太赫兹技术的军事应用前景

太赫兹技术的军事应用前景
太赫兹技术的军事应用前景

太赫兹技术的军事应用前景

太赫兹(THz)波是电磁波谱家族中的一员,它的频率范围为0.1—10THz,相应的波长范围为3mm—30μm,介于微波和红外线之间,是人类目前尚未完全开发的波谱“空隙”区。20世纪80年代中期以前,由于缺乏有效产生和检测太赫兹波的方法,人们对该频段电磁辐射性质的了解非常有限,因此其发展受到很大限制,应用潜能也未能得到充分发挥。近十几年,由于超快激光技术以及一系列的新技术、新材料的发展和应用,极大地促进了对太赫兹辐射机理、检测、成像和应用技术的研发,使其迅速成为一门新的极具活力的前沿领域。太赫兹波所具有的一些特性在军事领域中的应用正在逐步被开发出来。

一、太赫兹波的特点“透析”

太赫兹波频率范围是处于电子学和光子学的交叉区域,相对于其它波段的电磁波,如微波和x射线等,具有非常强的互补特征。

1.特别的穿透能力

THz辐射能以很小的衰减穿透如陶瓷、脂肪、碳板、布料、塑料等物质,还可无损穿透墙壁、沙尘烟雾,使得其能在某些特殊领域发挥作用。如太赫兹探测器可直接发射太赫兹波透过墙壁,于室外对室内进行探测,免去需将探测设施置于室内的麻烦。这特别适于防暴警察与室内歹徒对峙时,可从墙外掌握室内情况,如歹徒位置、武器配置等,极大的确保警方安全。

2.较高的探测安全性

由于太赫兹波的光子能量很低,只有几个毫电子伏特,当它穿透过物质时,不易发生电离,因而可用来进行安全的无损检测。太赫兹的光子能量很低,只有毫电子伏特,因此不容易破坏被检测物质。如果用太赫兹检测物质,就可以发现内部瑕疵而又不损害该物质。不同于X射线,太赫兹射线是一种不电离的射线,所以,太赫兹波适合于对生物组织进行活体检查。它们还可以穿透衣服、包装,甚至于渗透人体几毫米深,因此,太赫兹波也是安全检查和医学应用的理想工具。例如,用于人体成像的X光的光子能量高,对人体所造成非常大的伤害,而应用太赫兹技术制成的成像设备,则能将这种照射对人体的伤害降低100万倍。

3.较强的识别物质和成像能力

研究表明大量有机分子、半导体能量特征在太赫兹范围,每种材料的太赫兹频谱特征是不同的。只要建立了这些物质的太赫兹频谱特征数据库,就可以采取“指纹”识别的方法来进行检测。太赫兹波除了识别物质外,还可以通过反射波的测量得到物质的图像。利用成像系统把成像样品振幅或相位信息进行处理和分析,就可以得到样品的THz图像。太赫兹波成像的一个显著特点是信息量大,可准确显示物质的内外部信息。目前太赫兹显微成像的分辨率已达到几十微米。

4.大容量、高保密的宽带信息载体

太赫兹波的频带宽、测量信噪比高,适合于大容量与高保密的数据传输,而且太赫兹波处于高载波频率范围,是目前手机通信频率的1000倍左右,可提供10 GB/s的无线传输速

率。利用太赫兹波进行无线电通信,可以极大地增宽无线电通信网络的频带,使无线移动高速信息网络成为现实。太赫兹波比微波能做到的宽带和讯道数多得多,尤其适合作为卫星间和局域网的宽带移动通讯。太赫兹波方向性好,散射小,在通信领域会大有作为,如卫星间星际通信、同温层内空对空通信、短程地面无线局域网、短程安全大气通信等。

二、太赫兹技术在军事领域中的应用

以信息技术为核心的现代化战争中,信息化的武器装备比例不断提高,作为一个新的频段资源,太赫兹波技术在军事上有很强的军事应用前景,对国防和国家安全具有重要的应用价值。

1.可进行远程监视与探测

与微波雷达相比,太赫兹雷达可以探测到更小的目标,实现更精确的定位,具有更高的分辨率和更强的保密性。而与红外雷达和激光雷达相比,太赫兹雷达具有穿透沙尘、烟雾的能力,可以实现全天候工作。基于太赫兹的特有的“穿墙术”,太赫兹雷达可以探测到敌方隐蔽的武器,伪装埋伏的武装人员,以及烟雾、沙尘中的军事装备。另外,太赫兹雷达还可远程探测空气中传播的有毒生物颗粒或化学气体,引导航空航天器全天候起飞或着陆。利用强太赫兹辐射穿透地面,能探测所埋地下的雷场分布,或者可以进行远程炸弹探测等。显然,有了此种雷达的远程监视,即可预防类似美国“9.11”事件的发生。太赫兹雷达还是反隐身的利器,不管是基于形状隐身还是涂料隐身,甚至基于等离子体隐身的飞行器,对于太赫兹雷达而言,探测到它们简直是易如反掌,能让他们瞬时“现出原形”。因为太赫兹雷达工作在隐形所用的工作波段之外,太赫兹波比毫米波短,可以轻易接收到飞行器的回波,而现有的吸波材料也只是对特定的波段才起作用;至于等离子体,太赫兹波可以在其中传播,所以等离子体隐身技术在太赫兹雷达面前也是无能为力。另外根据太赫兹能够穿透等离子体的特性,可以将其应用到航天飞机或宇宙飞船发射或回收过程当中。这是因为在发射和回收的过程当中,有一段时间由于空气电离会造成发射基地与飞船或航天飞机的通讯中断。而如果利用太赫兹技术,就可以弥补这一点,能保持联络通畅,这是别的技术所无法做到的。

2.可在车内使用太赫兹无线局域网通信

在作战演习中,我们常见的现场指挥车等都需要进行车内信息传递。随着信息化系统的广泛使用,车内信息传递逐渐成为人们不断增长的需求。确保车内信息快速高效地传递,对于提高着内信息系统整体效率意义重大。车载系统各个处理平台,主要使用有线连接,可靠性高,但是占用空间很大。如果使用太赫兹无线局域网,就可以大大节省空间。太赫兹波以其独特的瞬态性、宽带性、相干性和低能性等特点,被称之为“无线光纤”。太赫兹通信的容量很大,可提供10 GB/s的无线传输速率,比当前的超宽带技术快几百甚至上千倍。太赫兹波长相对于微波更短,在完成同样功能的情况下,天线的尺寸可以做的更小,其它的系统结构也可以做的更加简单、经济,便于在车上使用。指挥车使用太赫兹无线局域网后,不仅可以实现信息快速高效地传递,而且节省下来的空间可用来增加更多的功能模块,增强其信息化效能。

