属的 晶格中自由扩散,故称扩散氢。 5.拘束度:单位长度焊缝,在根部间隙产生单位长度的弹性位移所需的力。 6.熔敷系数:真正反映焊接生产率的指标。g/(A*H)在熔焊过程中,单位电流, 单位时间内,焊芯熔敷在焊件上的金属量。 7.熔敷比表面积:熔滴的表面积Ag与其质量pVg之比。 8.应力腐蚀:金属材料在腐蚀介质和拉伸应力的共同作用下产生的一种延迟破 坏现象,称为应力腐蚀。 9.层状撕裂:大型厚壁结构,在焊接过程中会沿钢板的厚度方向出现较大的拉 伸应力,如果钢中有较多的杂质,那么沿钢板轧制方向出现一种台阶状的裂纹,称为层状撕裂。 10.再热裂纹:焊后再加热,为了消除应力退火或在高温工作时500-700摄氏度 产生的裂纹。 11.热影响区:熔焊时在集中热源的作用下,焊缝两侧发生组织和性能变化的区 域。 12.热循环曲线:焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达 到峰值后,又由高而低随时间的变化称为焊接热循环。 13.焊接线能量:热源功率q与焊接速度v之比。 14.热裂纹:是在焊接高温时晶沿界断裂产生的。冷裂纹:是焊后冷至较低温度 产生的。 二.简答 1.氢对焊接质量有哪些影响?控制焊缝含氢量的主要措施是什么? a.氢脆,氢在室温附近使钢的塑性严重下降。 b.白点,碳钢和低合金钢焊缝, 如含氢量高常常在拉伸或弯曲断面上出现银白色局部脆断点。c.形成气孔,熔池吸收大量的氢,凝固时由于溶解度突然下降,使氢处于饱和状态,会产生氢气且不溶于液态金属,形成气泡产生气孔。d.氢促使产生冷裂纹。措施: a.限制焊接材料中的氢含量,制造低氢和超低氢型焊接材料和焊剂时,应尽 量选用不含或含氢量少的材料。b.清除焊件和焊丝表面上的铁锈,油污,吸附水等杂质。c.冶金处理:在药皮中加入氟化物,控制焊接材料的氧化还原势,在药皮或焊芯中加入微量的稀土和稀散元素,控制焊接工艺参数,焊后除氢处理。 2.氮对焊接质量有哪些影响?控制焊缝含氮量的主要措施是什么? a在碳钢焊缝中氮是有害的杂质,是促使焊缝产生气孔的主要原因。b氮是提高低碳钢和低合金钢焊缝金属强度,降低塑性和韧性的元素。c氮是促使焊缝金属时效脆化的元素。措施:a焊接区保护的影响,液态金属脱氮比较困难,所以控制氮的主要措施是加强保护,防止空气和金属作用。b焊接参

