RMXPRT&maxwell&simplorer联合仿真——实例

RMXPRT&maxwell&simplorer联合仿真——实例
RMXPRT&maxwell&simplorer联合仿真——实例

题目: RMXPRT / MAXWELL和SIMPLORER的联合仿真

作者: ENZO

软件:MAXWELL 11.1.1 , SIMPLORER 7.05

1. 建立RMXPRT模型

电机为4极9槽稀土永磁无刷电机,这里不讨论电机的实际设计,所以具体参数不列出了,只当作操作步骤演示。

2. 设置好电机的各项参数后,计算电机的性能,得到电机的特性参数,后面将对RMXPRT 的数据和SIMPLORER的数据做比较,所以这里列出了电机的力矩和电流曲线。

力矩-转速曲线

电流-转速曲线

请注意6000RPM时的力矩和电流数值,分别为124mNm , 4.18A. 请注意在这个例子里设置了限流值5.0A ,后面SIMPLORER里同样有这个设置。

3. 输出RMXPRT的SIMPLORER模型,步骤见下图

4. 到这里RMXPRT的操作就结束了,输出的模型A相绕组的中心对准磁极的中心. 这个很重要,在RMXPRT中,对准是自动进行的,在MAXWELL里就要使用者自己来做。

5. 在SIMPLORER中导入前面建立的RMXPRT模型,

6. 将上图中的RMX-LINK图标拖到SIMPLORER SCHEMATIC的窗口中,双击图标

电机IMPORT MODEL, 在路径中指定RMXPRT 的SIMPLORER模型的路径,这样,电机的SIMPLORER 模型就导入了, RMX-LINK图标变成了电机的实际外形。下面是逆变器模型。

7. 逆变器用MOSFET构成,这里为了简化, MOSFET用了系统级的元件模型。

8. MOSFET 驱动电路

这个驱动实际上就是将电机的3相绕组导通的时序规律用SIMPLORER的模块表示出来。1相的信号由正脉冲和负脉冲合成而成。

SIMPLORER提供的构成驱动的方法多种多样,大家可以尝试不同的方式。

9. 添加限流电路

这个是电流滞环控制,电流设置值与RMXPRT里的相同。

设置电机的运行速度为6000RPM.

10. 到这里,联合仿真的模型完全建立了。因为RMXPRT是磁路法的计算软件,所以联合仿真的过程只有几秒钟就结束了。为了了解可能发生的设置错误,先看看MOSFET的开关信号是否正常。

A相MOSFET开关信号

这个开关信号正常。

11. 仿真结果

相电流

电机电流

电机电流4.76A.

力矩

力矩平均值为127mNm.

到这里, RMXPRT和SIMPLORER的联合仿真就完成了。下面是MAXWELL 和SIMPLORER的仿真实例。

12.建立MAXWELL 模型

在RMXPRT中执行EXPORT命令,生成MAXWELL 模型,步骤为:

RMXPRT? ANALYSIS SETUP? EXPORT? MAXWELL 2D MODEL?指定模型文件地址

导入后的MAXWELL项目文件

13.材料属性设置

材料属性按实际情况设置,这里为了和RMXPRT比较,设置得和RM一样就行了。MAXWELL还需要特别设置CORE LOSS ,用材料的实际值就可以。

14.转子和定子对齐

前面讲过,转子磁钢中心要和绕组中心对齐,这样便于设置激励的时序,在这个例子中,转子被逆时针转动了70度。

15.外电路设置

导入的RMXPRT模型其绕组物体名称已经设置好了,我们要做的就是将绕组的极性和连接方式告诉MAXWELL, 设置每相33匝,每相3个线圈,每相电阻0.15欧姆,漏感1E-5 H.

16.边界条件设置

在定子的边缘设置矢量势A = 0 边界

17.设置网格, BAND, 机械特性,

为了简化起见,本例使用初始网格。设置BAND物体为BAND. 因为后面将要进行联合仿真,运动设置会被SIMPLORER的设置所覆盖,同时因为是匀速运动,所以转动惯量是不用设定的。如果是模拟启动过程,可以将RMXPRT计算出的转动惯量填入。

18.设置USE CONTROL PROGRAM, 受 TDSLINK_TCP.EXE控制。

同时设置电机长度为30毫米,设置步长和模拟时间。

19.导入MAXWELL模型到SIMPLORER

MODELAGENT? ADD ON ? INTERFACES ? FEA LINK

将FEA LINK 图标拖入SIMPLORER SCHEMATIC 窗口,然后双击图标,点击QUERY, 如果模型设置正确,可以仿真,就会是蓝色的,反之,则是红色。

20.因为MAXWELL 模型和RMXPRT模型是同一个电机的模型,所以SIMPLORER的

外电路是相同的,只要将MAXWELL 模型替换RMXPRT模型就可以了。

21.设置SIMPLORER仿真参数, 这个没什么好说的,按实际情况设置。

22.设置电机转速6000RPM, CCW 方向。电机的转速由V_ROTB1控制,这是一个角速

度设置模块。

将每相电阻,漏感全部设置好。

23.外电路设置和RMXPRT 一样,不多说了。

24.仿真结果

相电流

电机电流

电流4.73A. 力矩

力矩113mNm.

铁耗

铁耗平均4.6W .