3.可用于无损检测

由于太赫兹波有强的穿透力,且其光子能量很低,只有几个毫电子伏特,穿透时不易发生电离,因而可用来安全的进行无损检测。尤其是对一些塑料泡沫等绝缘材料内部的缺陷和裂痕等进行无损检测和成像,在航空、航天结构材料的检测和评估方面具有重要的应用价值。如对航天飞机燃料舱的隔热材料进行有效的无损探伤,被美国宇航局选择为发射中用来进行缺陷检测的技术之一。此外,还可用于大规模集成电路的质量检测,如可拍摄到封装在IC 芯片中的封装的金属引线等。

4.可进行非接触的安全检测与识别

太赫兹波最具吸引力的地方,是将太赫兹辐射成像及其光谱灵敏的优点相结合,因而可

在反恐领域大显身手。因为许多化合物在0.5~5THz波段具有独特的吸收谱线,因此在木箱、包裹或邮件内隐藏的爆炸物或违禁药物,不仅可被精确定位,而且由于它们独特的光谱“指纹”,还能准确地识别出它们到底是什么。并且,由于太赫兹波对衣物、塑料、陶瓷、硅片、纸箱、干木材等物质具有较好的穿透性能,尤其对塑料、纸箱等有很强的穿透力,因而可用来对已包装好的内部货物,以及人体身上的隐藏物进行成像,如经实验可检查出藏在棉布后的陶瓷刀片等。所以,可用太赫兹技术进行非接触的安全检测,并识别是否有爆炸物、化学或生物危险品、毒品、刀枪武器等。尤其可用来进行邮件监测。识别邮件内的隐藏物,如邮件炸弹等。因此,太赫兹技术现已受到了反恐军事斗争、公安、保安等部门和海关、机场、车站检查等方面的重视。

由上可知,太赫兹技术是一门新的极具活力前沿领域,其应用非常广泛。目前,世界各国均相研究发展自己的太赫兹技术,我国也不例外。总的看来,太赫兹技术的研究仍然处于初级阶段并且还存在着许多亟待解决的问题。相信在不久的将来,太赫兹技术会在军事领域大显身手。

太赫兹技术及其应用概述

太赫兹技术及其应用概述 来源:互联网 太赫兹技术(T-RAY)是指利用太赫兹波的技术,所谓的太赫兹科学,就是研究电滋波中的某一段,但这段电滋波能“看透”许多东西。100多年前,在红外天文学上人们曾提到太赫兹,但在科研和民用方面很少有人触及。在微波、可见光、红外等技术被广泛应用的情况下,太赫兹发展滞后的主要原因在于缺少探测器和发射源,直到近10几年,随着科研手段的提高,人们在这一领域的研究才有了较大发展。目前人类对太赫兹的研究已发展成为一个新的领域,研究太赫兹的单位也从20年前的3个发展到全世界的200多个。 太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一;此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。 太赫兹波是频率范围在0.1T至10THz(波长在3mm至30um)的电磁频谱,它介于毫米波与远红外光之间,是至今人类尚未充分认知和利用的频谱资源,有望对通信(宽带通信)、雷达、电子对抗、电磁武器、安全检查等领域带来深刻变革。 太赫兹的独特性能给通信(宽带通信)、雷达、电子对抗、电磁武器、天文学、医学成像(无标记的基因检查、细胞水平的成像)、无损检测、安全检查(生化物的检查)等领域带来了深远的影响。由于太赫兹的频率很高,所以其空间分辨率也很高;又由于它的脉冲很短(皮秒量级)所以具有很高的时间分辨率。太赫兹成像技术和太赫兹波谱技术由此构成了太赫兹应用的两个主要关键技术。同时,由于太赫兹能量很小,不会对物质产生破坏作用,所以与X射线相比更具有优势。另外,由于生物大分子的振动和转动频率的共振频率均在太赫兹波段,因此太赫兹在粮食选种,优良菌种的选择等农业和食品加工行业有着良好的应用前景。太赫兹的应用仍然在不断的开发研究当中,其广袤的科学前景为世界所公认。 经过近十几年来的研究,国际科技界公认,THz科学技术是一个非常重要的交叉前沿领域。由于THz的频率很高(波长比微波小1000陪以上),所以其空间分辨率很高。又由于

太赫兹科学技术的军事应用

太赫兹(Terahertz,缩写为THz)是频率单位, 1太赫兹等于1012赫兹。太赫兹波是指频率0.1~10太赫兹、介于毫米波和红外线之间的电磁波。太赫兹科学技术泛指直接研究和应用太赫兹波本身,以及利用太赫兹波研究开发的所有理论和应用,是一个非常重要、尚未开发的前沿领域。 太赫兹技术之所以具有特别的吸引力,是由于太赫兹辐射的如下特点:约50%的宇宙空间光子能量、大量星际分子的特征谱线在太赫兹范围内;大量有机分子转动和振动跃迁、半导体的子带和微带能量在太赫兹范围内;太赫兹辐射能穿透非金属和非极性材料,穿透烟雾和浮尘;太赫兹光子能量小,不会引起生物组织的光致电离。因此,太赫兹技术在物体成像、环境监测、医疗诊断、射线天文、宽带通信、雷达等领域具有重大的科学价值和广阔的应用前景。 在世界范围,太赫兹辐射物理及其应用研究方兴未艾。包括美国国防部、航空航天局在内,全世界已有100多个机构在从事相关研究,例如,日本政府把太赫兹技术确立为“国家支柱技术十大重点战略目标之首”予以支持。由于信息化武器装备的工作频段逐步从微波及可见光区域向太赫兹波段延伸,太赫兹科学技术在军事上的重要性不言而喻。谁优先掌握这一重要频段的相关技术,谁就有可能在军事上领先一个时代。我们应该抓住太赫兹科学技术刚刚起步的机遇,不失时机地加速开展太赫兹领域的理 太赫兹科学技术的军事应用 张振伟 牧凯军 张存林 论与应用研究,为我国的经济发展和国防建设做出贡献。 太赫兹波在军事上的优势 太赫兹波的频率介于微波与红外之间,因此太 赫兹系统兼顾电子学系统和光学系统的优势。作为 美国能源部的宣传页,从中可以一窥太赫兹技术的概貌。 电磁波谱图,注意太赫兹波段的位置。

