事件相关脑电位

事件相关脑电位
事件相关脑电位

事件相关电位(ERPs)简介

事件相关电位(ERPs)简介 对大脑高级心理活动如认知过程作出客观评价,我们很难将意识或思维单纯归于大脑某一部位组织、细胞或神经递质的改变,因为仅采用具体、微观的自然科学手段如神经分子生物学、神经生化学难以解决具体的心理活动。二十世纪六十年代,Sutton提出了事件相关电位的概念,通过平均叠加技术从头颅表面记 录大脑诱发电位来反映认知过程中大脑的神经电生理改变,因为事件相关电位与认知过程有密切关系,故被认为是“窥视”心理活动的“窗口”。神经电生理技术的发展,为研究大脑认知活动过程提供了新的方法和途径。 诱发电位(EvokedPotentials,EPs),也称诱发反应(EvokedResponse),是指给予神经系统(从感受器到大脑皮层)特定的刺激,或使大脑对刺激(正性或负性)的信息进行加工,在该系统和脑的相应部位产生的可以检出的、与刺激有相对固定时间间隔(锁时关系)和特定位相的生物电反应。诱发电位应具备如下特征:1.必须在特定的部位才能检测出来;2.都有其特定的波形和电位分布;3.诱发电位的潜伏期与刺激之间有较严格的锁时关系,在给予刺激时几乎立即或在一定时

间内瞬时出现。 诱发电位的分类方法有多种,依据刺激通道分为听觉诱发电位、视觉诱发电位、体感诱发电位等;根据潜伏期长短分为早潜伏期诱发电位、中潜伏期诱发电位、晚(长)潜伏期诱发电位和慢波。临床上实用起见,将诱发电位分为两大类:与感觉或运动功能有关的外源性刺激相关电位和与认知功能有关的内源性事件相关电位(Event-RelatedPotentialS,ERPs) 内源性事件相关电位与外源性刺激相关电位有着明显的不同。ERPs是在注意的基础上,与识别、比较、判断、记忆、决断等心理活动有关,反映了认知过程的不同方面,是了解大脑认知功能活动的“窗口”。经典的ERPs成分包括P1、Nl、P2、N2、P3(P300),其中P1、N1、P2为ERPs的外源性(生理性)成分,受刺激物理特性影响;N2、P3为ERPs的内源性(心理性)成分,不受刺激物理特性的影响,与被试的精神状态和注意力有关。现在ERPs的概念范围有扩大趋势,广义上讲,ERPs尚包括N4(N400)、失匹配阴性波(MismatchNegatiVity,MMN)、伴随负反应(ContigentNegatiVeVariaeion,CNV)等。但长期以来有人通常以P3 作为事件相关电位的代称,虽有失偏颇,但临床应用甚广。

“事件相关电位”名词中英对照表

关于“事件相关电位”名词中英对照表(欢迎修改和补充) 自发电位electroencephalogram(EEG) 自然状态下发生的脑电 事件相关电位event-related potentials(ERP) 诱发电位evoked potentials(EP) 垂直眼电vertical electrooculogram(VEOG) 水平眼电horizontal electrooculogram(HEOG) 输入阻抗input impendance 输出阻抗output impendance 共模抑制比common mode rejection ratio(CMRR) 高通high-pass 低通low-pass 模数转换analog to digital converter(A/D) 波幅分辨率amplitude resolution(AR) 陷波notch-filter 主成分分析法principal component analysis ( PCA) 独立成分分析法independent component analysis (ICA) 源成分分析法source component analysis 分析时间epoch 参考电极转换reference electrode conversion 总平均grand average 数字滤波digital filter 平滑化smooth 听觉诱发电位auditory evoked potential (AEP) 视觉诱发电位visual evoked potential (VEP) 体觉诱发电位somatosensory evoked potential (SEP) 脑干听觉诱发电位brain-stem auditory evoked potential (BAEP) 正慢波positive slow wave (PSW) 负慢波negative slow wave (NSW) 失匹配负波mismatch negativity (MMN) 加工负波processing negativity (PN) 预备电位readiness potential (RP) 外源性成分exogenous component 内源性成分endogenous component 中源性成分mesogenous compenent 伴随性负波contingent negative variation (CNV) 朝向波orientation wave 期待波expectance wave 解脱波extrication of mental load (EML) 运动相关电位movement-related potential 运动预备电位bereitschafts potential (BSP) Cz 点上记录的电位 运动电位moto potential (MP) 即N2 运动后电位post-movement wave 即P2 内侧前额叶mesial prefrontal cortex 辅助运动区supplementary motor area (SMA) 初级运动区primary motor cortex 偏侧预备电位lateralized readiness potential (LRP) 晚正复合体late positive complex