焊接冶金与焊接性

一焊接温度场和焊接热循环 1焊接传热所涉接的主要是工件的温度分布及温度随时间的变化,即焊接温度场和焊接热循环。 2焊接温度场——将某瞬时温度在工件上各点的分布,称为焊接温度场。 3焊接温度场可以用等温线或等温面的分布来表征。(等温线或等温面就是某瞬时工件上温度相同的各点连接在一起所形成的线或面) 4焊接温度场的类型: 1)按温度变化情况:1)稳定温度场2)非稳定温度场3)准稳定温 度场 2)按焊接传热类型:1)三维温度场2)二维温度场3)一维温度 场 5焊接温度场的影响因素: 1)热源的特性2)焊接参数3)母材的热物理性质4)工件的形态 对温度场有显著影响的是热导率λ和热扩散率а 6焊接热循环——在焊接过程中,工件上某点的温度随时间由低到高,升至最大值后又由高到低的变化过程称为焊接热循环。 7对整个工件而言,焊接过程是一个不均匀加热和冷却的过程。 8焊接热循环参数:1)加热速度(Vи)2)峰值温度(Tm)3)高温停留时间(tи)3)冷却速度(vc)或冷却时间(t8/5,t8/3,t100) 9焊接热循环的特点:1)加热速度快2)峰值温度高3)高温停留时间短4)冷却速度快 5)局部加热 二焊条药皮的作用及焊条的工艺性能 1药皮的作用:1)机械保护作用2)冶金处理作用3)工艺性能改善作用 2焊条的工艺性能:1)焊条电弧的稳定性2)焊接位置的适应性3)焊缝成形4)焊接飞溅与熔敷效率5)脱渣性6)焊接烟尘7)焊条药皮的发红 三试比较E4303与E5105焊条的工艺性能和冶金性能 1工艺性能 焊条类型药 皮 类 型 熔 渣 性 质 电 弧 稳 定 性 焊接位置的适应性焊缝成形 焊接飞溅 和熔敷效 率 脱 渣 性 焊接 烟尘 E4313 碳 钙 型酸 性 短 渣 稳 定 平 焊 易 上 焊 易 下 焊 易 仰 焊 稍 易 外 观 美 观 脚 形 状 平 熔 深 中 咬 边 少 飞 溅 少 效 率 中 好少 E5015 低 氢 钠 型碱 性 短 渣 较 差 平 焊 易 上 焊 易 下 焊 易 仰 焊 稍 难 外 观 稍 粗 平 或 凹 熔 深 中 咬 边 少 飞 溅 较 多 效 率 中 较 差 多 2冶金性能 1)对氧的控制E4303熔渣中的SiO2和焊接气氛中的含氧气体将铁氧化成FeO 而使焊缝增氧,采用锰铁脱氧。 E5015焊接气氛中的CO2和其他含氧气体将铁氧化成FeO而使