射电天文及太赫兹技术的应用与发展

射电天文及太赫兹技术的应用与发展 目录: 1. 射电天文学的介绍; 2. 太赫兹波段的特点; 3. 太赫兹科学技术与应用发展; 4. 高度灵敏探测技术和超导技术的发展; 5. SMA及ALMA计划,后端频谱处理技术,南极天文台太赫兹望远镜计划介绍。 摘要:射电天文学理论认为由于地球大气的阻拦,从天体来的无线电波只有波长约1毫米到30米左右的才能到达地面,绝大部分的射电天文研究都是在这个波段内进行的。射电天文学以无线电接收技术为观测手段,观测的对象遍及所有天体:从近处的太阳系天体到银河系中的各种对象,直到极其遥远的银河系以外的目标。在宇宙中,大量的物质在发出THz电磁波。炭(C)、水(H2O)、一氧化碳(CO)、氮 (N2)、氧(O2)等大量的分子可以在THz频段进行探测。而这些物质在应用THz 技术以前一部分根本无法探测而另一部分只能在海拔很高或者月球表面才可以探测到。 关键词:射电天文太赫兹超导 正文: 一:射电天文: 对于研究射电天体来说,测到它的无线电波只是一个最基本的要求。人们还可以应用颇为简单的原理,制造出射电频谱仪和射电偏振计,用以测量天体的射电频谱和偏振。研究射电天体的进一步的要求是精测它的位置和描绘它的图像。一般说来,只有把射电天体的位置测准到几角秒,才能够较好地在光学照片上认出它所对应的天体,从而深入了解它的性质。为此,就必须把射电望远镜造得很大,比如说,大到好几公里。这必然会带来机械制造上很大的困难。因此,人们曾认为射电天文在测位和成像上难以与光学天文相比。可是,五十年代以后,射电望远镜的发展,特别是射电干涉仪(由两面射电望远镜放在一定距离上组成的系统)的发展,使测量射电天体位置的精度稳步提高。五十年代到六十年代前期,在英国剑桥,利用许多具射电干涉仪构成了“综合孔径”,系统,并且用这种系统首次有效地描绘了天体的精细射电图像。接着,荷兰、美国、澳大利亚等国也相继发展了这种设备。到七十年代后期,工作在短厘米波段的综合孔径系统所取得的天体射电图像细节精度已达2″,可与地面上的光学望远镜拍摄的照片媲美。射电干涉仪的应用还导致了六十年代末甚长基线干涉仪的发明。这种干涉仪的两面射电望远镜之间,距离长达几千公里,乃至上万公里。用它测量射电天体的位置,已能达到千分之几角秒的精度。七十年代中,在美国完成了多具甚长基线干涉仪的组合观测,不断取得重要的结果。

不同频率的电磁波及太赫兹的简介

不同频率的电磁波及太赫兹的简介 一.电磁波介绍 不同频率的电磁波电与磁可以说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。变化的电场和变化的磁场构成了一个不可分离的统一的场[1],这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁波能有效的传递能量和动量。电磁波是电磁场的一种运动形态。 从科学的角度来说,电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。 当电磁波频率低时,主要藉由有形的导电体才能传递;当频率渐提高时,电磁波就会外溢到导体之外,不需要介质也能向外传递能量,这就是一种辐射。举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是「电磁辐射即由辐射现象传递能量」的原理一样。 在高频电磁振荡的情况下,部分能量以辐射方式从空间传播出去所形成的电波与磁波的总称叫做“电磁波”。在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去。然而,在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去。 电磁波为横波。电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位臵之能量功率与振幅的平方成正比。其速度等于光速(每秒3×1010厘米)。光波就是电磁波。在空间传播的电磁波,距离最近的电场(磁场)强度

方向相同和量值最大两点之间的距离,就是电磁波的波长。 无线电波3000米~0.3毫米。 红外线0.3毫米~0.75微米 可见光0.7微米~0.4微米。 紫外线0.4微米~10毫微米 X射线10毫微米~0.1毫微米 γ射线0.1毫微米~0.001毫微米 宇宙射线小于0.001毫微米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米。 电磁波在传播中携有能量,可以作为信息的载体。这就为无线电通信、广播、电视、遥感等技术开阔了道路。 电磁波的能量大小由坡印廷矢量决定,即S=E×H,其中s为坡印庭矢量,E 为电场强度,H为磁场强度。E、H、S彼此垂直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能。 电磁波具有能量,电磁波是一种物质。 二.太赫兹简介 1.简介 太赫兹电磁脉冲或称为THz波(太赫兹波)或称为T射线(太赫兹射线)是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,这一波段的电磁辐射具有很强的透视能力,可以作为一种特殊的

现代通信技术及发展前景

现代通信技术及发展前景 信息技术是指有关信息的收集、识别、提取、变换、存贮、传递、处理、检索、检测、分析和利用等的技术。凡涉及到这些过程和技术的工作部门都可称作信息部门。 信息技术能够延长或扩展人的信息功能。信息技术可能是机械的,也可能是激光的;可能是电子的,也可能是生物的。 信息技术主要包括传感技术,通信技术,计算机技术和缩微技术等。 传感技术的任务是延长人的感觉器官收集信息的功能;通信技术的任务是延长人的神经系统传递信息的功能;计算机技术则是延长人的思维器官处理信息和决策的功能;缩微技术是延长人的记忆器官存贮信息的功能。当然,这种划分只是相对的、大致的,没有截然的界限。如传感系统里也有信息的处理和收集,而计算机系统里既有信息传递,也有信息收集的问题。 目前,传感技术已经发展了一大批敏感元件,除了普通的照像机能够收集可见光波的信息、微音器能够收集声波信息之外,现在已经有了红外、紫外等光波波段的敏感元件,帮助人们提取那些人眼所见不到重要信息。还有超声和次声传感器,可以帮助人们获得那些人耳听不到的信息。不仅如此,人们还制造了各种嗅敏、味敏、光敏、热敏、磁敏、湿敏以及一些综合敏感元件。这样,还可以把那些人类感觉器官收集不到的各种有用信息提取出来,从而延长和扩展人类收集信息的功能。 通信技术的发展速度之快是惊人的。从传统的电话,电报,收音机,电视到如今的移动电话,传真,卫星通信,这些新的、人人可用的现代通信方式使数据和信息的传递效率得到很大的提高,从而使过去必须由专业的电信部门来完成的工作,可由行政、业务部门办公室的工作人员直接方便地来完成。通信技术成为办公自动化的支撑技术。 计算机技术与现代通信技术一起构成了信息技术的核心内容。计算机技术同样取得了飞

