神 经 网 络 综 述

神 经 网 络 综 述
神 经 网 络 综 述

神经网络综述

摘要作为一门活跃的边缘性交叉学科,神经网络的研究与应用正成为人工智能、认识科学、神经生理学、非线性动力学等相关专业的热点。近十几年来,针对神经网络的学术研究大量涌现,它们当中提出上百种的神经网络模型,其应用涉及模式识别﹑联想记忆、信号处理、自动控制﹑组合优化﹑故障诊断及计算机视觉等众多方面,取得了引人注目的进展。关键词:神经网络,研究与应用,发展

引言

人类关于认知的探索由来已久。早在公元前400 年左右,希腊哲学家柏拉图(Plato)和亚里士多德(Asidtole)等,就曾对人类认知的性质和起源进行过思考,并发表了有关记忆和思维的论述。在此及以后很长的一段时间内,由于科学技术发展水平所限,人们对人脑的认识主要停留在观察和猜测的基础之上,缺乏有关人脑内部及其工作原理的科学依据,因而进展缓慢。直到20世纪40 年代,随着神经解剖学、神经生理学以及神经元的电生理过程等的研究取得突破性进展,人们对人脑的结构、组成及最基本工作单元有了越来越充分的认识,在此基本认识的基础上,以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立简化的模型,称为人工神经网络ANN(Artificial Neural Network),为叙述方便将人工神经网络直接称之为神经网络。

1 神经网络的定义

目前,关于神经网络的定义尚不统一,按美国神经网络学家Hecht Nielsen 的观点,神经网络的定义是:“神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算机系统,该系统靠其状态对外部输入信息的动态响应来处理信息”。综合神经网络的来源﹑特点和各种解释,它可简单地表述为:人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。

2 神经网络的基本模型

人工神经元的研究源于脑神经元学说,19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们开始认识到,复杂的神经系统是由数目繁多的神经元组合而成。

神经元由细胞及其发出的许多突起构成。细胞体内有细胞核,突起的作用是传递信息。作为引入输入信号的若干个突起称为“树突”或“晶枝”(dendrite),而作为输出端的突起只有一个称为“轴突”(axon)。

树突是细胞体的延伸部,它由细胞体发出后逐渐变细,全长各部位都可与其它神经元的轴突末稍相互联系,形成所谓“突触”(synapse)。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目有所不同,最高可达105 个,各神经元之间的连接强度和极性有所不同,并且都可调整,基于这一特性,人脑具有存储信息的功能。

对于这样一种多输入、单输出的基本单元可以进一步从生物化学、电生物学、数学等方面给出描述其功能的模型。从信息处理观点考察,为神经元构作了各种形式的数学模型。

利用大量神经元相互连接组成的人工神经网络,将显示出人脑的若干特征,人工神经网络也具有初步的自适应与自组织能力。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以至超过设计者原有的知识水平。通常,它的学习(或训练)方式可分为两种,一种是有监督(supervised)或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督(unsupervised)学习或称无导师学习,这时,只规定学习方式或某些规则,而具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似于人脑的功能。

3 人工神经网络的特性

人工神经网络与人脑以及冯·诺依曼计算机相比有如下特点:

1)大规模并行处理

人脑神经元之间传递脉冲信号的速度远低于冯·诺依曼计算机的工作速度,前者为毫秒量级,后者的时钟频率通常可达108Hz或更高的速率。但是,由于人脑是一个大规模并行与串行组合处理系统,因而在许多问题上可以做出快速判断、决策和处理,其速度可以远高于串行结构的冯·诺依曼计算机。人工神经网络的基本结构模仿人脑,具有并行处理的特征,可以大大提高工作速度。

2)分布式存储

人脑存储信息的特点是利用突触效能的变化来调整存储内容,也即信息储存在神经元之间连接强度的分布上,存储区与运算区合为一体。虽然人脑每日有大量神经细胞死亡,但不影响大脑的功能,局部损伤可能引起功能衰退,但不会突然丧失功能。

冯·诺依曼计算机具有相互独立的存储器和运算器,知识存储与数据运算互不相关,只有通过人的编程给出指令使之沟通,这种沟通不能超越程序编写者的预想。元件的局部损伤或程序中的微小错误都可能引起严重的失常。

3)自适应(学习)过程

人类大脑有很强的自适应与自组织特性。后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏,聋哑人善于运用手势,训练有素的运动员可以表现出非凡的运动技巧等等。

冯·诺依曼计算机强调程序编写,系统的功能取决于程序给出的知识和能力。显然,对

于上述智能活动要加以总结并编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力。在学习和训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同功能。人工神经网络是一个有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。

4 人工神经网络的基本功能

人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。因此,它在功能上具有某些智能特点。

1)联想记忆功能

由于神经网络具有分布存储信息和并行计算的性能,因此它具有对外界刺激和输入信息进行联想记忆的能力。这种能力是通过神经元之间的协同结构及信息处理的集体行为而实现的。神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完整的信息。这一功能使神经网络在图像复原﹑语音处理﹑模式识别与分类方面具有重要的应用前景。