FLUX LINKAGE

仿真时间约为一小时。

MAXWELL+SIMPLORER的电流较RMXPRT+SIMPLORER 很接近,因为MAXWELL使用了RMXPRT的电阻数据。力矩则有12%的差异,原因可能是2D的MAXWELL没有考虑端部的贡献。

结束了,欢迎大家讨论。

作者: ENZO 20090107

斯沃数控仿真广数车床操作和编程

斯沃数控仿真广数车床操作和编程

目录 第一章斯沃数控仿真软件概述 (2) 1.1 斯沃数控仿真软件简介 (2) 1.2 斯沃数控仿真软件的功能 (2) 1.2.1 控制器 (2) 1.2.2功能介绍 (3) 第二章斯沃数控仿真软件操作 (5) 2.1 软件启动界面 (5) 2.1.1 试用版启动界面 (5) 2.1.2网络版启动界面 (8) 2.1.3单机版启动界面 (8) 2.2 工具条和菜单的配置 (9) 2.3 文件管理菜单 (9) 2.3.1机床参数 (13) 2.3.2刀具管理 (13) 2.3.3工件参数及附件 (15) 2.3.4快速模拟加工 (18) 2.3.5工件测量 (18) 2.3.6录制参数设置 (19) 2.3.7警告信息 (19) 第三章GSK980T操作 (23) 3.1 GSK980T机床面板操作 (23) 3.2 GSK980T数控系统操作 (25) 3.2.1 按键介绍 (26) 3.2.2 手动操作虚拟数控车床 (28) 第四章GSK980T车床编程 (41) 4.1坐标系统 (41) 4.2G代码命令 (41) 4.2.1G代码组及含义 (42) 4.2.2 G代码解释 (42) 4.3辅助功能(M功能) (57) 4.4例题 (58)

第一章斯沃数控仿真软件概述 1.1 斯沃数控仿真软件简介 南京斯沃软件技术有限公司开发FANUC、SINUMERIK、MITSUBISHI、广州数控GSK、华中世纪星HNC、北京凯恩帝KND、大连大森DASEN数控车铣及加工中心仿真软件,是结合机床厂家实际加工制造经验与高校教学训练一体所开发的。通过该软件可以使学生达到实物操作训练的目的,又可大大减少昂贵的设备投入。 斯沃数控仿真软件具有FANUC、SINUMERIK、MITSUBISHI、广州数控GSK、华中世纪星HNC、北京凯恩帝KND系统、大连大森DASEN编程和加工功能,学生通过在PC机上操作该软件,能在很短时间内掌握各系统数控车、数控铣及加工中心的操作,可手动编程或读入CAM数控程序加工,教师通过网络教学,可随时获得学生当前操作信息,根据学生掌握的情况进行教育,既节省了成本和时间,从而提高学生的实际操作水平。 1.2 斯沃数控仿真软件的功能 1.2.1 控制器 1.实现屏幕配置且所有的功能与FANUC工业系统使用的CNC数控机床一样。 2.实时地解释NC代码并编辑机床进给命令。 3.提供与真正的数控机床类似的操作面板。 4.单程序块操作,自动操作,编辑方式,空运行等功能。 5.移动速率调整, 单位毫米脉冲转换开关等。

Tracepro入门与进阶1-40

Tracepro 入门与进阶
CYQ DESIGN STUDIO
1

Tracepro 入门与进阶
CYQ DESIGN STUDIO
内 容 简 介
本书以美国 Lambda Research Corporation 的最新 3.24 版本为蓝本进行编写, 内容涵盖了 tracepro3.24 光学仿真设计的概念、tracepro 软件的配置和用户定制、光 学元件模型的创建、描光、分析等内容。 本书章节的安排次序采用由浅入深,前后呼应的教学原则,在内容安排上,为方 便读者更快、更深入地理解 tracepro 软件中的一些相关概念、命令和功能,并对运用 该软件进行光学仿真设计的过程有一个全局的了解,本书中介绍了单片 LCD 投影机 的仿真设计全过程,同时在本书的最后一章详细介绍了背光源等光学仿真设计过程, 增强了本书的可读性和实用性,摆脱单个概念、命令、功能的枯燥讲解和介绍。 本书可作为光学专业人员的自学教程和参考书籍, 也可作为大专院校光学、 光电专业 的学生学习 tracepro 的使用教材。
2

Tracepro 入门与进阶
CYQ DESIGN STUDIO


Tracepro 是一套可以做照明光学系统分析、传统光学分析,辐射度以及光度分析 的软件, 它也是第一套由符合工业标准的 ACIS 立体模型绘图软件发展出来的光机软 件。 功能强大的 Tracepro 减轻了光学设计人员的劳动强度,节约了大量的人力资源, 缩短了设计周期,还可以开发出更多质量更高的光学产品。但目前 Tracepro 学习教 程甚少, 不少初学者苦于无参考学习资料而举步为艰。 本人根据从事光学设计的经验 与运用 Tracepro 的体会,汇集成书,目的是使 Tracepro 的初学人员能快速入门,快 速见效,使已入门者能进一步提高 Tracepro 的应用水平和操作能力,从而在工作中 发挥更大的效益,为中国的光学事业作出贡献! 本书乃仓促而成,虽然几经校对,但错误之处在所难免,恳请广大读者朋友予以 指正,不甚感谢! 电子邮箱: cyqdesign@https://www.360docs.net/doc/c14322565.html,
陈涌泉 2004 年 12 月 4 日
3