事件相关电位技术在注意研究几大问题中的应用

第25卷第1期 中南民族大学学报(自然科学版) V o l.25N o.1 2006年3月 Journal of South2Central U niversity fo r N ati onalities(N at.Sci.Editi on) M ar.2006 α事件相关电位技术在注意研究几大问题中的应用 谢 莺 (中南民族大学认知科学实验室,武汉430074) 摘 要 指出了事件相关电位(ER P)是从人类被试头皮无损记录的认知相关电位,其高的时间分辨率使得它在人类认知功能的研究中发挥了重要作用.介绍了注意研究中长期存在争论的4大基本问题,分析了ER P在解决这些问题中发挥的关键作用,并展望了今后的应用前景. 关键词 事件相关电位;注意;电生理 中图分类号 B841 文献标识码 A 文章编号 167224321(2006)0120043204 Appl ica tion of Even t-Rela ted Poten ti a l Technology i n A tten tion Stud ies X ie Y ing Abstract Event2related po tentials(ER P s)are reco rded non2invasively from hum an scalp,w ho se h igh tempo ral reso luti on has enable them to p lay mo re and mo re i m po rtant ro le in our understanding of hum an cogniti on.In th is paper w e introduced four basic issues about attenti on w h ich is long controversial and the critical ro le ER P p layed in so lving these p roblem s,and p ropo sed future study directi on to study hum an cogniti on. Keywords event2related po tential;attenti on;electrophysi o logy X ie Y i ng L ect,Cognitive Science L ab,B i om edical Engineering Institute,SCU FN,W uhan430074,Ch ina 在当今认知科学研究中,各种认知成像技术正发挥越来越重要的作用.其中尤其值得关注的是ER P技术.ER P技术是一种从人类被试头皮上无损记录脑电位来提取人类认知相关信号的功能性认知成像技术.相对于其他的脑代谢 脑血流信号,ER P 信号具有很高的时间分辨率,因而使ER P技术在众多认知研究获得广泛的应用[1]. ER P在注意研究领域的应用最为引人注目.自上世纪50年代以来,注意一直是认知研究的热点.在过去的几十年中,众多学者采用各种手段设计多种实验范式,对注意的各个方面进行了广泛的探索,取得了令人瞩目的成果,但围绕某些基本问题长期存在激烈争论.ER P中的许多成分与特定的认知加工阶段相联系,并能够随着注意状态变化而变化,因而在阐明这些问题中发挥了关键作用.本文将介绍注意研究中面临的4个基本而又重大的问题,以及是如何应用ER P来解决这些问题的. 1 选择部位:早期还是晚期 注意在信息加工的哪一阶段发挥作用,即注意选择早晚的问题是注意研究面临的一个最为基本的问题,也是认知心理学中一个长期存在争论的问题.早期选择观点认为,人的知觉加工能力是有限的,而人类面临的信息往往是大量的,因此注意的作用在于选择一部分刺激进入知觉加工;相反,晚期选择观点认为,人的知觉加工能力是无限的,因而无论注意刺激还是非注意刺激都得到了充分的知觉加工,注意的作用仅仅在于选择相关的反应.两种观点都得到大量实验结果的支持,自提出之日起即始终存在激烈争论. 限于方法学上的缺陷,传统行为学实验始终未能就这一问题做出明确回答.ER P的高时间分辨率 α收稿日期 2005212202 作者简介 谢 莺(19722),女,讲师,研究方向:认知脑研究,E2m ail:yingxie@https://www.360docs.net/doc/c1904045.html, 基金项目 国家自然科学基金资助项目(39670213)