2)分类与识别功能

神经网络对外界输入样本有很强的识别与分类能力。对输入样本的分类实际上是在样本空间找出符合分类要求的分割区域,每个区域内的样本属于一类。

3)优化计算功能

优化计算是指在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。将优化约束信息(与目标函数有关)存储于神经网络的连接权矩阵之中,神经网络的工作状态以动态系统方程式描述。设置一组随机数据作为起始条件,当系统的状态趋于稳定时,神经网络方程的解作为输出优化结果。优化计算在TSP及生产调度问题上有重要应用。4)非线性映射功能

在许多实际问题中,如过程控制﹑系统辨识﹑故障诊断﹑机器人控制等诸多领域,系统的输入与输出之间存在复杂的非线性关系,对于这类系统,往往难以用传统的数理方程建立其数学模型。神经网络在这方面有独到的优势,设计合理的神经网络通过对系统输入输出样本进行训练学习,从理论上讲,能够以任意精度逼近任意复杂的非线性函数。神经网络的这一优良性能使其可以作为多维非线性函数的通用数学模型。如小脑模型神经网络在线辨识算法,就是一种典型的非线性映射。

5 人工神经网络的应用领域

1988年,在Darpa的“神经网络研究报告”中列举了各种神经网络的应用。其中第一个应用就是大约在1984年的自适应频道均衡器。这个设备在商业上取得了极大的成功。它用一个

单神经元网络来稳定电话系统中长距离传输的声音信号。Darpa报告还列出了其它一些神经网络在商业领域的应用,如单词识别器﹑过程监控器﹑声纳分类器﹑风险分析系统等。目前神经网络的应用领域正在不断扩大,它不仅可以广泛应用于工程﹑科学和数学领域,也可广泛应用于医学﹑商业﹑金融甚至于文学领域。

1)信息领域

神经网络作为一种新型智能信息处理系统,其应用贯穿信息的获取﹑传输﹑接收与加工利用等各个环节。

①信号处理

②模式识别

③数据压缩

2)自动化领域

20世纪80年代以来,神经网络和控制理论相结合,发展为自动控制领域的一个前沿学科――神经网络控制。它是智能控制的一个重要分支,为解决复杂的非线性﹑不确定﹑不确知系统的控制问题开辟了一条新的途径。神经网络用于控制领域,已取得了以下主要进展。

①系统辨识

②神经控制器

③智能监测

3)工程领域

20世纪80年代以来神经网络的理论研究已在众多的工程领域取得了丰硕的应用成果。

①汽车工程

②军事工程

③化学工程

④水利工程

⑤制造工程

⑥航空航天工程

⑦气象工程

4)医学领域

①检测数据分析

②生物活性研究

③医学专家系统

④生物信息学

5)经济领域

①信贷分析

②市场预测

6 人工神经网络发展展望

经过近半个世纪的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。关于学习、联想和记忆等具有智能特点过程的机理及其模拟方面的研究正受到越来越多的重视。目前神经网络研究与发展主要集中在以下几个方面:

1)神经生理学、神经解剖学研究的发展

通过神经网络研究的发展,我们对人脑一些局部功能的认识已经有所提高,如对感知器的研究,对视觉处理网络的研究,对存储与记忆问题的研究等都取得一定的成功,但遗憾的是,这些成功一方面还远不够完善,另一方面,在对人脑作为一个整体的功能的解释上还几乎起不上任何帮助。科学家已经积累了大量关于大脑组成、大脑外形、大脑运转基本要素等知识,但仍无法解答有关大脑信息处理的一些实质问题。整体功能决不是局部功能的简单组合而是一个质的飞跃,人脑的知觉和认知等过程是包含着一个复杂的动态系统中对大量神经元活动进行整合的统一性行动。由于我们对人脑完整工作过程几乎没有什么认识,连一个稍微完善的令人可以接受的假设也没有,这造成神经网络研究始终缺乏一个明确的大方向。这方面如果不能有所突破,神经网络研究将始终限于模仿人脑局部功能的缓慢的摸索过程当中,而难以达到研究水平的质的飞跃。

2)与之相关的数学领域的研究与发展

神经元的以电为主的生物过程在认识上一般采用非线性动力学模型,其动力学演变过程往往是非常复杂的,神经网络这种强的生物学特征和数学性质,要求有更好的数学手段。而我们知道,对解决非线性微分方程这样的问题,稍微复杂一些的便没有办法利用数学方法求得完整的解。这使得在分析诸如一般神经网络的自激振荡、稳定性、混沌等问题时常常显得力不从心,更不用说,当我们面对人脑这样的由成千上万个神经元网络子系统组成的巨系统,而每个子系统(具有某种特定功能)又可能由成千上万个神经元组成,每个神经元本身是一个基本的非线性环节。因此可以认为,当今神经网络理论的发展,已经客观要求有关数学领域必须有所发展,并大胆预期一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域数学发展的主要目标之一。

3)神经网络应用的研究与发展

从神经网络发展过程来看,理论研究经常走在前列,有时会超出实际使用阶段。虽然说理论研究和实际应用可以相辅相成,但实际需求总是科技发展的主要推动力。目前,在神经网络实用上,虽然有不少实际应用成果报道,如智能控制﹑模式识别﹑机器人控制及故障诊断等。但真正成熟的应用还比较少见。