太赫兹技术及其在研究领域的应用

太赫兹技术及其在研究领域的应用 摘要:简要介绍了太赫兹技术的国内外发展状况,由于太赫兹波在电磁波谱中的特殊位置,其表现出优越的特性,太赫兹科学技术已成为本世纪最为重要的科技问题之一。通过对太赫兹基础研究领域的分析,阐明了太赫兹波的作用机理及相关器件的发展。太赫兹技术在成像、通讯、航空及生物医药等领域有着广阔的应用前景。随着技术理论的不断发展及成熟,太赫兹技术必将对国民经济和国家安全产生重大影响。 关键词:太赫兹;太赫兹技术;基础研究;太赫兹应用 Terahertz technology and its applications in research field Abstract:The development of Terahertz technology at home and abroad is briefly summarized, and the special position of THz wave in electromagnetic spectrum, it shows the superior characteristic. So Terahertz Science and technology has become one of the most important scientific and technological problems in this century. Through the analysis of the THz basic research field, the mechanism of THz wave and the development of the related devices are elucidated. THz technology has broad application in imaging, communications, aviation and biomedical and other fields. With the development of technology theory, THz technology will have a great impact on national economy and national security. Key words:Terahertz; Terahertz technology; basic research; Terahertz application 0 引言 随着现代科学技术的迅猛发展、各国之间科技竞争的加剧及社会信息化进程的不断加快,高新技术越来越成为各个国家之间竞争力水平的标志。太赫兹技术由于其一系列的优点及其广泛的应用价值成为世界各国研究机构关注的焦点,太赫兹技术也成为本世纪重大新兴科学技术领域之一[1]。太赫兹波是指频率范围为0.1~10.0THz的电磁波,波长范围为0.03~3.00mm,介于微波频段与红外之间,兼具二者的优点[2](如图1所示)。它的长波段与毫米波(亚毫米波)相重合,其发主要依靠电子学科学技术;在短波段与红外线相重合,主要依靠光子学科技术发展,可见太赫兹波是宏观电子学向微观电子学过渡的频段,在电子波频谱中占有很特殊的位置,表现出一系列不同于其他电磁辐射的特殊性能。但长期以来由于缺乏有效的太赫兹辐射产生和检测方法,导致太赫兹频段的电磁波未得到充分的研究和应用,被称为电磁波谱中的“太赫兹空隙(THz gap)”。从过去二十多年前开始,随着太赫兹辐射源和太赫兹探测器的相继问世,太赫兹技术的研究和应用才有了较快发展,在医疗诊断、雷达通讯、物体成像、宽带移动通信、军事航空等领域显示了重大的科学价值及实用前景,与此同时,其他方面的工程应用潜力也受到关注。

太赫兹技术各种应用

太赫兹技术各种应用 “Terahcrtz”一词是弗莱明(Fletning)于1974年首次提出的,用来描述迈克尔逊干涉仪的光谱线频率范围。太赫兹频段是指频率从十分之几到十几太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域,THz波又被称为T-射线,在频域上处于宏观经典理论向微观量子理论的过渡区,在电子学向光子学的过渡区域,长期以来由于缺乏有效的THz辐射产生和检测方法,对于该波段的了解有限,使得THz成为电磁波谱中最后一个未被全面研究的频率窗口,被称为电磁波谱中的“太赫兹空隙(THzGap)” THz波具有很多独特的性质,从频谱上看,THz辐射在电磁波谱中介于微波与红外辐射之间;在电子学领域,THz辐射被称为毫米波或亚毫米波;在光学领域,它又被称为远红外射线,从能量上看,THz波段的能量介于电子和光子之间。THz的特殊电磁波谱位置赋予它很多优越的特性,有非常重要的学术价值和应用价值,得到了全世界各国研究人员的极大关注,美国、欧洲和日本尤为重视。2004年美国技术评论(TechonlogyReview)评选“改变未来世界十大技术”时,将THz技术作为其中的紧迫技术之一。2005年日本政府公布了国家10大支柱技术发展战略规划,THz位列首位。 一、THz波的特性 THz波的频率范围处于电子学与光子学的交叉区域.在长波方向,它与毫米波有重叠;在短波方向,它与红外线有重叠;在频域上,THz处于宏观经典理论向微观量子理论的过渡区。由于其所处的特殊位置,THz波表现出一系列不同于其他电磁辐射的特殊性质: 1、THz脉冲的典型脉宽在亚皮秒量级,不但可以方便地对各种材料进行亚皮秒、飞秒时间分辨的瞬态光谱研究,而且通过取样测量技术 能够有效地抑制背景辐射噪音的干扰,得到具有很高信噪比(大于)THz电磁波时域谱,并且具有对黑体辐射或者热背景不敏感的优点; 2、THz脉冲通常只包含若干个周期的电磁振荡,单个脉冲的频带可以覆盖从CHz至几十THz的范围,便于在大范围里分析物质的光谱性质; 3、THz波的相干性源于其产生机制,它是由相干电流驱动的偶极子振荡产生,或是由相干的激光脉冲通过非线性光学差频效应产生。THz波的时域光谱技术(THz-TDS)直接测量THz波的时域电场,通过傅立叶变换给出THz波的振幅和相位。因此,无需使用Kramers-Kronig 色散关系,就可以提供介电常数的实部和虚部。这使测得的与THz波相互作用的介质折射率和吸收系数变得更精确; 4、THz波的光子能量较低,1THz频率处的光子能量大约只有4mV https://www.360docs.net/doc/c14366447.html, 光子能量,比X射线的光子能量弱107--108倍。因此,THz波不会对生物组织产生导致电离和破坏的有害光,特别适合于对生物组织进行活体检查; 5、THz光子能量约为可见光,用THz做信息载体比用可见光和近中红外光能量效率高得多;