焊接冶金学基本原理要点归纳总计

绪论 1)焊接:焊接是指被焊工件的材质(同种或异种),通过加热或加压或二者并用,并且用或不用填充材料,使工件的材质达到原子间的结合而形成永久性连接的工艺过程。 2)焊接、钎焊和粘焊本质上的区别: 焊接:母材与焊接材料均熔化,且二者之间形成共同的晶粒; 钎焊:只有钎料熔化,而母材不熔化,在连接处一般不易形成共同晶粒,只有在母材和钎料之间形成有相互原子渗透的 机械结合; 粘焊:既没有原子的相互渗透而形成共同的晶粒也没有原子间的扩散,只是靠粘接剂与母材的粘接作用。 3)熔化焊热源:电弧热、等离子弧热、电子束、激光束、化学热。 压力焊和钎焊热源:电阻热、摩擦热、高频感应热。 4)焊接加热区可分为活性斑点区和加热斑点区 5)焊接温度场:焊接时焊件上的某瞬时的温度分布称为焊接温度场。 6)稳定温度场:当焊件上温度场各点温度不随时间变化时,称之 7)准稳定温度场:恒定功率的热源作用在焊件上做匀速直线运动时,经过一段时间后,焊件传热达到饱和状态,温度场会达到暂时稳定状态,并可随着热源以同样速度移动。 8)焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程。 第一章 1)平均熔化速度:单位时间内熔化焊芯质量或长度。 平均熔敷速度:单位时间内熔敷在焊件上的金属质量称为平均熔敷速度。 损失系数:在焊接过程中,由于飞溅、氧化、蒸发损失的一部分焊条金属(或焊丝)质量与熔化的焊芯质量之比称焊条损失系数。 熔合比:焊缝金属中,局部熔化的母材所占的比例。 熔滴的比表面积:表面积与质量之比2)熔滴过渡的形式:短路过渡、颗粒状过渡和附壁过渡。 3)熔池:焊接热源作用在焊件上所形成的具有一定几何形状的液态金属部分就是熔池。 4)焊接过程中对金属的保护的必要性: (1)防止熔化金属与空气发生激烈的相 互作用,降低焊缝金属中氧和氮的含量。 (2)防止有益合金元素的烧损和蒸发而 减少,使焊缝得到合适的化学成分。(3) 防止电弧不稳定,避免焊缝中产生气孔。 5)手工电弧焊时的反应区:药皮反应区、 熔滴反应区和熔池反应区。 6)药皮反应区主要物化反应有: 1 水分蒸发: 2 有机物燃烧和分解: 3 铁合金氧化: 7)熔滴反应区的特点: 1 熔滴温度高,熔滴金属过热度大; 2 熔滴与气体和熔渣的接触面积大; 3 各相之间的反应时间短; 4 熔滴与熔渣发生强烈的混合。 8)焊接区气体来源: 1焊接材料:焊接区内的气体主要来源 于焊接材料。焊条药皮、焊剂及焊丝药芯 中都含有造气剂。 2热源周围的气体介质:热源周围的空 气是难以避免的气体来源,而焊接材料中 的造气剂所产生的气体,不能完全排除焊 接区内的空气。 3焊丝和母材表面上的杂质:焊丝表面 和母材表面的杂质,如铁锈、油污、氧化 铁皮以及吸附水等,在焊接过程中受热而 析出气体进入气相中。 气体的产生: 1 有机物的分解和燃烧 2 碳酸盐和高价氧化物的分解 3 材料的蒸发 9)氮对金属的作用: 焊接时电弧气氛中氮的主要来源是 周围的空气。 焊接时空气中的氮总是或多或少地 会侵入焊接区,与熔化金属发生作用。 氮对焊接质量的影响: 1 促使焊缝产生气孔:液态金属在高温时 可以溶解大量的氮,凝固结晶时氮的溶解 度突然下降,过饱和氮以气泡形式从熔池 中逸出,若焊缝金属的结晶速度大于氮的 逸出速度时,就形成气孔。 2 氮是提高低碳、低合金钢焊缝强度,降 低塑性和韧性的元素。如果熔池中含有比 较多的氮,一部分氮将以过饱和的形式存 在于固溶体中;另一部分氮则以针状氮化 物Fe4N的形式析出,分布于晶界或晶内, 因而使焊缝金属的强度、硬度升高,而塑 性、韧性,特别是低温韧度急剧下降。 3 氮是促使焊缝金属时效脆化的元素:焊 缝金属中过饱和的氮处于不稳定状态,随 着时间的延长,过饱和的氮逐渐析出,形 成稳定的碳氮化物Fe4N,因而使焊缝金属 的强度增加、塑性、韧性降低。 4 氮可以作为合金元素加入钢中。在焊缝 金属中加入能形成稳定氮化物元素,如 RE、A1、Ti、Zr等,可以抑制或消除时效 现象。 控制焊缝合氮量的措施 1 加强焊接区的保护 (1)焊条药皮的保护作用,取决于药皮 的成分和数量。 (2)药芯焊丝的保护效果,取决于保护 成分含量和形状系数。 2 焊接工艺参数的影响 (1)U↑(电弧长度↑),氮可以与熔滴 作用时间τ↑,S N ↑,应尽量采用短弧 焊。 (2)I↑,熔滴过渡频率f↑,熔滴阶段作 用时间τ↓, S N↓ 。 直流正极性焊接时焊缝含氮量比反 极性(焊条接正极,工件接负极)时高。 (3)焊接速度对焊缝的含氮量影响不大。 (4)增加焊丝直径,熔滴变粗,焊缝含 氮量下降。 (5)多层焊时焊缝含氮量比单层焊时高, 这与氮的逐层积累有关 3 利用合金元素控制焊缝合氮量: (1)增加焊丝或药皮中的含碳量可降 低焊缝的含氮量,其原因是: a)碳能够降低氮在铁中的溶解度。 b)碳氧化生成CO、CO2加强保护作用, 降低了氮分压。 c)碳的氧化引起熔池沸腾,有利于氮 的逸出。 (2)Ti、A1、Zr和稀土元素对氮有较大 的亲合力,能形成稳定的氮化物。并且这 些氮化物不溶于铁水,而进入熔渣中。这 些元素对氧的亲力也很大,因此,可减少 气相中NO的含量,这在一定程度上减少 了焊缝的含氮量。 10)焊缝金属中的氢 扩散氢:氢原子及离子半径很小,可 以在焊缝金属晶格中自由扩散,故被称为 扩散氢。 残余氢:氢扩散到金属的晶格缺陷、

相关文档
最新文档