4)神经网络硬件的研究与发展

要真正实现神经网络计算机,则神经网络芯片设计与生产技术必须有实质性的进展。目前,在单片上集成数百个神经元的制作技术已经没有困难,但这种水平与神经网络实际应用

的要求尚有较大距离。神经网络硬件设计和理论研究相比,要落后很多。因此,这也是神经网络研究发展的重要方向之一。在这方面,光学技术是实现神经网络及神经计算机的一个比较理想的选择。因为光学技术具有非常好的固有特性,主要体现在:高驱动性﹑较高的通信带宽﹑以光速并行传递信息等。虽然光学神经计算机实现技术目前还不成熟,其商品化大规模实现还有待时日,但一些光学神经元器件﹑光电神经计算机研究已表现出广阔的发展和应用潜力,并引起相应领域的充分关注。

5)新型神经网络模型的研究

为了推动神经网络理论的发展,除了期待神经生理学等研究突破外,将神经网络与其他理论交叉结合,研究新型神经网络模型,也是神经网络研究发展方向之一。如将之与混沌理论相结合产生的混沌神经网络理论;再如将量子力学与神经网络的结合,研究量子神经网络,实现功能强大的量子神经计算就是目前神经网络研究的热点之一。

人工神经网络的研究涉及相当广泛的应用数学工具,除线性代数﹑集合论﹑微分与差分方程﹑状态空间及数值分析等基本方法外,往往需要运用非线性动态系统稳定性理论﹑概率统计方法和随机过程﹑优化理论﹑非线性规划﹑自适应控制及信息论的初步概念。从研究方法上看,目前尚未形成统一﹑完整的理论体系。各种网络模型及算法的形成﹑构造﹑设计及性能评估都是只就具体问题进行具体分析,主要依赖计算机模拟的实验结果,大多数还不能给出严密﹑科学的一般规律和方法。为推动人工神经网络研究的进展,迫切需要宏观的理论指导。另一方面,为开展应用系统的研究,迫切需要硬件制作技术的新突破,目前,在这方面的进展还遇到不少困难。

结束语

通过一系列的调查和研究,我对神经网络的了解由浅入深,已有了一定的基础。虽然神经网络理论研究有着非常广阔的发展前景,但历来这个领域的研究就是既充满诱惑又不乏挑战的。没有人能肯定它的发展不会再经受挫折,也没有人知道一旦成功实现其最终目标会给科技界带来多大的辉煌和巨变。我们有理由相信,只要坚持不懈地努力,来自神经网络理论研究的一些新理论和新方法必定会给21世纪科学研究带来源源不断的动力。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

BP神经网络原理及应用

BP神经网络原理及应用 1 人工神经网络简介 1.1生物神经元模型 神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相 互信息传递的基本单元。据神经生物学家研究的结果表明,人的大脑一般有1011 个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突1010 和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 1.2人工神经元模型 神经网络是由许多相互连接的处理单元组成。这些处理单元通常线性排列成组,称为层。每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关 联的权重。处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。目前人们提出的神经元模型已有很多,其中提出最早且影 响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特

性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。 )()(1∑=-=n i j i ji j x w f t Y θ (1.1) 式(1.1)中为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态, ji w 取正值,对于抑制状态,ji w 取负值) ,n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。 1.3人工神经网络的基本特性 人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。严格地说,人工神经网络是一种具有下列特性的有向图: (1)对于每个节点存在一个状态变量xi ; (2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值; (4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j i f w x θ-∑形式。 1.4 人工神经网络的主要学习算法 神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。 (1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老师或导师来提供期望或目标输出信号。有师学习算法的例子包括规则、广义规则或反向传播算法以及LVQ 算法等。 (2)无师学习 无师学习算法不需要知道期望输出。在训练过程中,只要向神

神经网络详解

一前言 让我们来看一个经典的神经网络。这是一个包含三个层次的神经网络。红色的是输入层,绿色的是输出层,紫色的是中间层(也叫隐藏层)。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。后文中,我们统一使用这种颜色来表达神经网络的结构。 图1神经网络结构图 设计一个神经网络时,输入层与输出层的节点数往往是固定的,中间层则可以自由指定; 神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别; 结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。 除了从左到右的形式表达的结构图,还有一种常见的表达形式是从下到上来

表示一个神经网络。这时候,输入层在图的最下方。输出层则在图的最上方,如下图: 图2从下到上的神经网络结构图 二神经元 2.结构 神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计算则可以类比为细胞核。 下图是一个典型的神经元模型:包含有3个输入,1个输出,以及2个计算功能。 注意中间的箭头线。这些线称为“连接”。每个上有一个“权值”。

图3神经元模型 连接是神经元中最重要的东西。每一个连接上都有一个权重。 一个神经网络的训练算法就是让权重的值调整到最佳,以使得整个网络的预测效果最好。 我们使用a来表示输入,用w来表示权值。一个表示连接的有向箭头可以这样理解: 在初端,传递的信号大小仍然是a,端中间有加权参数w,经过这个加权后的信号会变成a*w,因此在连接的末端,信号的大小就变成了a*w。 在其他绘图模型里,有向箭头可能表示的是值的不变传递。而在神经元模型里,每个有向箭头表示的是值的加权传递。 图4连接(connection) 如果我们将神经元图中的所有变量用符号表示,并且写出输出的计算公式的话,就是下图。