【2019年整理】太赫兹技术发展展望

太赫兹技术发展展望 1 太赫兹波简介 1.1 太赫兹波发现 按传统的分类形式,电磁波分成无线电波、红外线、可见光、紫外线、α射线、γ射线等。随着对电磁波的深入研究,人们发现在电磁波谱中还有一个很特 殊的位置,如图 1.1所示。 这就是太赫兹波即THz波(太赫兹波)或称为THz射线(太赫兹射线),是从上个世纪80年代中后期,才被正式命名的,在此以前科学家们将统称为远 红外射线。太赫兹波是指频率在0.1THz到10THz范围的电磁波,波长大概在0.03到3mm范围,介于微波与红外之间。实际上,早在一百年前,就有科学工作者 涉及过这一波段。在1896年和1897年,Rubens和Nichols就涉及到这一波段,红外光谱到达9um(0.009mm)和20um(0.02mm),之后又有到达50um的记载。之后的近百年时间,远红外技术取得了许多成果,并且已经产业化。但是涉及太赫兹波段的研究结果和数据非常少,主要是受到有效太赫兹产生源和灵敏探测器 的限制,因此这一波段也被称为THz间隙。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。 1.2 太赫兹波的特点 目前,国际上对太赫兹辐射已达成如下共识,即太赫兹是一种新的、有很多

独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。 (1)量子能量和黑体温度很低: Wave number Wavelength Frequency Energy Blackbody Temp. 1cm-110mm30GHz120μeV 1.5K 10cm-11mm300GHz 1.2meV15K 33cm-1300μm1THz 4.1meV48K 100cm-1100μm3THz12meV140K 200cm-150μm6THz25meV290K 670cm-115μm20THz83meV960K (2)许多生物大分子,如有机分子的振动和旋转频率都在THz波段,所以在THz波段表现出很强的吸收和谐振。 (3)THz辐射能以很小的衰减穿透物质如陶瓷、脂肪、碳板、布料、塑料等,因此可用其探测低浓度极化气体,适用于控制污染。THz辐射可无损穿透墙壁、布料,使得其能在某些特殊领域发挥作用。 (4)THz的时域频谱信噪比很高,这使得THz非常适用于成像应用 (5)带宽很宽(0.1—10T)Hz。 (6)很短的THz脉冲却有着非常宽的带宽和不同寻常的特点。 在我国未来的太空研究和探月计划中, THz波也可以提供包括星球表面特性和极区辐射特性的诸多重要信息。综上所述, THz科学不仅是科学技术发展中的重要基础问题,又是国家新一代信息产业、国家安全以及基础科学发展的重 大需求,对国民经济以及国防建设具有重大的意义。与此相适应,世界各国都对THz波的研究给予极大的关注,并部署了多个重大的国家级以及国际合作研究 计划,取得了一些突破性的成果,有些已具有实用价值。另一方面,国内在THz 研究的理论和实验方面也取得了一些重要成果,在国际上产生了一定的影响,为我国THz技术的研究和发展打下了扎实的基础。

太赫兹波的特点

太赫兹波的特点 ?(1)高透射性:太赫兹对许多介电材料和非极性物质具有良好的穿透性,可对不透明物体进行透视成像,是X 射线成像和超声波成像技术的有效互补,可用于安检或质检过程中的无损检测。 (2)低能量性:太赫兹光子能量为4.1meV(毫电子伏特),只是X 射线光子能量的108 分之一。太赫兹辐射不会导致光致电离而破坏被检物质,非常适用于针对人体或其他生物样品的活体检查。进而能方便地提取样品的折射率和吸收系数等信息。 (3)吸水性:水对太赫兹辐射有极强的吸收性,因为肿瘤组织中水分含量与正常组织明显不同,所以可通过分析组织中的水分含量来确定肿瘤的位置。 (4)瞬态性:太赫兹脉冲的典型脉宽在皮秒数量级,可以方便地对各种材料包括液体、气体、半导体、高温超导体、铁磁体等进行时间分辨光谱的研究,而且通过取样测量技术,能够有效地抑制背景辐射噪声的干扰。 (5)相干性:太赫兹的相干性源于其相干产生机制。太赫兹相干测量技术能够直接测量电场的振幅和相位,从而方便地提取样品的折射率、吸收系数、消光系数、介电常数等光学参数。 (6)指纹光谱:太赫兹波段包含了丰富的物理和化学信息。大多数极性分子和生物大分子的振动和转能级跃迁都处在太赫兹波段,所以根据这些指纹谱,太赫兹光谱成像技术能够分辨物体的形貌,分析物体的物理化学性质,为缉毒、反恐、排爆等提供相关的理论依据和探测技术。 太赫兹波的产生 ?(1)通过FTIR(Fourier Transform Infrared Spectrometer)使用热辐射源产生,如汞灯和SiC棒; (2)是通过非线性光混频产生; (3)是通过电子振荡辐射产生,如反波管、耿式振荡器及肖特基二极管产生; (4)是通过气体激光器、半导体激光器、自由电子激光器等THz激光器直接产生。目前产生THz脉冲常用的方法有光导天线法、光整流法、THz参量振荡器法、空气等离子体法等,其中空气等离子体能产生相对较高强度的THz波而备受关注,此外,还可以用半导体表面产生THz波。 太赫兹波的研究现状 ?太赫兹波现象其实早已为人们所发现,然而早期因缺乏有效的太赫兹波产生和探测技术,使得相关研究进展极其缓慢[2]。进入20世纪80年代后,激光技术的迅速发展为研究有效太赫兹波的产生和探测技术孕育了基础。据文献报道,1983年 D.H.Anston[3]首次利用光学技术,通过超短激光脉冲激发光电导天线产生了相干脉 冲宽带THz辐射。鉴于D.H.Auston做出的巨大贡献,光导天线后来常被称为“Auston switeh”。紧接着,D.Grischkowsky和D.H.Auston等又开发出了基于超短激光脉冲激发光电导天线的THz时域光谱探测技术。这种基于基于超短激光脉冲激发光电导天线的太赫兹波产生和探测技术至今仍然是实验设备应用的主流。1990-1992年,X.C.zhang和D.H.Auston[4]等又提出了原理上完全不同的太赫兹波产生与探测方法一基于瞬态电光取样及其逆过程的THz产生与探测技术。 至此,太赫兹波的产生与探测技术虽然还不成熟,但已经能够用于相关仪器的制造与生产,为科研人员研究太赫兹波与物质相互作用提供了必备的实验手段。太赫兹科学和技术有极大的应用潜力,但目前还受太赫兹辐射源的限制,比如:产生的太赫兹辐射强度不高、带宽不够宽、能量转化效率低等因素,所以太赫兹领域的发展还需更大的努力。