基于COMSOL的声悬浮模拟仿真

基于COMSOL的声悬浮模拟仿真 发表时间:2018-11-15T11:43:16.157Z 来源:《科技新时代》2018年9期作者:卜艺浦 [导读] 本文主要研究超声悬浮中液滴的悬浮情况,利用COMSOL有限元分析软件建立超声悬浮仪器的物理模型 江苏省泰兴中学江苏泰兴 225400 摘要:本文主要研究超声悬浮中液滴的悬浮情况,利用COMSOL有限元分析软件建立超声悬浮仪器的物理模型,模拟驻波悬浮的声场,从而得到声压与声压级的分布频域。通过改变悬浮液滴的形状和尺寸,发现声压分布随着液滴参数的变化而发生相应的改变。通过研究液滴并对这些液滴在声场中的声压分布进行分析,最终得出液滴在驻波场中稳定悬浮所需的条件。 关键词:声悬浮;声压;声辐射力;液滴;COMSOL有限元分析软件 1. 引言 超声悬浮是实现无容器环境的一种方便快捷的技术,无容器环境对于材料、生化分析和样品制备非常重要,因为它避免了样品与容器壁的接触,从而隔绝了众多污染源。相较于其他类型的悬浮,声悬浮具有很多方面的优势。与磁悬浮和电悬浮相比,声悬浮技术对样品是否带电或是否具有磁性没有要求,也不会使样品产生热效应;对比光悬浮,声悬浮不必特意使用特定材质样品,比如石墨烯等,也能产生较大的悬浮力;声悬浮也比气流悬浮技术更稳定可控。另外,声悬浮可广泛应用于蛋白质结晶、液态合金深过冷快速凝固研究、液滴动力学、微剂量生化研究,以及胶体液滴的干燥等领域[1]。 超声悬浮一般分为有两种,一种为超声近场悬浮[2],另一种是驻波悬浮[3]。所谓近场悬浮,就是依靠物体下方发射器发射高频声场产生声辐射力与物体自身重力平衡使物体悬浮,这种悬浮方式多应用于无接触条件下移动物体的研究。驻波悬浮仪器一般由超声波发射器、换能器、变幅杆、发射端、反射端、石英管及调谐机构组成,在发射端与反射端之间形成驻波场,从而产生声辐射力使物体悬浮。所谓驻波,就是指振幅相同、传输方向相反的两个波共同形成的波,也就会有两个方向相反的压强,对其中的物体产生方向相反的两个力。一般地,两个声波产生的声压相抵消,和压为0的位置称为波节点,悬浮样品在波节点处受到声辐射力与重力相抵消而稳定悬浮。声悬浮仪器产生的声驻波就是这样与物体相互作用,同时水平方向的声辐射力作为定位力把悬浮物固定悬浮于驻波场的波节点处。驻波产生的声辐射力与(R/λ)3成正比,行波与(R/λ)6成正比,其中R表示物体尺寸,λ表示波长,声悬浮一般要求物体尺寸远小于半波长,因此驻波产生的力比行波大得多[4]。 目前声悬浮技术只能悬浮一些体型质量较小的样品,不能悬浮体型质量较大的物体,这也就造成实验应用的局限性,无法应用于大物体或大剂量的实验。尽管近场悬浮技术有望能在目标质量与尺寸的限制上有所突破,但其技术还不够完善。驻波悬浮技术,相较于近场悬浮,已经是比较成熟的声悬浮技术,能够悬浮密度最大的元素铱并已经在生物医学等领域得到应用[5]。 另外,液滴是自然界中常见的流体单元,可以作为研究对象或实验载体。在生物化学反应中,液滴可作为微反应溶器或是微生物的培养基;在工业应用中,液滴性质影响着液态合金的深过冷快速凝固。换言之,液滴的力学行为对实际应用产生重大影响。为了分析液滴在无容器环境中的力学行为,本文利用COMSOL有限元分析软件对液滴在声场中进行模拟实验,并进行了相关理论分析和总结。 2. 声悬浮对液滴形态的影响 2.1 COMSOL模拟计算方法 COMSOL有限元分析软件是可以分析耦合物理场的软件。利用COMSOL有限元分析软件的模拟仿真,可以更加直观的观察到一些物理现象,更加方便地得到相关的实验数据,并随时作出参数的调整。利用其进行仿真模拟,能为现实中的实验提供理论数据依据。该软件模拟研究声悬浮技术,由一个声波发射传感器和弧型反射面构成,需要设定一些必要的参数,比如声场频率f0,发射端与反射端的距离H,发射器宽度Dr等(见表1),建立声悬浮模型(如图1)。通过网格构建划分,以有限元分析法便可以计算出驻波场的声压分布,悬浮样品

浅谈斯沃数控仿真软件在数控教学中的应用

中等职业学校专业骨干教师国家级培训 文章题目: 浅谈数控仿真软件在数控教学中的应用 姓名: 李小军 所在省市: 安徽省合肥市 所在单位: 安徽肥西花岗职业高级中学

浅谈数控仿真软件在数控教学中的应用(南京斯沃数控仿真软件) 摘要:数控加工仿真是利用计算机来模拟实际的加工过程,是验证数控加工程序正确性和切削过程的有力工具。随着数控加在机械制造业中的广泛应用,数控操作者的大量培训便成为迫切的问题。各职业技术学校紧扣市场需求,大力发展数控加工专业。为了缓解学生多、数控设备少的矛盾.很多职业学校利用仿真加工软件进行数控加工的编程和操作训练.这样不仅可迅速提高操作者的素质,而且安全可靠、费用低。另外应用数控加工模拟仿真软件,可以激发学生学习数控的积极性,来提高教学效果和实训效果,解决了实训中存在的一些问题。使实践教学达到事半功倍的效果。 关键词:数控技术;数控编程操作;仿真软件;数控实训 引言 随着现代技术的飞速发展,数控技术已经成为衡量制造业发展水平的重要标志之一,也是衡量一个国家综合国力的重要标志,是现代机械制造业的核心技术。由于数控技术在机械制造业中的重要性,国内一些高、中职院校陆续在机械专业开设了数控课程。但由于教学条件的限制,许多学校只能传授理论知识,而不能将理论付诸于实践。既不能培养学生的实际应用能力如数控编程能力、数控机床的操作能力及系统的维护能力,也不能培养学生数控技术的开发能力。这样培养出来的学生毕业后走上工作岗位不能很快地在数控技术的应用与开发方面独当一面。 数控机床科技含量高,品种繁多、价格较高,一台数控车床通常需十来万,数控铣床则一般需二三十万,而一台数控加工中心价格更高,少则几十万多则几百万。作为中职学校,就一个班五十人来说,则至少需投入同种机床10几台,才能展开正常的实训教学工作,所以投入至少上百万,同时数控机床的实训消耗多,成本高,比如刀具、工件材料的消耗,每生少则也需好几十元。所以数控机床的操作训练若完全依赖数控机床进行实作训练,即使是实力雄厚的培训院校和企业既无必要也无力承担起此种消耗与投入。因此探索一种新的数控加