脑事件相关电位与知觉过程

脑事件相关电位与知觉过程 欣克(R.F.Hink,1977)首先报道脑事件相关电位(ERPs)中N1波,即潜伏期约100毫秒左右的负波,是知觉形成中注意参与水平的客观指标。全神贯注注意知觉刺激、分散注意和不注意条件下,N1波波幅依次下降。当知觉刺激长时呈现,注意力下降时,N1波幅也随之下降;当这一持续性刺激突然捎失或停止,则N1波幅值却迅速回跃。 80年代以来,更多的研究报道认为,潜伏期约200毫秒的负渡N2和潜伏期为250-500毫秒的P3波间的关系,对知觉过程是更灵敏的生理指征。当N2波幅值增大不伴有P3波改变时,将N2波称为不匹配负波(Mismatch negativity,MMN),这时外部刺激的物理特性制约着MMN幅值,刺激的物理强度大,MMN的幅值则高。因此,把这种制约于外部刺激物理属性的ERPs成分,称为外源性ERPs成分,反映着知觉形成的自动加工过程。当N2波幅值伴随着P3波幅值的同时变化时,此时N2波称为加工负波(Processing negativiry),是知觉在主体脑内形成的生理指标,这时人们才理解知觉刺激的含义。 因此,将与N2波同时变化的P3渡称为意义波或理解波,是制约于知觉主体对刺激产生知觉和理解的内源性ERPs成分。由此可见,根据N2渡和P3波变化的关系,可以了解知觉形成的阶段性和机制。里特(W. Ritter1983)明确提出,P3渡之前的N2波与人类对外部刺激的模式识别有关,P3波与刺激的理解和分类有关。奴特阿年(R.Naatanen)等(1983)对事件相关电位内源性成分的概念进一步发展,认为它应包括N2波与P3波,根据其在人类认知过程中信息处理的意义,又将N2波分为两个成分,较早出现的N2波被称为不匹配负波,与人类认知活动开始时,脑对外部事件的差异匹配有关,可能是脑的次级感觉皮层活动的结果。稍后出现的N2z成分称为N2b,它与P3波的前部分P3a形成一个两相综合波N2b-P3a。这种综台波才是真正的事件相关电位的内源成分,与人类对外部刺激的朝向反射有关。雷诺(B. Renault)也提出事件相关电位中的3种内源性成分;顶一枕区皮层N2波在知觉信息处理的时相内出现}中央区皮质的双相N2b-P3a综合波,与人类受试对外部刺激的主动性信息处理有关,代表脑内沿着N2波所指出的方向对外部刺激的认知决策过程;顶叶P3b波,代表认知过程的终结,往往在被试对刺激给出运动反应时出现此波。简言之,3种内源性事件相关电位反映了人脑对外部事件信息处理的完整过程,顶-枕区N2波代表信息处理开始时相;中央区N2b-P3a综合波代表信息处理的决策时相;顶

事件相关电位

事件相关电位 事件相关电位,是指对大脑高级心理活动如认知过程作出客观评价,我们很难将意识或思维单纯归于大脑某一部位组织、细胞或神经递质的改变,因为仅采用具体、微观的自然科学手段如神经分子生物学、神经生化学难以解决具体的心理活动。 目录 ?1事件相关电位的基本概念 ?2诱发电位的特征 ?3事件相关电位的测试方法 ?4影响事件相关电位的因素 事件相关电位 - 事件相关电位的基本概念 对大脑高级心理活动如认知过程作出客观评价,我们很难将意识或思维单纯归于大脑某一部位组织、细胞或神经递质的改变,因为仅采用具体、微观的自然科学手段如神经分子生物学、神经生化学难以解决具体的心理活动。二十世纪六十年代,Sutton提出了事件相关电位的概念,通过平均叠加技术从头颅表面记录大脑诱发电位来反映认知过程中大脑的神经电生理改变,因为事件相关电位与认知过程有密切关系,故被认为是“窥视”心理活动的“窗口”。神经电生理技术的发展,为研究大脑认知活动过程提供了新的方法和途径。 事件相关电位(ERP)是一种特殊的脑诱发电位,通过有意地赋予刺激仪特殊的心理意义,利用多个或多样的刺激所引起的脑的电位。它反映了认知过程中大脑的神经点生理的变化,也被称为认知电位,也就是指当人们对某课题进行认知加工时,从头颅表面记录到的脑点位。经典的ERP主要成分包括P1、N1、P2、N2、P3,其中前三种称为外源性称为,而后两种称为内源性成分。这几种成分的主要特点是:首先不仅仅是大脑单纯生理活动的体现,而且反映了心理活动的某些方面;其次,它们的引出必须要有特殊的刺激安排,而且是两个以上的刺激或者是刺激的变化。其中P3是ERP中最受关注和研究的一种内源性成分,也是用于测谎的最主要指标。因此,在某种程度上,P3就成了ERP的代名词。