太赫兹应用及其产生方法

太赫兹及其产生方法 摘要:太赫兹技术是20世纪80年代末产生的一种高新技术,近年来颇受关注。它在基础研究、生物科学等众多领域都有非常重要的应用前景。THz波具有很多的优越性,具有重要的研究价值。本文简要的介绍了THz波及其在公共安全、环境探测、生物医学、天文观测、军事及通信方面的应用,然后深入的阐述了THz波的产生方法。 关键词:THz波的应用THz波产生方法 1.引言 随着现代科学技术的发展、国际竞争的加剧以及社会信息化进程不断加快,各种各样的新技术、新思想大量涌现出来。从云计算到物联网,从激光到太赫兹技术的出现都给了我们很大的机遇,同时也存在一定的挑战。为在国际竞争中立于不败之地,我们国家在“十二五”战略新兴产业发展重点中提出了应大力发展信息产业、生物产业、航空航天产业、新能源产业、新材料产业、节能环保产业、新能源汽车产等新型产业,另外国家还确定了五项科技领域,而太赫兹技术在这些领域的探索及应用中起着举足轻重的作用。 2.太赫兹简介及其应用 2.1太赫兹简介 太赫兹通常是指频率在0.1~10THz的电磁波,是上个世纪八十年代中后期才被正式命名的,在此之前科学家们称其为远红外射线。实际上早在一百年前,就有科学工作者涉及过这一波段。随着80年代一系列新技术、新材料的发展,特别是超快技术的发展,使得获得宽带稳定的脉冲THz源成为一种准常规技术,THz技术得以迅速发展,并在实际范围内掀起一股THz研究热潮。2004年,美国政府将THz科技评为“改变未来世界的十大技术”之一,而日本于2005年1月8日更是将THz技术列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。我国政府在2005年11月专门召开了“香山科技会议”,邀请国内多位在THz研究领域有影响的院士专门讨论我国THz事业的发展方向,并制定了我国THz技术的发展规划。另外,美国、欧洲、亚洲、澳大利亚等许多国家和地区政府、机构、企业、大学和研究机构纷纷投入到THz的研发热潮之中。 2.2 THz的应用 由于太赫兹的频率很高,所以其空间分辨率也很,又由于它的脉冲很短,所以具有很高的时间分辨率。由此,太赫兹成像技术和太赫兹波谱技术构成了太赫兹应用的两个主要关键技术。太赫兹的独特性能给公共安全、环境探测、生物医学、天文观测、军事及通信等领域带来了深远的影响。

卫星通信技术及其发展趋势

卫星通信技术及其发展趋势 朱军王培国 (成都军区) 摘要:综述了卫星通信网中使用的CDMA、抗干扰、MPLS等技术和卫星通信的发展趋势,并对我国卫星通信的发展进行了展望。 关键词:卫星通信CDMA 抗干扰MPLS 发展趋势 卫星通信是以卫星作为中继的一种通信方式,是在地面微波中继通信和空间电子技术的基础上发展起来的,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。 1 卫星通信网络的定义 卫星通信网络是利用人造地球卫星作为中继站转发无线电波,从而实现两个或多个地面站之间通信的网络。其中,地面站是指设在地球表面(包括地面、水面和大气层)的通信站,也称为地球站。通信卫星的作用相当于离地面很高的中继站。卫星通信网络分为延迟转发式通信网络和立即转发式通信网络。 当卫星的运行轨道属于低轨道时,对于相对较远的地面站而言,要进行远距离实时通信,除采用延迟转发方式(利用一颗卫星)外,也可以利用多颗低轨道卫星进行转发,这种网络就是通常所说的低轨道移动卫星通信网络。 2 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现

全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。 2.2 抗干扰技术 现代军事斗争中,敌我双方对卫星通信干扰与抗干扰技术对抗越来越激烈。未来战争中电磁环境将变得越来越复杂,卫星通信因其固有的特点而面临极大的威胁。由于通信卫星始终暴露在太空中,且信道是开放的,易于受对方攻击。因此,军事卫星通信中干扰和抗干扰是斗争双方关注的焦点,研究在复杂电磁环境下卫星通信抗干扰技术体制已成为提高军事通信装备生存能力、确保军事指挥顺畅的关键。 卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。 传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。 特别值得一提的一种抗干扰、抗搜索、抗截获的技术是跳频通信技术,它是在现代信息对抗日益激烈的形势下迅速发展起来的。各国军方对这一先进技术的发展和应用十分重视,不断加强对跳频抗干扰通信的研究和推广应用。目前,跳频技术装备正朝着宽频带、高速率、数字化、低功耗的方向快速发展,其信息战潜力巨大。 2.3 基于MPLS的移动卫星通信网络体系构架 MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

太赫兹技术及其应用详解

太赫兹技术及其应用详解 太赫兹研究主要集中在0.1-10 THz 频段。这是一个覆盖很广泛并且很特殊的一个频谱区域。起初,这一频段被称为THz Gap (太赫兹鸿沟),原因是这一频段夹在两个发展相对成熟的频,即电子学频谱和光学频谱之间。其低频段与电子学领域的毫米波频段有重叠,高频段与光学领域的远红外频段(波长0.03-1.0 mm)有重叠。由于这一领域的特殊性,形成了早期研究的空白区。但随着研究的开展,太赫兹频谱与技术对物理、化学、生物、电子、射电天文等领域的重要性逐渐显现,其应用也开始渗透到社会经济以及国家安全的很多方面,如生物成像、THz 波谱快速检测、高速通信、穿墙雷达等。太赫兹之所以具有良好的应用前景,主要得益于其光谱分辨力、安全性、透视性、瞬态性和宽带等特性。例如:自然界中许多生物大分子的振动和旋转频率都处在太赫兹频段,这对检测生物信息提供了一种有效的手段; 太赫兹频段光子能量较低,不会对探测体造成损坏,可以实现无损检测; 太赫兹波对介质材料有着良好的穿透能力,从而可作为探测隐蔽物体的手段; 太赫兹脉冲的典型脉宽在皮秒量级,可以得到高信噪比的太赫兹时域谱,易于对各种材料进行光谱分析; 此外,太赫兹频段的带宽很宽,从0.1-10 THz可为超高速通信提供丰富的频谱资源。 相对于毫米波技术,太赫兹技术的研究还处在探索阶段。太赫兹技术主要包括太赫兹波源、太赫兹传输和太赫兹检测等,其关键部件可以分为无源元件和有源器件。无源元件包括太赫兹传输线、滤波器、耦合器、天线等,而有源器件包括太赫兹混频器、倍频器、检波器、放大器、振荡器等。 1、太赫兹源伴随着太赫兹波生成技术的发展,太赫兹源的研究已有很多有价值的新进展。研发低成本、高功率、室温稳定的太赫兹源是发展太赫兹技术的基础。太赫兹源的分类多种多样,按照产生机理,可以分为基于光学效应和基于电子学的太赫兹源。按照源类型可以分成3 类:非相干热辐射源、宽带太赫兹辐射源以及窄带太赫兹连续波源。