神经网络——五个基本学习算法

五个基本的学习算法:误差—修正学习;基于记忆的学习;Hebb 学习;竞争学习和Boltzmann 学习。误差修正学习植根于最优滤波。基于记忆的学习通过明确的记住训练数据来进行。Hebb 学习和竞争学习都是受了神经生物学上的考虑的启发。Boltzmann 学习是建立在统计学力学借来的思想基础上。 1. 误差修正学习 神经元k 的输出信号)(n y k 表示, )(n d k 表示的是期望响应或目标 输出比较。由此产生)(n e k 表示的误差信号,有 )()()(n y n d n e k k k -= 这一目标通过最小化代价函数或性能指标 )(n ξ来实现。定义如下 )(2 1)(2 n e n k = ξ 也就是说)(n ξ是误差能量的瞬时值。这种对神经元k 的突触权值步步逼近的调节将持续下去,直到系统达到稳定状态。这时,学习过程停止。根据增量规则,在第n 时间步作用于突触权值的调节量)(n w kj ?定义如下: )()()(n x n e n w j k kj η=? 2. 基于记忆的学习 在一个简单而有效的称作最近邻规则的基于记忆的学习类型中, 局部邻域被定义为测试向量test X 的直接邻域的训练实例,特别,向量 {}N N X X X X ,,,21' ???∈ 被称作test X 的最邻近,如果 ),(),(min ' test N test i i X X d X X d = 这里,),(test i X X d 是向量i X 和test X 的欧几里德距离。与最短距离相关的类别,也 就是向量'N X 被划分的类别。 3. Hebb 学习 我们定义Hebb 突触为这样一个突触,它使用一个依赖时间的、 高度局部的和强烈交互的机制来提高突触效率为前突触和后突触活动间的相互关系的一个函数。可以得出Hebb 突触特征的4个重要机制:时间依赖机制;局部机制;交互机制;关联或相关机制。 4. 竞争学习 获胜神经元k 的输出信号k y 被置 为1;竞争失败的所有神经元 输出信号被置为0。这样,我们有 ?? ?≠>=否则对于所有如果, 0,,1k j j v v y j k k 其中,诱导局部域k v 表示结合所有达到神经元k 的前向和反馈输入的动作。 令kj w 表示连接输入节点j 到神经元k 的突触权值。假定每个神经元被分配固定 量的突触权值,权值分布在它的节点之中;也就是 k w kj j 对于所有的 ,1=∑ 然后神经元通过将突触权值从它的不活跃 输入移向活跃输入来进行学习。如果神经元对一个特定输入模式不响应,那么没有学习发生在那个神经元上。如果一个特定神经元赢得了竞争,这个神经元的每个输入节点经一定的比例释放它的突触权值,释放的权值然后平均分布到活跃输入节点上。作用于突触权值kj w 的改变量kj w ?定

概率神经网络

概率神经网络概述 令狐采学 概率神经网络(Probabilistic Neural Network ,PNN )是由D. F. Specht 在1990年提出的。主要思想是贝叶斯决策规则,即错误分类的期望风险最小,在多维输入空间内分离决策空间。它是一种基于统计原理的人工神经网络,它是以Parazen 窗口函数为激活函数的一种前馈网络模型。PNN 吸收了径向基神经网络与经典的概率密度估计原理的优点,与传统的前馈神经网络相比,在模式分类方面尤其具有较为显著的优势。 1.1 概率神经网络分类器的理论推导 由贝叶斯决策理论: w w w i j i x then i j x p x p if ∈≠?>→ →→ , )|()|( (1-1) 其中)|()()|(w w w i i i x p p x p → → = 。 一般情况下,类的概率密度函数)|(→x p w i 是未知的,用高斯核的Parzen 估计如下:

) 2exp(1 1 )|(2 2 1 2 2σ σ π→ → -∑ - = =→ x x N w ik N i k l l i i x p (1-2) 其中,→ x ik 是属于第w i 类的第k 个训练样本,l 是样本向量的维数,σ是平滑参数,N i 是第w i 类的训练样本总数。 去掉共有的元素,判别函数可简化为: ∑-=→ → → - = N ik i k i i i x x N w g p x 1 2 2 ) 2exp()()(σ (1-3) 1.2 概率神经元网络的结构模型 PNN 的结构以及各层的输入输出关系量如图1所示,共由四层组成,当进行并行处理时,能有效地进行上式的计算。 图1 概率神经网络结构 如图1所示,PNN 网络由四部分组成:输入层、样本层、求和层和竞争层。PNN 的工作过程:首先将输入向量→ x 输入到输入层,在输入层中,网络计算输入向量与训练样本向量之间