ERP事件相关电位基础知识介绍

(一)事件相关电位的基本概念 对大脑高级心理活动如认知过程作出客观评价,我们很难将意识或思维单纯归于大脑某一部位组织、细胞或神经递质的改变,因为仅采用具体、微观的自然科学手段如神经分子生物学、神经生化学难以解决具体的心理活动。二十世纪六十年代,Sutton提出了事件相关电位的概念,通过平均叠加技术从头颅表面记录大脑诱发电位来反映认知过程中大脑的神经电生理改变,因为事件相关电位与认知过程有密切关系,故被认为是“窥视”心理活动的“窗口”。神经电生理技术的发展,为研究大脑认知活动过程提供了新的方法和途径。 事件相关电位(ERP)是一种特殊的脑诱发电位,通过有意地赋予刺激仪特殊的心理意义,利用多个或多样的刺激所引起的脑的电位。它反映了认知过程中大脑的神经点生理的变化,也被称为认知电位,也就是指当人们对某课题进行认知加工时,从头颅表面记录到的脑点位。 ERPs不像普通诱发电位记录神经系统对刺激本身产生的反应,而是大脑对刺激带来的信息引起的反应。是在注意的基础上,与识别、比较、判断、记忆、决断等心理活动有关,反映了认知过程中大脑的神经电生理改变,是了解大脑认知功能活动的“窗口”。ERPs成分除受刺激物理特性影响的“外源性(生理性)成分”,还包括不受刺激物理特性的影响“内源性(心理性)成分”,与被试的精神状态和注意力有关。 经典的ERP主要成分包括: 外源性(生理性)成分:P1、N1、P2受刺激物理特性影响 内源性成分(心理性):N2、P3不受刺激物理特性影响,与被试的精神状态和注意力有关。 这几种成分的主要特点是:首先不仅仅是大脑单纯生理活动的体现,而且反映了心理活动的某些方面;其次,它们的引出必须要有特殊的刺激安排,而且是两个以上的刺激或者是刺激的变化。其中P3是ERP中最受关注和研究的一种内源性成分,也是用于测谎的最主要指标。因此,在某种程度上,P3就成了ERP 的代名词。 注:事件相关电位基本原理 1.EEG对ERPs的淹没 一次刺激诱发的ERP的波幅约2~10mV,比自发电位(EEG)小得多,淹没在EEG中,两者构成小信号与大噪音的关系,因此无法测量,无法研究。