第一届全国太赫兹科学技术学术年会会议手册

第一届全国太赫兹科学技术学术年会 会议手册 2015.3.25-27四川成都 主办单位:太赫兹科学协同创新中心,中国电子学会太赫兹分会 承办单位:自然科学基金-中科院太赫兹科学技术前沿发展战略研究基地,863-12专家组,中国电子科技集团公司第十三研究所专用集成电路 国家级重点实验室,电子科技大学物理电子学院 金牌赞助商:成都至上兴邦科技有限公司

第一届全国太赫兹科学技术学术年会 会议组织机构 大会主席:刘盛纲院士 大会委员会: 高级顾问:陈佳洱院士、周炳琨院士 主席团:刘盛纲院士、吴培亨院士、姚建铨院士、庄松林院士、范滇元院士、杨国桢院士、褚君浩院士、龚知本院士、樊明武院士、刘永坦院士、雷啸霖院士、吴一戎院士、李树深院士、金亚秋院士、许宁生院士、牛憨笨院士、彭堃墀院士、王育竹院士、朱中梁院士、涂铭旌院士、林祥棣院士、姜文汉院士、郭光灿院士、李言荣院士、龚克教授、谢维信教授 委员:陈健、罗先刚、刘濮鲲、蒋亚东、曹俊诚、张存林、崔铁军、冯志红、汪力、张伟力、唐传祥、金飚兵、王华兵、常胜江、盛政明、施卫、秦华、刘峰奇、刘伟伟、朱亦鸣、王金淑、姜万顺、杨梓强、鄢扬 会议执行主席:喻胜 会议秘书长:张雅鑫 副秘书长:钟任斌

第一届全国太赫兹科学技术学术年会 会议安排 会议时间:2015年3月25日-27日 时间安排: ●3月25日报道 ●3月26-27日会议 会议地点:电子科技大学沙河校区一教 会议报告形式: ●4份大会特邀报告(报告时间35分钟,提问时间5分钟) ●23份主题报告(报告时间20分钟,提问时间5分钟) ●20份口头报告(报告时间12分钟,提问时间3分钟) ●63份张贴报告 参展公司: 金牌赞助:成都至上兴邦科技有限公司 会议赞助:上海铭剑科技有限公司 (按笔画排名)中国电子科技集团公司第四十一研究所 北京先锋科技有限公司 成都美克锐科技有限公司

未来移动通信技术的发展趋势与展望探讨

未来移动通信技术的发展趋势与展望探讨 摘要科技不断发展,人类生活在不断进步,现在的社会是科技型的社会,是信息化的时代。而信息化需要的是计算机,需要的是互联网,为了紧跟时代的潮流,为了更加方便人们的交流,方便中国信息事业的发展,移动通讯也在一代一代的更新,一步一步向前迈进。新型的通信手段将成为促进社会进步、科技发展的中坚力量,本文将根据移动通讯来探讨其未来发展趋势与展望,并且进行研究分析,为我国移动通讯将来的发展提供探索新趋势。 关键词移动通信技术;发展;数据;信息时代 前言 随着信息时代的快速发展,科学技术的不断更新,通信技术也越来越受到人们的关注,它经过四代的变革更新,处在第五代的热潮之中。人们的工作、出行、购物,都要依靠移动通信来完成,因此,移动通信技术已经成为人们日常生活中必不可少的“必需品”。经过调查统计,我国移动用户的使用者已经突破了十亿,目前的使用量还在不断增加,呈现出了前所未有的热潮。移动通信技术的发展前景极为乐观,同时也促进了我国的信息发展。 1 移动通信系统的研究背景 移动通信系统是从二十世纪八十年代诞生的,直到现在,它一共经历了四次更新换代,预计到2020年将经过第五代的發展历程。 第一代通信技术是在二十世纪九十年代初完成的,它主要是通过模拟传输数据,因此传输的速度十分的慢,而且质量相对来说也较差,并且无法加密,安全系数也很低,业务量也很小,所以很快就被第二代移动通信技术淘汰了。 第二代移动通信技术开始于二十世纪九十年代的初期,这次它引入了较为密集的技术结构,并且还引用了智能技术,虽然比起第一代的通信技术好了很多,但依然有多的不足之处,传输的速率依然很慢,安全稳定系数依然不够高。 第三代通信技术的发展就更加的智能化,前两代无法解决的宽带服务,由于第三代通信技术的到来也有了相应的提供。它具有Internet的能力,还可以实现全球漫游,传送质量较高的图像等。 第四代通信技术就是现在我们使用的4G网络,上网的速度更加的快,并且有了移动宽带和WIFI。我国现已经进入了4G生活时代,4G具有极高的下载速度和高清的电视,是前三代无法达到的。 随着科学技术的发展,网络时代的需求越来越多,这就需要更加进一步的研究未来移动通信技术的发展趋势,从而使我国的信息发展跟上时代的脚步[1]。