神经网络控制修订稿

神经网络控制 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量

财务管理神经网络智能决策支持系统的

价值工程 2.4筹划风险大在国际国内税收法律法规的不断完善,反避税措施不断增强,市场经济环境的变幻莫测,以及其他人为因素存在的背景下,商业银行因其收入来源复杂、纳税筹划难度大、经营结构不单一等客观因素的存在,导致商业银行的纳税筹划要比一般行业的纳税筹划具备更大的风险性,最终的纳税筹划收益可能会高于或低于先前的预期结果,企业在运用各种政策开展纳税筹划时的不确定性因素也导致风险明显增加。因此,纳税人必须要树立纳税筹划风险意识,立足于事先防范,在进行纳税筹划方案制定之前,应对影响筹划结果的所有潜在风险因素进行确认并评估,在考虑风险是否可以化解或转嫁等因素的基础上确定是否开展筹划,同时还必须考虑因纳税筹划引致的各种涉税成本,包括显性和隐性成本,只有综合筹划成本在可接受范围内时开展税务筹划才有效率。3结论 熟知商业银行纳税筹划的特性对我国银行业顺利开展纳税筹划及实施风险管理有着极其重要的作用。论文通过简述纳税筹划的含义及工作步骤,结合实际,分析了我国商业银行纳税筹划的特性,为银行业的纳税筹划实践提供了理论参考。参考文献:[1]谭成.我国商业银行全面风险评估研究[D].湖南师范大学,2009.[2]李瑞波.商业银行抵债资产税收处理及纳税筹划[J].经营管理,2009,(1).[3]刘兵.我国商业银行信用风险度量与管理研究[D].吉林大学,2008.[4]王睿,高军,吕南.中小企业所得税纳税筹划风险管理探讨[J].中国经贸导刊,2010,(7). 0引言 DSS 是80年代迅速发展起来的新型计算机科学。它是一个有 着广泛应用背景的十分热门的交叉科学。 神经网络是一个具有高度非线性的超大规模连续时间的动力系统。结合神经网络的智能决策支持系统是目前研究的前沿之一,它极具理论和使用价值。 财务管理的信息化、数字化是财务规范和科学管理的趋势。与DSS 的结合将更加有利于数据标准的统一,有利于数据采集的模块化,有利于决策支持的科学化,有利于财务公开的透明化。 1财务管理决策支持系统的研究现状决策支持系统经过二十多年的发展,形成了如图1所示公认的体系结构。它把模型并入信息系统软件中,依靠管理信息系统和运筹 学这两个基础逐步发展起来。 它为解决非结构化决策问题提供了相应的有用信息,给各级管理决策人员的工作带来了便利。 从图1可以看出决策支持系统体系结构可划分为三级,即语言系统(LS )级、问题处理系统(PPS )级和知识系统(KS )级。其中问题处理系统级包括推理机系统(RS )、模型库管理系统(MBMS )、知识库管理系统(KBMS )及数据库管理系统(DBMS )。知识系统级包括模型库(MB )、知识库(KB )及数据库(DB )。 九十年代中期,兴起了三个辅助决策技术:数据仓库(DW )、联 机分析处理(OLAP )和数据挖掘(DM )。联机分析处理是以客户/服务器的方式完成多维数据分析。数据仓库是根据决策主题的需要汇集大量的数据库,通过综合和分析得到辅助决策的信息。数据挖掘顾 名思义,是为了获得有用的数据,在大量的数据库中进行筛选。人工 智能技术建立一个智能的DSS 人机界面,可进行图、文、声、像、形等多模式交互,人机交互此时变得更为自然和谐,人们能沉浸其中,进行合作式、目标向导式的交互方法。 从目前情况来看,财务决策支持系统的研究还处于初级发展阶 段,财务数据的保密性、 特殊性决定了财务决策不能全部公开化、透明化,但随着中央及国务院相关部门财务预决算数据的公开,财务决策系统及其支持系统和过程也将随之公开,这就要求决策者充分利用财务知识和决策支持系统的知识“聪明”决策、合理决策、科学 决策、 规范决策。2财务管理神经网络智能决策支持系统总体研究框架 2.1神经网络运行机制神经网络的着眼点是采纳生物体中神经细胞网络中某些可利用的部分,来弥补计算机的不足之处,而不是单单用物理的器件去完整地复制。 第一,神经网络中的链接的结构和链接权都可以通过学习而得到,具有十分强大的学习功能;第二,神经网络所记忆的信息是一种分布式的储存方式,大多储存在神经元之间的权中;第三,神经网络部分的或局部的神经元被破坏后,仍可以继续进行其他活动,不影响全局的活动,因此说,神经网络的这种特性被称作容错性;第四,神经网络是由大量简单的神经元组成的,每个神经元虽然结构简单,但是它们组合到一起并行活动时,却能爆发出较快较强的速度来。 我们可以利用神经网络的上述特点,将之应用于模式识别、自动控制、优化计算和联想记忆、军事应用以及决策支持系统中。 2.2财务管理神经网络集成智能财务DSS 的必然性在企业经营管理、政府机构财务活动中,人们时常面临着财务决策。人们往往需要根据有关的理论及经验制定出一系列的衡量标准。这种评价是一个非常复杂的非结构化决策过程,一般都是由内行专家根据一定的专业理论凭经验和直觉在收集大量不完全、不确定信息基础上建立起多级指标体系。但在这种指标体系中,各种指标之间的关系很难明确,而且还受评价者的效用标准和主观偏好所左右。因此,很难 —————————————————————— —作者简介:严璋鹏(1968-),男,浙江宁波人,会计师,研究方向为财务管理 与核算。 财务管理神经网络智能决策支持系统的研究 Financial Management Neural Network Intelligent Decision Support System 严璋鹏Yan Zhangpeng (西安邮电学院,西安710121) (Xi'an University of Posts &Telecommunications ,Xi'an 710121,China ) 摘要:财务管理决策支持系统(简称DSS )是辅助各级决策者实现财务管理的科学决策系统。它主要通过人机交互的方式,利用大量财务数 据和众多模型来实现科学性的管理。神经网络是一种非线性复杂网络系统,它主要由许多类似于神经元的处理单元组合而成。将财务管理和神 经网络和决策支持系统结合可以实现财务系统的自适应并行联想推理及数据开采的自动化,使财务管理、 决策、执行更加科学化、规范化、智能化。Abstract:Financial management decision support system (hereinafter referred to as the DSS)is to assist decision-makers at various levels realize financial management.It achieves scientific management through mainly the man -machine interactive way and the use of a lot of financial data and numerous model.Neural network is a complicated nonlinear network system,and it mainly consists of many processing units which are similar to neuron.The combination of financial management and neural network and decision support system can realize the automation of adaptive,associating and reasoning,and data mining,and make the financial management,decision-making,and execution more scientific,standardized,and intelligent. 关键词:财务管理;神经网络;决策支持系统;专家系统Key words:financial management ;nerve network ;decision support system (DSS );expert system 中图分类号:F275 文献标识码:A 文章编号:1006-4311(2012) 03-0126-02 ·126·