事件相关电位与在面部表情强度的认知

事件相关电位与在面部表情强度的认知 摘要:大家可以从日常生活经验得知,情感的面部表情的强度差异很大,如轻微的愤怒、愤怒,或不安和轻度恐惧、焦虑和恐慌。然而,不同强度的情感面部表情事件相关电位尚未得到研究。因此,我们请了16名健康的参与者参与了性别决定任务,通过男性和女性的面 孔来显示愤怒,厌恶和恐惧表情及强度变化(50%,100%,150%)。ERP数据的分析显示强度在N170的振幅显著增加,但不是由情感类型决定。在电极P9和P10中200到600毫秒之间消极变化所致的力度最为显着。对于这个时间段,强度和负偏斜度之间有着明确的线性关系。对下颞枕叶中的两个对称位置放置电极并利用差分波形(150%减去50%的强度)偶极子源定位解释强度影响。进一步发现在颞极位置(FT 7和FT8)对于厌恶情绪的具体影响约为350-400毫秒。结果总结为情绪识别的两阶段模型,表明对进入的显着的面部信息编码存在初始监测过程。在第二步骤中,对脸的特定情绪内容进行解码是在情感特异性识别系统中。?2006爱思唯尔有限公司保留所有权利。 关键词:ERP;面部表情;基本情绪;恐惧;厌恶;愤怒;强度; N170;镜像神经元 1.简介: 人脸是社会信号的一个重要来源。它揭示了个人的身份和表情,以及不加以人为控制的我们另一方面的内心感受。面部信号在引导人际行为方面的重要性体现在心理过程的复杂功能架构中,它基于一个广泛分布的神经网络,专门用于解码这些信息 一个表情处理最有影响力的模型(布鲁斯&杨,1986)显示的初始结构的编码处理,是 用于随后处理身份和情绪的表情可分离通路。同时,这种模式中,身份处理被高度阐述并分馏成不同的子过程,表情的情感识别只是作为一个单一的和未分化的过程。 在过去十年的神经心理学研究中,已经大体上增进了对心理过程及潜在面部情感识别神经机制的理解。 道夫斯,Tranel,达马西奥和达马西奥等人(1994)首次阐述在杏仁核被损坏后会缺乏对恐惧面部表情的认识的研究。这些初步的研究结果,如今已重复应用在了无数的神经心理学研究中以调查人们病变或功能缺陷的杏仁核(Broks等,1998;考尔德等人,1996; Meletti 等人,2003; Sato等,2002;Sprengelmeyer等人,1999)。功能成像研究可以进一步表明,该识别恐惧的面孔是基于在空间上分布的神经网络,包括上丘,丘脑中继核,具条纹和纹外的区域,以及杏仁核(例如布莱特等人,1996; Fischer等人,2003; Morris等人,1996)。 在这个网络机构中,一条指向杏仁核和慢丘脑—皮质加工路径的快速分皮质处理线路被提出。快速处理路线形成一个进化旧系统的一部分,该系统能够快速地响应,自动地,和无意识地知觉到威胁,危险的信号。人体的快速路线也可以从个案和功能成像研究中得到验证证据(德盖尔德,VROOMEN,Pourtois,与Weiskrantz,1999)(Morris等人,1998;莫里斯,德盖尔德,Weiskrantz,与刀郎,2001年)。 在亨廷顿氏病人的面部表情识别的临床研究中可以得到一个不同的模型(杨,巴克,柯蒂斯&吉布森,1997; Hennenlotter等人,2004; Sprengelmeyer等人,1996; Sprengelmeyer,施罗德,年轻和Epplen,2006; Sprengelmeyer等人,1997;王Hoosain,杨萌,与王,2003)。患有这种疾病的参加者在对厌恶表情的识别方面受损。其他如帕金森氏病(Sprengelmeyer 等人,2003),抽动秽语综合征,强迫性障碍(Sprengelmeyer等人,1997年),和威尔森 氏病(Wang等人,2003)等疾病也与面部厌恶识别缺陷相关联。此外,功能成像研究(Hennenlotter等人,2004; Phillips等人,1997; Sprengelmeyer,劳施,Eysel,与Przuntek,1998)表明基底节和脑岛与认识厌恶表情有关。但对于恐惧,没有证据表明快速处理的路 线与厌恶有关。 在杏仁核和岛屿- 纹状体区域和恐惧、厌恶认知之间的关联的众多研究中,只有一项研