电力系统远动课程设计

新能源与动力工程学院课程设计报告 远程监控技术课程设计 专业电力工程与管理 班级电力1201 姓名周勇 学号201211321 指导教师王书平 2015年7月

兰州交通大学新能源与动力工程学院课程设计任务书 课程名称:远程监控技术课程设计指导教师(签名): 班级:电力工程与管理1201 姓名:周勇学号:201211321 一、课程设计题目 电力系统远动变电站综合自动化的设计。 二、课程设计使用的原始资料(数据)及设计技术要求: 初步掌握变电站监控设计步骤和方法;了解变电站监控系统的整体构成。 三、课程设计的目的 主要目的是通过该课程设计使学生了解变电站监控系统的整体构成及关 键性技术,进一步巩固所学知识并能够合理利用。 四、课程设计的主要内容和要求(包括原始数据、技术参数、设计要求、工作量要求等) 1. 主要设计原则和主要设计标准; 2. 根据原始资料确定系统应实现的功能,包括调度中心及RTU应实现的功能。 3. 变电站监控系统的系统构成及配置; 4. 调度中心:系统构成、系统网络结构、软硬件配置等; 五、工作进度安排 7月 9 日熟悉课程设计内容及要求制定方案。 7月10日设计电路及软件测试。 7月11日采购数字电压表组件按照设计电路进行焊接。 7月12日产品整理并完成设计报告及答辩。 六、主要参考文献 [1] 柳永智,刘晓川主编.电力系统远动中国电力出版社,2006年7月。 [2]刘功,合肥供电公司,变电站综合自动化系统的发展。 审核批准意见 系主任(签字)年月日

指导教师评语及成绩指 导 教 师 评 语 成绩设计过程 (40) 设计报告 (50) 小组答辩 (10) 总成绩 (100) 指导教师签字: 年月

基于comsol的悬臂梁形变实验报告

基于comsol4.2的悬臂梁形变仿真 参考文献:Becker,A.A.,Background to Finite Element Analysis of Geometric Non-linearity Benchmarks,NAFEMS,Ref: -R0065,Glasgow. 一、创建工程 1、选择空间维度:二维。如图一 图一 2、增加物理场:结构力学—>固体力学(solid)。如图二 图二

3、选择求解类型:稳态。如图三 图三 4、点击“完成”,按钮位于“模型向导”栏右上角的符号。 二、创建几何模型 1、单击“几何”,将“长度单位”改为um。如图四 图四

2、右键“几何”,选择“矩形”,设置矩形参数如图五,并单击设定栏右上角的“创建选定”,生成图形。 图五 三、设定材料参数 右键“材料”,选择“材料”,几何是实体选择如图六。在材料目录中添加材料的杨氏模量、泊松比、密度,具体参数如图七。 图六

图七 四、设置边界约束 1、单击“固体力学”,在厚度中输入“10e-6”,如图八。 图八 2、右键“固体力学”,选择“固定约束”,添加边界选择:1,如图九。 图九

3、右键“固体力学”,选择“边界载荷”,添加边界选择:4,将力—>载荷中,X和Y方向的力分别改为:-3.844e6/0.1*load_para和-3.844e3/0.1如图十。 图十 五、划分网格 右键网格,选择“自由剖分三角形网格”,在设定栏右上角点击“创建所有”,如图十一。 图十一

六、设置求解约束 1、打开“求解”下拉菜单,右键“求解器配置”,选择“缺省求解器”,如图十二。 图十二 2、点击“稳态求解器”,将“相对容差”改为:1e-6,如图十三。 图十三 3、右键“稳态求解器”,选择“参数的”,在设定栏输入参数名称:load_para和参数值:range(0,0.01,1),如图十四

COMSOL-Multiphysics仿真步骤

COMSOL Multiphysics仿真步骤 1算例介绍 一电磁铁模型截面及几何尺寸如图1所示,铁芯为软铁,磁化曲线(B-H)曲线如图2所示,励磁电流密度J=250 A/cm2。现需分析磁铁内的磁场分布。 图1电磁铁模型截面图(单位cm) 图2铁芯磁化曲线 2 COMSOL Multiphysics仿真步骤 根据磁场计算原理,结合算例特点,在COMSOL Multiphysics中实现仿真。 (1) 设定物理场 COMSOL Multiphysics 4.0以上的版本中,在AC/DC模块下自定义有8种应用模式,分别为:静电场(es)、电流(es)、电流-壳(ecs)、磁场(mf)、磁场和电场(mef)、带电粒子追踪(cpt)、电路(cir)、磁场-无电流(mfnc)。其中,“磁场(mef)”是以磁矢势A作为因变量,可应用于: ①已知电流分布的DC线圈; ②电流趋于表面的高频AC线圈;

③任意时变电流下的电场和磁场分布; 根据所要解决的问题的特点——分析磁铁在线圈通电情况下的电磁场分布,选择2维“磁场(mf)”应用模式,稳态求解类型。 (2) 建立几何模型 根据图1,在COMSOL Multiphysics中建立等比例的几何模型,如图3所示。 图3几何模型 有限元仿真是针对封闭区域,因此在磁铁外添加空气域,包围磁铁。 由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即 (21) 式中,L为空气外边界。 (3) 设置分析条件 ①材料属性 本算例中涉及到的材料有空气和磁铁,在软件自带的材料库中选取Air和Soft Iron。 对于磁铁的B-H曲线,在该节点下将已定义的离散B-H曲线表单导入其中即可。 ②边界条件 由于磁铁的磁导率,因此空气域的外轮廓线可以理想地认为与磁场线迹线重合,并设为磁位的参考点,即 (21) 式中,L为空气外边界。 为引入磁铁的B-H曲线,除在材料属性节点下导入B-H表单之外,还需在“磁场(mef)”节点下选择“安培定律”,域为“2”,即磁铁区域,在“磁场 > 本构关系”处将本构关系选择为“H-B曲线”。此时,即表示将材料性质表达为磁通密度B的函数,也符合以磁矢势A作为因变量时的表达,从而避免在本构关系中定义循环变量。设置窗口如下图所示。

LED(Tracepro官方LED建模光学仿真设计教程)

Requirements Models: None Properties: None Editions: TracePro LC, Standard and Expert Introduction In this example you will build a source model for a Siemens LWT676 surface mount LED based on the manufacturer’s data sheet. The dimensions will be used to build a solid model and the source output will be defined to match the LED photometric curve. Copyright ? 2013 Lambda Research Corporation.

Create a Thin Sheet First analyze the package to determine the best method of constructing the geometry in TracePro. The symmetry of the package suggests starting from a Thin Sheet and extruding the top and bottom halves with a small draft angle. Construct Thin Sheet in the XY plane. 1. Start TracePro 2. Select View|Profiles|XY or click the View XY button on the toolbar, and switch to silhouette mode, View|Silhouette. 3. Select Insert|Primitive Solid and select the Thin Sheet tab. 4. Enter the four corners of the Thin Sheet in mm in the dialog box, as shown below, and click Insert. 5. Click the Zoom All button or select View|Zoom|All to see the new object.