基于神经网络的专家系统

基于神经网络的专家系统 摘要:人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 关键词:专家系统;神经网络;系统集成; 0 引言 专家系统(Expert System)是一种设计用来对人类专家的问题求解能力建模的计算机程序。专家系统是一个智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。一个专家系统应具有以下三个基本特征:启发性——不仅能使用逻辑性知识还能使用启发性知识;透明性——能向用户解释它们的推理过程,还能回答用户的一些问题;灵活性——系统中的知识应便于修改和扩充;推理性——系统中的知识必然是一个漫长的测试,修改和完善过程。专家系统是基于知识的系统。它由如图1所示的5个基本的部分组成[1,2,3]。 知识库存储从专家那里得到的特定领域的知识,这些知识包括逻辑性的知识和启发性知识两类。数据库用于存放专家系统运行过程中所需要和产生的信息。推理机的作用是按照一定的控制策略,根据用户提出的问题和输入的有关数据或信息,按专家的意图选择利用知识库的知识,并进行推理,以得到问题的解答,它是专家系统的核心部分。人机接口部分的功能是解释系统的结论,回答用户的问题,它是连接用户与专家系统之间的桥梁。知识的获取是为修改知识库原有的知识和扩充知识提供的手段。 1 传统专家系统存在的问题 传统专家系统是基于知识的处理的系统,将领域知识整理后形式化为一系列系统所能接受并能存储的形式,利用其进行推理实现问题的求解。尽管与人类专家相比,专家系统具有很大的优越性。但是,随着专家系统应用的日益广泛及所处理问题的难度和复杂度的不断扩大和提高,专家系统在某些方面已不能满足是实际工作中的需求,具体体现在以下一个方面[1,2]:(1)知识获取的“瓶颈”问题。(2)知识获取的“窄台阶”。(3)缺乏联想功能、推理能力弱。(4)智能水平低、更谈不上创造性的知识。(5)系统层次少。(6)实用性差。 2 神经网络与传统专家系统的集成 神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神经网络专家系统,可以取长补短。根据侧重点的不同,神经网络与专家系统的集成有三种模式[2]:(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。 (2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。 (3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