一、事件相关电位系统

一、事件相关电位系统 一、同步控制主机接口单元: 1、电位均衡器接口(均压器):系统包含电位均衡缆线的连接器,可以在测试房间连接到电位均衡器,有助于降低50/60Hz伪迹。 2、电源接口:包含医学标准电源(90-264VAC) 3、分离触发接口:包含分离的触发A和B共两个接口 4、模拟输出接口:包含16通道模拟输出(通过软件配置) 5、SPI接口:包含SPI(串行外设接口)连接 6、Ethernet接口:包含与PC连接的以太网接口 7、COM口:包含为插入连接提供的不少于三个串口 8、非分离触发接口I/O(输入/输出):包含非分离式8-bit触发输入(8-bit输入) 9、Headbox电源:包含不少于四个与Headbox连接的电源 10、Headbox数据传递光纤接口:包含不少于四个与Headbox连接的光纤口 二、同步控制主机单元技术参数: 1)导联数:160导,其中单级导联128导,并且可以采集32导其他生物电指标, ★2)采样率:≥20,000~80,000 Hz/导, 且512导同步采集情况下不低于20,000 Hz/导, 40导同步采集情况下不低于40,000 Hz/导 3)带宽: ≥DC ~3000 Hz ★4)脑电放大器兼容fMRI核磁环境、TMS环境,并可与眼动系统同步采集 ★5)最大支持1200高导联脑电,支持最多30人团体实验, ★6)支持同步采集视频脑电。 7)放大器与同步控制主机之间通过光纤传输数据 8)操作系统:WIN8 9)系统通过ISO9000、ISO13485认证 10)投标公司出具制造厂家或中国总代理针对项目的授权。 三、放大器接口单元: 1、电源接口(连接同步控制主机单元) 2、光纤接口(连接同步控制主机单元) 3、电极帽接口(37 针D-连接口) 4、双极/电生理同步模块接口(25针D-连接口) 四、放大器技术参数 1)导联数:40导,其中单级导联32导,并且可以采集8导其他生物电指标,系统可以通过增加放大器升级到512-1200导。 ★2)采样率:≥38,000 Hz/导 ★3)带宽: ≥DC ~3000 Hz ★4)脑电放大器兼容fMRI核磁环境、TMS环境,并可与眼动系统同步采集 ★5)A/D 转换分辨率: ≥23 Bit ★6)输入阻抗:≥1 GOhms 7)共模抑制比:≥105dB 8)输入噪声:<0.8 μV RMS (0-200 Hz),<2.0 μV RMS (DC-3500 Hz)