远动课程设计

电力系统监控技术课程设计 题目:牵引供电系统的遥信数据采集系统 班级:电气084班 姓名:戚懋 学号:200809320 指导教师:李亚宁 设计时间:2012年3月10日 评语: 成绩

1 设计原始资料 1.1 具体题目说明 远动系统的核心是SCADA系统,即数据采集与监视控制系统。在电力系统中,远动系统应用最为广泛,技术发展也最为成熟。针对图1.1提供的开闭所主接线电路图,进行远动系统模块的设计,设计出牵引供电系统的遥信数据采集系统。 图1.1 纽结型开闭所主接线电路图 1.2 要完成的内容 (1) 计算机绘制开闭所通用系统结构框图; (2) 设计一个具体的MCS-51单片机数据采集最小系统,开关量输入数据,路数为16路,开关量输入数据类型为各断路器、隔离开关的状态信息; (3) 选用问答式传输规约,以16路开关量为例,编写上传调度中心的遥信数据报文的帧结构; (4) 计算机绘制相应的遥信数据采集程序流程图。

2 硬件设计 2.1 各开关原件及数据采集点编号 2.1.1 各开关元件编号 如图2.1所示,对纽结型开闭所主接线电路中的开关元件进行编号,其中QS1—QS10为隔离开关编号,QF1—QF6为断路器编号。 TV1TV2 TV3TV4 QS1 QS4 QF1 QF2 QF3 QF4 QF5 QF6 QS3 QS6 QS2 QS7 QS8 QS9 QS5 QS10 TA1 TA2 TA3 TA4 TA5 TA7 TA6 TA8 TA9 TA10 TA11 TA12 图2.1 各开关元件编号图 2.1.2 数据采集点定义 根据图2.1中各开关元件的编号,对需要进行数据采集的开关元件进行十六制定义,数据定义如表2.1所示。

车床对刀详细图解与手动编程-斯沃数控仿真软件

,FANUC OiT为车床,FANUC OiM为铣床。 右下方面板, 一、基础设置: 1、机床开关,程序保护,1行5 (第一行第5个按钮)归零,点X轴归零,Z 轴归零,右上面板出现 2、最上面的命令栏:机床操作,机床参数,设为前置刀架,四方刀架。 机床操作,刀具管理,或左边命令栏的图标,选中编号001,添加到刀盘,1号刀位。 如果再装一把刀,则需把刀架转过一个角度。JOG手动进给(1行6),再点(1行10) 3、上面第二行命令栏,可以显示机床,显示切削液,显示刀架,显示刀号。

二、开始对刀: 1、第二行命令栏,切换为二维显示, MDI手动输入方式(1行3),点右上角操作面板的程序,左边界面窗口,点MDI下面的按键, ,输入MO3S500,(M03为主轴正转,转速S为500r/min),回车换行,得到,插入 (点,可选择上下指令。输错编程字母就取消,删除,替换,选择 上下字母。) 2、回到右下面板。循环启动(5行2),JOG手动进给(1行6),点,再点 和,使车刀Z方向靠近工件;点,使车刀X方向靠近工件。如果觉得速度太慢,可点快速进给。 3、微调。点击右上面板,切换到坐标方式。回到右下面板,(1行8)手轮进给。 再点击机床界面左上角,,打开手轮界面,方向指向Z,倍率为X100。慢慢接近工件,观察右上面板的坐标,直到大概越过右端面0.5到1mm。再换X调节。

结果如图 4、在Z方向对刀,需试切一刀。Z方向保持不变,点,再,直到越过轴线(白线) 。再从X方向退出,。点右上面板,,点补正,然后形状,点把光标移动到Z向,输入Z0,,再点测量,Z轴对刀完成。 5、在X方向对刀。点,在切外圆,X方向不变,。再沿Z方向退出。停主轴,点。

基于comsol的仿真实验

一、实验目的 熟悉掌握COMSOL Multiphysics软件,通过3D有限元建模方法,建立铂电极-玻璃体-视网膜的分层电刺激模型。深入研究电极如何影响电刺激效果,系统的分析了电极尺寸、电极到视网膜表面的距离等参数对视网膜电刺激的影响,为视网膜视觉假体刺激电极的刺激效果提供指导意义,进一步优化电刺激效果,达到提高人工视觉的修复效果。 二、实验仪器设备 计算机,COMSOL Multiphysics软件 三、实验原理 影响视网膜电刺激效果的因素有许多:电极尺寸、电极距视网膜距离、电极形状、电极排列等,这里主要从电极尺寸,电极距视网膜距离来探讨。视网膜电刺激模型通过参考视网膜解剖结构构建,电刺激的有效响应区域取决于神经节细胞层(GCL)电场强度是否大于1000V/m,当大于该值时认为该区域神经节细胞能够兴奋,进而指导电极尺寸、电极距视网膜距离的参数。 四、实验内容 根据视网膜的解剖结构来构建相应的视网膜分层模型,模型总共分为8层:玻璃体层,神经节细胞层,内网状层,内核层,外网状层,外核层,视网膜下区域,色素上皮层,脉络膜及巩膜。根据视网膜各层的导电特性来设定相应的导电率,模型构建,设置边界条件。在电极处施加相应电流刺激,规定神经节细胞层(GCL)电场强度(>1000V/m)时认为能够引起视神经细胞兴奋,在确定的电流强度下,神经节细胞层(GCL)层电场强度大于1000V/m的区域认为有效响应区域,进而判断电极刺激的有效响应区域,指导电极尺寸r和电极距视网膜距离h等参数设置。其具体实验步骤如下所示: 1、根据视网膜的解剖特性构建视网膜分层模型。模型在三维模式下电磁场子目录下的传导介质DC场下建立。进入建模窗口后,在绘图栏下设置模型为圆柱体,输入各部分的长宽高数值,轴基准点为圆柱体的圆心坐标。模型分为9层(11个求解域),其示图如下:

铣床对刀详细图解与手动编程-斯沃数控仿真软件

, FANUC OiM为铣床。是铣床加工中心。 右下方面板, 一、基础设置: 1、机床开关,程序保护,1行5 (第一行第5个按钮)归零,点X轴归零,Y轴归零,Z 轴归零,右上面板出现 显示模式-床身显示模式,切换三种模式。 2、更换刀架类型:最上面的命令栏:机床操作,机床参数,。 3、机床操作,刀具管理,或左边命令栏的图标,选中编号001,添加到刀盘,1号刀位。 MDI手动输入方式(1行3),点右上角操作面板的程序,左边界面窗口,点MDI下面的按键, ,输入M06T01;,(记得点EOB键,最后加分号“;”),插入,注意:接着把光标移动到程序的开头,不然会出现无法换刀。再回到右下面板,

循环启动(5行2)。装刀完毕, 工件操作-工件放置,调节工件在托架的位置。 工件操作-工件装夹-平口钳装夹,加紧上下调整,使工件突出平口钳。 二、开始对刀 1、 MDI手动输入方式(1行3),点右上角操作面板的程序,左边界面窗口,点MDI下面的按键,,输入MO3S500,(M03为主轴正转,转速S为500r/min),回车换行,得到, 插入。(点,可选择上下指令。输错编程字母就取消,删除,替换,选择 上下字母)。回到右下面板。循环启动(5行2) 2、点击上方第二栏,XZ平面视图。JOG手动进给(1行6),点,使工件的 中点大概对正刀具的中心。如果觉得速度太慢,可点快速进给。点,把刀往下走。调整X、Y和Z方向(注意不要漏了Y方向,如果显示刀已切入工件,但没出现铁屑,则检查 Y方向)。微调时用(1行8)手轮进给,再点击机床界面左上角,,打开手轮界面,方向指向Z,倍率为X100。直到轻轻碰到工件的左侧面。。

电力系统远动复习总结

随着科学技术的发展,远动技术的内容和实现的技术手段也在不断发展、更新,大体可分为3个阶段。 第一阶段 (20世纪30年代):以继电器和电子管为主要部件构成远动设备。这些设备中用继电器、磁心构成遥信、遥调、遥控设备;用电子管和磁放大器构成脉冲频率式遥测;调制解调采用脉冲调幅式。这些设备的运行是可靠的,在电力系统的调度管理中发挥过一定的作用。 第二阶段 (50~60年代初):以半导体器件为主体,采用模数转换技术和脉冲编码技术、信息论中抗干扰编码,与计算机技术相结合的综合远动设备;将遥信、遥测、遥调、遥控综合为循环式点对点远动设备;调制解调器采用调频制为主。 第三阶段 (60年代以后):采用微型计算机构成远动系统,其主要特征是在主站端(调度端)形成前置机接收、处理远动信息,可以接收多个远方站的信息,前置机并可以向上级转发信息和驱动模拟盘。前置机应能接收处理符合标准的远动信息,还要能接入各类已在使用的远动设备的信息。后台机完成数据处理、驱动屏幕显示和打印制表等安全监控功能。后台机可采用超小型机、小型机或高档微型计算机。远方站的远动设备也采用微型机。这种系统除了传统的远动功能、模拟转换、遥信扫描、遥控之外,还扩展了事故顺序记录、全系统时钟对时、事故追忆、发(耗)电量统计和传送,增加当地功能,如电容器投切、接地检查,当地屏幕显示和打印制表以及其他需要的功能,远方站扩大功能时要发展成多机系统或采用高功能微型机。为了保证整个安全监控系统的可靠性,在远方站和主站端分别采用不停电电源,以及主站端采用双机备用切换系统。为保证信息传输的可靠性,需采用双通道备用。为适应电力系统调度管理中采用分层控制的方式,远动信息网也采用分层式结构,以保证有效地传输信息,减少设备和通道投资。 远动规约 由于电力生产的特点,发电厂、变电所和调度所之间的信息交换只能经过通道实现。信息传送只能是串行方式。因此,要使发送出去的信息到对方后,能够识别、接收和处理,就要对传送的信息的格式作严格的规定,这就是远动规约的一个内容。这些规定包括传送的方式是同步传送还是异步传送,帧同步字,抗干扰的措施,位同步方式,帧结构,信息传输过程。远动规约的另一方面内容,是规定实现数据收集、监视、控制的信息传输的具体步骤。例如,将信息按其重要性程度和更新周期,分成不同类别或不同循环周期传送;确定实现遥信变位传送、实现遥控返送校核以提高遥控的可靠性的方式,实现发(耗)电量的冻结、传送,实现系统对时、实现全部数据或某个数据的收集,以及远方站远动设备本身的状态监视的方式等。远动规约的制定,有助于各个制造厂制造的远方终端设备可以接入同一个安全监控系统。尤其在调度端(主站端) 采用微型机或小型机作为安全监控系统的前置机的情况下,更需要统一规约,使不同型号的设备能接入同一个安全监控系统。它还有助于制造设备的工厂提高工艺质量,提高设备的可靠性,因而提高整个安全监控系统的可靠性。远动规约分为循环式远动规约和问答式远动规约。在中国这两种规约并存。

斯沃数控机床调试与维修仿真软件介绍说明手册

// 南京斯沃 斯沃数控机床调试与维修仿真软件说明书 南京斯沃软件技术有限公司 2009/07版本

前言 南京斯沃软件技术有限公司是一支专业从事可视化软件开发的队伍。主要提供CAD/CAM、数控仿真的推广和应用。面向企业的新产品开发和创新设计,提供贴近用户个性化需求的产品整体设计、技术咨询。根据客户要求进行专业CAD/CAM的软件开发,以及数控系统、面板仿真的开发,缩短新产品研发周期,降低改型设计开发成本,提高产品设计质量。 随着数控机床的广泛使用,数控机床维修技术人才的需求已迫在眉睫,庞大的市场需求与掌握专业技能人才的奇缺使得数控维修工程师更是“一将难求”。南京斯沃软件技术有限公司为配合学校培养该专业人才,开发出数控机床调试与维修仿真软件(以下简称维修仿真软件)。该软件是以数控机床电气及多年从事数控维修教学教授、专家的教学经验,利用计算机三维虚拟现实技术、将数控机床结构、电气元器件布局调试以及故障排查过程等通过微机活灵活现地显示出来。数控维修软件适合本科、高职、高专、技校等不同层次人才培养的需求,适用于数控技术、机电一体化、数控设备与维修、自动控制、工业自动化等相关专业,是国内第一款专业化程度非常高的维修仿真软件。 斯沃维修仿真软件直观、安全、易学易用、上手快、经济性好。通过本软件可以学到数控机床的电气安装、数控系统参数调试、交流