世界军事形势发展趋势

《军事理论》论文10税务三班谢某某 世界军事形势发展趋势 话说天下大势,经济、政治、军事风云变幻,既耐人寻味又复杂多变,但其中貌似却有着一个规律:一切政治军事行动都是为了国家利益。既然如此,各国争相发展军事力量,那就必然有一定发展趋势了。 首先让我们来认识下当前世界军事的发展趋势。据《人民日报》2011年1月24日刊登国防大学战略教研部韩旭东与国防大学政治部宣传部刘德茂的分析文章称,进入新世纪第二个十年之际,随着众多国家纷纷加速提高军事实力,世界军事将呈现七大发展趋势。 军事战略调整步入“快车道”随着科索沃战争、阿富汗战争和伊拉克战争的爆发,为了适应新的国际军事形势,许多国家对本国军事战略进行了一定程度的调整。今年极可能再一次成为军事战略大调整的年份。去年底朝鲜半岛南北双方炮战的爆发,东北亚地区军情告急;因核问题受到美国军事威胁的伊朗正与其进行着军事“周旋”。新样式的武力恐吓将是新一轮军事战略调整的“催化剂”。 力量分化组合深层次发展随着美苏对抗的结束,各种军事力量开始 进行新的分化组合。今年,这种军事力量的分化组合将会向更深层次发展。去年4月,美国与俄罗斯签署了裁减核武器新条约;去年,俄罗斯与法国共同签署了合作协议,两国企业将共同为俄军建造“西北风”级军舰,这是北约成员国首次向俄罗斯出售先进的尖端武器。从上述合作可以看出,军事领域各种力量的合作已不再是阵营或联盟内部的合作,而是以国家利益为中心的国家与国家之间展开的合作。 军事软硬实力同时被重视在军事实力的较量中,人们不仅追求军事 硬实力,也追求军事软实力。奥巴马政府上台后,明确提出了“软实力”这个概念。从奥巴马政府上台后美军搞的联合军事演习看,与美军进行联合军事演习的国家数量比以前明显增多。加强与发展中国家的军事关系将是提高军事软实力的一个重要举措。 非核武器威力逼近核武器当前人们对核武器的战略威慑作用有新的 思考,认为核武器已成为限于有关国家之间进行较量与威慑的手段,对于大多数国家而言,非核武器已经成为真正的威慑,非核武器的竞争将趋向激烈。从目前情况看,美国已开始试验非核的高新武器,如空天飞机、多倍音速导弹等。 北约未来走向寻求新扩张冷战结束时,北约是一个拥有16个成员国 的军事组织。如今,北约已经成为包括欧洲绝大部分国家、拥有28个成员国的庞大军事组织。目前,北约已经将南高加索的格鲁吉亚武装起来,美国还用自己的武器武装了阿富汗政府的军队。北约已经成为世界上最大的军事集团。北约在安全上发挥着仅次于联合国的作用。为了维护世界霸权,美国将北约推向了“前台”。 虚拟空间斗争越来越激烈随着信息化技术的不断发展和军队信息化 的不断深化,越来越多的网络对抗力量将会出现。虚拟空间的斗争将没有战时与平时之分,网络空间的较量将越来越激烈。美国已经率先成立从事网络战的司令部,组成了“网军”。人们日常生活中不时遇到网络瘫痪、打不开页面、网页被黑等事件的发生。殊不知,这些“问

现代通信技术发展现状及其趋势

现代通信技术发展现状及其趋势 2008-12-25 19:48 【摘要】本文概述了现代通信技术的发展现状,并讲述了移动、卫星、光纤等通信方式。 关键词: 通信技术发展移动通信卫星通信光纤通信 一、引言 21世纪是一个信息社会,信息交流已经成为人们生活的基本需要。通信作为传输和交换信息的重要手段,是推动人类社会文明、进步与发展的巨大动力。电话技术的演变日新月异,传输媒介、交换设备、传输设备、终端设备和通信方式的改变都是影响电信通信的因素。 二、社会的需求,市场的需求 社会和市场的需求是刺激技术发展的原动力,对于信息技术的发展,市场同样起着举足轻重的推动作用。随着社会的发展,特别是近年来全球经济的发展,信息在社会生活中的地位越来越重要。以往那种单一、低效的信息传输方式已难以满足社会的需求,人们不仅要求所获取的信息数量更多、质量更好,还要求获得信息的手段更加方便、快捷,并能对信息系统实现实时、交互控制。社会与市场的这种需求再加上现代计算机技术的发展,对现代通信技术的发展起到了举足轻重的促进和导向作用。。 三、移动通信 为了实现客户对通信业务种类及数量的需求,移动电话通信系统在经历了模拟、GSM数字系统变革后,,又提供了一种能够全球漫游、支持多媒体等数据业务且有足够容量的第三代移动通信技术,既是码分多址技术(CDMA )——数字蜂窝移动通信系统。码分多址无线电通信技术是第三代无线电通信技术, 目前已在北美、东南亚和韩国被大规模投入商用。以前的模拟手机只能在模拟网覆盖地区使用, GSM 手机只能在GSM 网覆盖区使用, 两大系统互不兼容, 造成频率资源的浪费。采用CDMA 技术的新型手机由于实行的是双模式, 所以无论是数字网, 还是模拟网覆盖的地区, 都能自动转换工作方式, 不但可以提高频率资源利用率10~20倍,而且给用户带来方便;二是通话质量高,接近市话效果;三是发射功率在0.1~2000毫瓦之间所以对,人体辐射小。四是断话率低,保密能力强,因此,倍受用户的青睐。另外, 低地球轨道卫星开辟了移动通信的新领域, 掀起了卫星全球移动通信的新浪潮。将多个卫星链接在一起, 把地球天衣无缝地覆盖起来, 由多个蜂窝交换机网, 可连通地球上任何一点, 从而实现全球卫星移动通信,实现“电子地球村”的目标。 四、卫星通信 卫星通信是在空间技术和微波通信技术的基础上发展起来的一种通信方式。其利用人造地球卫星作为中继站来转发无线电信号,可实现两个或多个地球站之间的通信。全球卫星通信产业正在飞速发展, 卫星通信技术和电子技术取得了突破性进展,包括中、低轨道全球卫星移动通信系统在内的新系统不断涌现出来, 归纳起来,分为非同步(含低轨道L EO、中轨道M EO ) 和同步(同步轨道GEO ) 两大类。以低轨道卫星为基础的系统, 具有时延短、路径损耗小、能有效地频率复用、卫星互为备份、抗毁能力强等特点,多星组网可实现真正意义上的全球覆盖。典型的有“铱”系统、“全球星”系统。以静止轨道卫星为基础的系统, 使用卫星少, 卫星静止可实现昼夜通信, 监控卫星系统简单。这些系统, 正在步入产业化、商业化和国防化的轨道。卫星通信还有几项新技术:小天线地球站

相关文档
最新文档