基于神经网络的高管层决策支持系统

基于神经网络的高管层决策支持系统 摘要:本文针对中国企业中常见的高管层计算机水平较低,决策经验化等现象,使用人工神经网络设计了决策支持系统,阐明了基于人工神经网络的决策可以有 效地帮助企业高管层进行科学管理。 关键词:神经网络决策支持系统 引言 随着当今社会的发展,我们正处于一个信息爆炸的时代。每天被海量信息所 包围,如何从这些信息中甄选出有用的信息,以便做出正确的决策,这几乎是每 一个企业的高层管理者所关心的问题。随着信息技术的发展,决策支持系统的出现,管理者可以使用决策支持系统处理大量信息而不必为冗余信息所干扰,这样 就大大提高了决策的科学性与准确性。 1 基础理论概述 1.1 决策支持系统概述决策支持系统(Decision Support System,简称DSS)是辅 助决策者通过数据、模型和知识,以人机交互方式进行半结构化或非结构化决策 的计算机应用系统,它为决策者提供分析问题、建立模型、模拟决策过程和方案 的环境,调用各种信息资源和分析工具,帮助决策者提高决策水平和质量。 决策支持系统的核心是数据库和模型库,一个典型的数据支持系统还包括对 话管理器。管理者和决策者可以根据存储在数据库中的大量数据进行定性分析, 并借助模型库进行定量分析。 1.2 神经网络概述神经网络(Neuronic Network)一种模仿动物神经网络行为 特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。从概念 上讲,神经网络包含三个层次的虚拟神经元,一个是输入层,一个是输出层,在 它们中间的是隐藏层,当然可能有多个隐藏层。神经网路的有点有:①学习,并根据新环境自行调整;②进行大量的并行处理;③可以在信息不完整或信息结 构不够良好的情况下工作;④可以大量处理变量间有依赖关系的信息;⑤分析 信息的非线性关系,又称曲线回归分析。 2 系统仿真及应用 2.1 仿真实现用户由终端输入数据,数据会根据事先预设的判断条件判断数 据是否合法,如果数据非法,为了系统安全(如保证企业机密不会泄露),系统 会报告数据错误,之后推出程序;而对于合法数据,则可以存储到数据库当中。 对于存储到数据库中的数据,则可以结合其它情况进行调用判断,如果条件 不够充分,系统就会显示无法调用;如果条件允许,则调用决策支持系统。而使 用决策支持系统帮助决策这项工作则是通过神经网络算法对存储的数据进行处理 完成的。这些数据主要是企业的经营状况指标,而神经网络模型会事先接受训练,学会根据这些指标判断企业的经营状况是否良好,发展的潜力有多大等等。形化 的形式输出处理的结果。 2.2 管理层应用在实际应用中,公司的高管层可以根据本公司的实际情况设 置训练条件,这些情况包括公司的经营状况、发展前景以及管理者自身的水平等。例如,管理人员可以将公司的财务数据输入系统,或是将同行业的其它公司的数 据输入系统,经过训练的系统会自动输出公司的财务分析评价报告,或者是行业 对比报告,有助于决策者的判断,尤其是对于一些关键问题,例如企业是否盈利、企业经营概况是否良好、企业出现问题能否及时发现并应对、企业今后的发展趋

神经网络模型应用实例

BP 神经网络模型 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann 等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart 等人提出了误差反向传递学习算法(即BP 算),实现了Minsky 的多层网络设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11 )(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。 社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点j 的输入为net jk = ∑i ik ij O W 并将误差函数定义为∑=-=N k k k y y E 12 )(21

人工神经网络评价法

人工神经网络评价法 第一节思想和原理 在当今社会,面临许许多多的选择或决策问题。人们通过分析各种影响因素,建立相应的数学模型,通过求解最优解来得到最佳方案。由于数学模型有较强的条件限制,导致得出的最佳方案与现实有较大误差。只有重新对各种因素进行分析,重新建立模型,这样存在许多重复的工作,而且以前的一些经验性的知识不能得到充分利用。为了解决这些问题,人们提出模拟人脑的神经网络工作原理,建立能够“学习”的模型,并能将经验性知识积累和充分利用,从而使求出的最佳解与实际值之间的误差最小化。通常把这种解决问题的方法称之为人工神经网络(Artificial Neural Network)。 人工神经网络主要是由大量与自然神经细胞类似的人工神经元互联而成的网络。各种实验与研究表明:人类的大脑中存在着由巨量神经元细胞结合而成的神经网络,而且神经元之间以某种形式相互联系。人工神经网络的工作原理大致模拟人脑的工作原理,它主要根据所提供的数据,通过学习和训练,找出输入与输出之间的内在联系,从而求取问题的解。人工神经网络反映了人脑功能的基本特性,但并不是生物神经系统的逼真描述,只是一定层次和程度上的模仿和简化。强调大量神经元之间的协同作用和通过学习的方法解决问题是人工神经网络的重要特征。 人工神经网络是模仿生物神经网络功能的一种经验模型,首先根据输入的信息建立神经元,通过学习规则或自组织等过程建立相应的非线性数学模型,并不断进行修正,使输出结果与实际值之间差距不断缩小。人工神经网络通过样本的“学习和培训”,可记忆客观事物在空间、时间方面比较复杂的关系,它能够把问题的特征反映在神经元之间相互联系的权值中,所以,把实际问题特征参数输入后,神经网络输出端就能给出解决问题的结果。 神经网络的特点是,神经网络将信息或知识分布储存在大量的神经元或整个系统中。它具有全息联想的特征,具有高速运算的能力,具有很强的适应能力,具有自学习、自组织的潜力。另外,它有较强的容错能力,能够处理那些有噪声或不完全的数据。 基于人工神经网络的多指标综合评价方法通过神经网络的自学习、自适应能力和强容错性,建立更加接近人类思维模式的定性和定量相结合的综合评价模型。训练好的神经网络把专家的评价思想以连接权的方式赋予于网络上,这样该网络不仅可以模拟专家进行定量评价,而且避免了评价过程中的人为失误。由于模型的权值是通过实例学习得到的,这就避免了人为计取权重和相关系数的主观影响和不确定性。 反向传播(Back Propagation, BP)神经网络是由Rumelhart等人于1985年提出,它是一种多层次反馈型网络。基于BP人工神经网络的综合评价方法具有运算速度快、问题求解效率高、自学习能力强、适应面宽等优点,较好地模拟了评价专家进行综合评价的过程,因而具有广阔的应用前景。 第二节模型和步骤 一、模型介绍 人工神经网络是对生物神经机制研究基础上产生的智能仿生模型。处理单元,或称之为神经元,是神经网络的最基本的组成部分。一个神经网络系统中有许多处理单元,每个处理单元的具体操作都是从其相邻的其他单元中接受输入,然后产生输出送到与其相邻的单元中去。