伺服参数调试、变频器参数调试、数控机床故障诊断与维修技术以及PLC编程等专业技术。同时本软件可以丰富教师的教学手段、提高学生的学习兴趣,增强学生的实际动手能力,无疑是投资少、见效快的必选软件。 南京斯沃软件技术有限公司 2009年7月

COMSOL光学案例

Modeling of Pyramidal Absorbers for an Anechoic Chamber Introduction In this example, a microwave absorber is constructed from an infinite 2D array of pyramidal lossy structures. Pyramidal absorbers with radiation-absorbent material (RAM) are commonly used in anechoic chambers for electromagnetic wave measurements. Microwave absorption is modeled using a lossy material to imitate the electromagnetic properties of conductive carbon-loaded foam. Perfectly matched layers Port Conductive pyramidal form Unit cell surrounded by periodic conditions Conductive coating on the bottom Figure 1: An infinite 2D array of pyramidal absorbers is modeled using periodic boundary conditions on the sides of one unit cell. Model Definition The infinite 2D array of pyramidal structures is modeled using one unit cell with Floquet-periodic boundary conditions on four sides, as shown in Figure 1. The geometry of one unit cell consists of one pyramid sitting on a block made of the same

准直TIR透镜Tracepro实例

准直TIR透镜的TracePro模拟过程 说明:本例只讲解我用TP的模拟过程,不是TP的使用手册之类,讲解有误或不清楚的地方请见谅。本例不讲解透镜的设计方法,请不要追问如何设计透镜。 最后提一个要求:不喜勿喷。 作者:虫洞里的猫 准直TIR透镜,是指在原点的点光源经过透镜后光线能平行出射的透镜,但由于LED的发光面都是面光源,因此LED经过此透镜后不可能是平行光出射,但其出光角度会是最小值。 本实例以已设计好的准直TIR透镜为例,逐步演示TracePro的模拟过程。 1.插入3D文件 TracePro可以打开多种3D格式的文件,最方便的是直接插入零件,但此过程只能使用.SAT格式的文件,如下图的过程。

如果你的3D文件是其它格式,如STEP等,则可以用TracePro直接打开,具体过程为:文件-打开,在打开的对话框的下拉菜单中选择合适的格式。 2.设置光源 2.1 设置档案光源 2.1.1 方法一 设置光源可以有很多方式,但最直接也最准确的是使用光源文件,在TracePro中也称为档案光源,TracePro可用的档案光源主要有.DAT或.RAY格式的。此文件可以从LED厂家的官网上下载,本实例使用的LED为CREE公司的XLamp XP-E。如下图,XP-E Cool White Optical Source Model - TracePro (zip) (42 MB)是适合TracePro使用的光源文件,其网站地址为:https://www.360docs.net/doc/c14322565.html,/LED-Components-and-Modules/Products/XLamp/Discrete-Directional/XLa mp-XPE。

电力系统远动复习要点

名词解释 1.遥测即远程测量:应用远程通信技术进行信息传输,实现对远方运行设备的监视和控制。遥信即远程指示;远程信号:对诸如告警情况、开关位置或阀门位置这样的状态信息的远程监视。遥控即远程命令:应用远程通信技术,使运行设备的状态产生变化。遥调即远程调节:对具有两个以上状态的运行设备进行控制的远程命令。 2.远动技术是一门综合性的应用技术,它的基本原理包括数据传输原理、编码理论、信号转换技术原理、计算机原理等。远动配置是指主站与若干子站以及连接这些站的传输链路的组合体。远动系统是指对广阔地区的生产过程进行监视和控制的系统,它包括对必需的过程信息的采集、处理、传输和显示、执行等全部的设备与功能。 3.误码率:错误接收的码元数与传送的总码元数之比。用Pe表示。误比特率:错误接收的信息量与传送信息总量之比。用Peb表示。在远动系统中,为了正确的传送和接收信息,必须有一套关于信息传输顺序、信息格式和信息内容等的约定,这一套约定称为规约或协议。 4.当同步字在信道中受到干扰,使其中某些码元发生变位,致使收端检测不出同步字,称为漏同步。当接收到的信息序列中,出现与同步字相同的码序列时,在对同步字检测时会把它误判为同步字,造成假同步。收发两端发送时钟和接收时钟的相位差<∏时,数字锁相电路在工作过程中,通过相位调整,会使两者的相位差继续增加,直到≈2∏,造成两端时序错一位,这种情况称为反校。 5.事件指的是运行设备状态的变化,如开关所处的闭合或断开状态的变化,保护所处的正常或告警状态的变化。事件顺序记录是指开关或继电保护动作时,按动作的时间先后顺序进行的记录。事件分辨率指能正确区分事件发生顺序的最小时间间隔。 6.完成一次A/D转换所需的时间,称为转换时间,其倒数称为转换速率。 7.数字滤波就是在计算机中用一定的计算方法对输入信号的量化数据进行数学处理,减少干扰在有用信号中的比重,提高信号的真实性。死区计算是对连续变化的模拟量规定一个较小的变化范围。对电力系统中每一个运行参数量用上限值和下限值来规定其允许的运行范围,用这些量的实时运行值与其限值作比较,一旦发现某一量超出允许范围即判为越限,可能是越上限或越下限。这时,一方面要对这一重置越限标志,另一方面要发出信号,这一功能称为越限比较 8.标度变换又称为乘系数,是将A/D转换结果的无量纲数字量还原成有量纲的实际值的换算方法。电力系统在运行过程中随时可能发生事故,把事故发生前后的一段时间内遥测数据的变化情况保存下来,为今后的事故分析提供原始依据,这就是事故追忆功能。 9.直流采样是将直流的电压信号经模/数转换后得到数字量,数字量的值与直流信号的大小成正比。直接对交流电压、电流进行采样,用软件完成各类电量变送器的功能,从而获得全部电量信息,这就是交流采样要完成的工作。 10.计算机网络是指通过数据通信系统把地理上分散的、有独立处理能力的计算机系统连接起来,依靠功能完善的网络软件实现网络资源共享的一种计算机系统。 11.调度自动化系统的可靠性由远动系统的可靠性和计算机系统的可靠性来保证。它包括设备的可靠性和数据传输的可靠性。实时性可以用总传送时间、总响应时间来说明。总传送时间是从发送站事件发生起,到接收站显示为止,事件信息经历的时间。总响应时间是从发送站的事件启动开始、至接收到接收站反送响应为止之间的时间间隔。数据的准确性可以用总准确度、正确率、合格率等进行衡量。 12.MTBF平均无故障工作时间指系统或设备在规定寿命期限内、在规定条件下、相邻失效之间的持续时间的平均值,也就是平均故障间隔时间。 简答: 1.远动信息的传输模式 可以采用循环传输模式CDT和问答传输模式POLLING。CDT传输模式:厂站端将要发送的远动信息按规约的规定组成各种帧,再编排帧的顺序,一帧一帧地循环向调度端传送。问答传输模式也称polling方式。在这种传输模式中,若调度端要得到厂站端的监视信息,必须由调度端主动向厂站端发送查询命令报文。 2.远动系统配置的基本模式 远动配置是指主站与若干子站以及连接这些站的传输链路的组合体。常用的远动配置有下面一些类型。①点对点配置主站与子站之间通过专用的传输链路相连接的一种配置。②多路

斯沃数控仿真软件6.5以上版本破解方法

斯沃数控仿真软件6.5以上版本破解方法总结 winhex只能破解6.06及以下的版本,如果你安装的是最新版本建议你下一个6.06的,你也可以安装两个,只要破解了低版本的后,高版本就能直接用了 一、破解必备软件: 1、斯沃数控仿真软件6.5以下版本(辅助破解我用的是6.4) 2、斯沃数控仿真软件6.5以上版本(我用的是6.9) 3、一款软件WinHex(网上下载) 二、安装完上述三款软件后可以开始注册了 先运行版本较低的仿真软件 单机版→任选一个数控系统(例FANUC0MD)→机器码加密→运行→

填写注册号(随便填写但要记住例如kaka)→Ok→当弹出无法完成软件注册时不要点确定→打开软件WinHex→工具→打开RAM→ 找到Sscnc#****→确定→

整个内存→确定→ 搜索→查找文本→

输入之前填写的注册码kaka→确定

→F3看是否有如上图红圈这样的格式(正常情况按三次就可以看到了) 解释红圈:Serial之前的数字序列是你的序列号,Serial之后的很可能就是我们要找的注册码→Ctrl+C复制这注册码→ 将上图的sssd对话框关闭→将注册码粘贴到注册号里→完工(这样一步步弄下 来会使你选择的相应数控系统FANUC0MD可以用了,当然两个版本都可以用,但只局限于这一个数控系统) 三、上面的一般网上都有,接下来要全部破解网上暂时没发现详解,其实方法很简单,重复二中步骤,选系统的时候注意要换其它的数控系统,当你选择其它未 本人注册了大概12个数控系统时获得终级注册码,方法麻烦了点,但不用花钱去买,被人骗。 下载6.4版本用winhex破解得到注册码,

tracepro实验报告范文

2020 tracepro实验报告范文Contract Template

tracepro实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况, 答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行 文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触 一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想 法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 一.实验概况 实验时间: 实验地点:合肥工业大学仪器学院平房实验室 指导老师:郎贤礼 实验要求:1.熟练TracePro软件基本功能及实际操作方法; 2.掌握光学器件设计的原理及一般步骤; 3.会对设计好的光学器件进行数据图像分析; 4.能够自己设计简单的光学器件。 二.实验内容 (一)软件介绍TracePro是一套普遍用于照明系统、光学分析、辐射度分析及光度分析的光线模拟软体。它是第一套以ACISsolidmodelingkernel为基本的光学软体。第一套结合真实固体模型、强大光学分析功能、资料转换能力强及易上手的使用介面的模拟软件。

TracePro可利用在显示器产业上,它能模仿所有类型的显示系统,从背光系统,到前光、光管、光纤、显示面板和LCD投影系统。应用领域包括:照明、导光管、背光模组、薄膜光学、光机设计、投影系统、杂散光、雷射邦浦常建立的模型:照明系统、灯具及固定照明、汽车照明系统(前头灯、尾灯、内部及仪表照明)、望远镜、照相机系统、红外线成像系统、遥感系统、光谱仪、导光管、积光球、投影系统、背光板。TracePro作为下一代偏离光线分析软件,需要对光线进行有效和准确地分析。为了达到这些目标,TracePro具备以下这些功能:处理复杂几何的能力,以定义和跟踪数百万条光线;图形显示、可视化操作以及提供3D实体模型的数据库;导入和导出主流CAD软件和镜头设计软件的数据格式。通过软件设计和仿真功能,可以:得到灯具的出光角度:只需有灯具的3D模块便可通过软件仿真功能预判灯具出光角度,以此判断灯具是否达到设计目标。得到灯具出光光斑图和照度图:可以模拟灯具打在不同距离得到的光斑、照度图分布情况,以此判断灯具出光性能。灯具修改建议功能:如果通过软件判断初步设计灯具性能不符合要求,TracePro光线可视图可以看到形成配光图每段曲线是由罩那段曲线形成,以提供修改建议。准配光图和IES文件:可导出标准配光图和IES文件,用于照明工程设计。实际效益通过软件的仿真功能,可以一次次在软件中完成灯具结构不同状态下时的出光性能,而不需每次灯具修改都需开模或做手板后测试才知道,这就大大缩短了产品开发周期、节省开模成本费用、提高产品设计准确性。

相关文档
最新文档