神经网络的应用及其发展

神经网络的应用及其发展 来源:辽宁工程技术大学作者:苗爱冬 [摘要] 该文介绍了神经网络的发展、优点及其应用和发展动向,着重论述了神经网络目前的几个研究热点,即神经网络与遗传算法、灰色系统、专家系统、模糊控制、小波分析的结合。 [关键词]遗传算法灰色系统专家系统模糊控制小波分析 一、前言 神经网络最早的研究20世纪40年代心理学家Mcculloch和数学家Pitts 合作提出的,他们提出的MP模型拉开了神经网络研究的序幕。神经网络的发展大致经过三个阶段:1947~1969年为初期,在这期间科学家们提出了许多神经元模型和学习规则,如MP模型、HEBB学习规则和感知器等;1970~1986年为过渡期,这个期间神经网络研究经过了一个低潮,继续发展。在此期间,科学家们做了大量的工作,如Hopfield教授对网络引入能量函数的概念,给出了网络的稳定性判据,提出了用于联想记忆和优化计算的途径。1984年,Hiton教授提出Boltzman机模型。1986年Kumelhart等人提出误差反向传播神经网络,简称BP 网络。目前,BP网络已成为广泛使用的网络;1987年至今为发展期,在此期间,神经网络受到国际重视,各个国家都展开研究,形成神经网络发展的另一个高潮。神经网络具有以下优点: (1) 具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。 (2) 并行处理方法,使得计算快速。 (3) 自学习、自组织、自适应性,使得网络可以处理不确定或不知道的系统。 (4) 可以充分逼近任意复杂的非线性关系。 (5) 具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系,适用于多信息融合和多媒体技术。 二、神经网络应用现状 神经网络以其独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: (1) 图像处理。对图像进行边缘监测、图像分割、图像压缩和图像恢复。 (2) 信号处理。能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。 (3) 模式识别。已成功应用于手写字符、汽车牌照、指纹和声音识别,还可用于目标的自动识别和定位、机器人传感器的图像识别以及地震信号的鉴别等。 (4) 机器人控制。对机器人眼手系统位置进行协调控制,用于机械手的故障诊断及排除、智能自适应移动机器人的导航。 (5) 卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。 (6) 焊接领域。国内外在参数选择、质量检验、质量预测和实时控制方面都

基于神经网络专家系统的研究与应用

摘要 现代化的建设需要信息技术的支持,专家系统是一种智能化的信息技术,它的应用改变了过去社会各领域生产基层领导者决策的盲目性和主观性,缓解了我国各领域技术推广人员不足的矛盾,促进了社会的持续发展。但传统专家系统只能处理显性的表面的知识,存在推理能力弱,智能水平低等缺点,所以本文引入了神经网络技术来克服传统专家系统的不足,来试图解决专家系统中存在的关系复杂、边界模糊等难于用规则或数学模型严格描述的问题。本文采用神经网络进行大部分的知识获取及推理功能,将网络输出结果转换成专家系统推理机能接受的形式,由专家系统的推理机得到问题的最后结果。最后,根据论文中的理论建造了棉铃虫害预测的专家系统,能够准确预测棉铃虫的发病程度,并能给用户提出防治建议及措施。有力地说明了本论文中所建造的专家系统在一定程度上解决了传统专家系统在知识获取上的“瓶颈”问题,实现了神经网络的并行推理,神经网络在专家系统中的应用具有较好的发展前景。 关键词神经网络专家系统推理机面向对象知识获取

Abstract Modern construction needs the support of IT, expert system is the IT of a kind of intelligence, its application has changed past social each field production subjectivity and the blindness of grass-roots leader decision-making, have alleviated the contradiction that each field technical popularization of our country has insufficient people, the continued development that has promoted society. But traditional expert system can only handle the surface of dominance knowledge, existence has weak inference ability, intelligent level is low, so this paper has led into artificial neural network technology to surmount the deficiency of traditional expert system, attempt the relation that solution has in expert system complex, boundary is fuzzy etc. are hard to describe strictly with regular or mathematics model. This paper carries out the most of knowledge with neural network to get and infer function , changes network output as a result into expert system, inference function the form of accepting , the inference machine from expert system gets the final result of problem. Finally, have built the expert system of the cotton bell forecast of insect pest according to the theory in this thesis, can accurate forecast cotton bell insect become sick degree, and can make prevention suggestion and measure to user. Have proved on certain degree the expert system built using this tool have solved traditional expert system in knowledge the problem of " bottleneck " that gotten , the parallel inference that has realized neural network, Neural network in expert system application has the better prospect for development. Key words Neural network Expert system Reasoning engine Object-orientation Knowledge acquisition

相关文档
最新文档