脑电图EEG和事件相关电位ERP的区别

脑电图(EEG)和事件相关电位(ERP)有什么区别? (一)脑电图(EEG)检查:是在头部按一定部位放置8-16个电极,经脑电图机将脑细胞固有的生物电活动放大并连续描记在纸上的图形。正常情况下,脑电图有一定的规律性,当脑部尤其是皮层有病变时,规律性受到破坏,波形即发生变化,对其波形进行分析,可辅助临床对及脑部疾病进行诊断。 脑波按其频率分为:δ波(1-3c/s)θ波(4-7c/s)、α波(8-13c/s)、β波(14-25c/s)γ波(25c/s以上),δ和θ波称为慢波,β和γ波称为快波。依年龄不同其基本波的频率也不同,如3岁以下小儿以δ波为主,3-6岁以θ波为主,随年龄增长,α波逐渐增多,到成年人时以α波为主,但年龄之间无明确的严格界限,如有的儿童4、5岁枕部α波已很明显。正常成年人在清醒、安静、闭眼时,脑波的基本节律是枕部α波为主,其他部位则是以α波间有少量慢波为主。判断脑波是否正常,主要是根据其年龄,对脑波的频率、波幅、两侧的对称性以及慢波的数量、部位、出现方式及有无病理波等进行分析。许多脑部病变可引起脑波的异常。如颅内占位性病变(尤其是皮层部位者)可有限局性慢波;散发性脑炎,绝大部分脑电图呈现弥漫性高波幅慢波;此外如脑血管病、炎症、外伤、代谢性脑病等都有各种不同程度的异常,但脑深部和线部位的病变阳性率很低。须加指出的是,脑电图表现没有特异性,必须结合临床进行综合判断,然而对于癫痫则有决定性的诊断价值,在阗痫发作间歇期,脑电图可有阵发性高幅慢波、棘波、尖波、棘一慢波综合等所谓“痛性放电”表现。为了提高脑电图的阳性率,可依据不同的病变部位采用不同的电极放置方法。如鼻咽电极、鼓膜电极和蝶骨电极,在开颅时也可将电极置于皮层(皮层电极)或埋入脑深部结构(深部电极);此外,还可使用各种诱发试验,如睁闭眼、过度换气、闪光刺激、睡眠诱发、剥夺睡眠诱发以及静脉注射美解眠等。但蝶骨电极和美解眠诱发试验等方法,可给病人带来痛苦和损害,须在有经验者指导下进行。随着科技的日益发展,近年来又有了遥控脑电图和24小时监测脑电图。 (二)脑电地形图(BEAM) 是在EEG的基础上,将脑电信号输入电脑内进行再处理,通过模数转换和付立叶转换,将脑电信号转换为数字信号,处理成为脑电功率谱,按照不同频带进行分类,依功率的多少分级,最终使脑电信号转换成一种能够定量的二维脑波图像,此种图像能客观地反映各部电位变化的空间分布状态,其定量标志可以用数字或颜色表示,再用打印机打印在颅脑模式图上,或贮存在软盘上。它的优越性在于能发现EEG中较难判别的细微异常,提高了阳性率,且病变部位图像直观醒目,定位比较准确,从而客观对大脑机能进行评价。主要应用于缺血性脑血管病的早期诊断及疗效予后的评价,小儿脑发育与脑波变化的研究,视觉功能的研究,大浮肿瘤的定位以及精神药物的研究等。 (三)脑磁图 电流在导体内流动进,导体周围可以产生磁场。同理,脑细胞的电活动也有极微弱的磁场,可用高灵敏度的磁场传感器予以检测,并记录其随时间变化的关系曲线,是即脑磁图,其图形与EEG图形相似。与EEG相比,优点是:可发现有临床意义而又不能被EEG记录到的波形,或检测到皮质局限性的异常电磁活动;此外,磁检器不与头皮接触,也减少了干扰造成的伪差。若与EEG同时描记,还可对不同物理方位的皮质群进行分析。但由于屏蔽、电磁装置以及其他设备复杂、昂贵,目前国内尚无此项设备。 (四)诱发电位 给人体感官、感觉神经或运动皮质、运动神经以刺激,兴奋沿相应的神经通路向中枢或外周传导,在传导过程中,产生的不断组合传递的电位变化,即为诱发电位,对其加以分析,即或反映出不同部位的神经功能状态。由于诱发电位非常微小,须借助电脑对重复刺激的信号进行叠加处理,将其放大,并从淹没于肌电、脑电的背景中提取出来,才能加以描记。主

脑电图和事件相关电位的区别

(一)脑电图(EEG)检查:是在头部按一定部位放置8-16个电极,经脑电图机将脑细胞固有的生物电活动放大并连续描记在纸上的图形。正常情况下,脑电图有一定的规律性,当脑部尤其是皮层有病变时,规律性受到破坏,波形即发生变化,对其波形进行分析,可辅助临床对及脑部疾病进行诊断。 脑波按其频率分为:δ波(1-3c/s)θ波(4-7c/s)、α波(8-13c/s)、β波(14-25c/s)γ波(25c/s以上),δ和θ波称为慢波,β和γ波称为快波。依年龄不同其基本波的频率也不同,如3岁以下小儿以δ波为主,3-6岁以θ波为主,随年龄增长,α波逐渐增多,到成年人时以α波为主,但年龄之间无明确的严格界限,如有的儿童4、5岁枕部α波已很明显。正常成年人在清醒、安静、闭眼时,脑波的基本节律是枕部α波为主,其他部位则是以α波间有少量慢波为主。判断脑波是否正常,主要是根据其年龄,对脑波的频率、波幅、两侧的对称性以及慢波的数量、部位、出现方式及有无病理波等进行分析。许多脑部病变可引起脑波的异常。如颅内占位性病变(尤其是皮层部位者)可有限局性慢波;散发性脑炎,绝大部分脑电图呈现弥漫性高波幅慢波;此外如脑血管病、炎症、外伤、代谢性脑病等都有各种不同程度的异常,但脑深部和线部位的病变阳性率很低。须加指出的是,脑电图表现没有特异性,必须结合临床进行综合判断,然而对于癫痫则有决定性的诊断价值,在阗痫发作间歇期,脑电图可有阵发性高幅慢波、棘波、尖波、棘一慢波综合等所谓“痛性放电”表现。为了提高脑电图的阳性率,可依据不同的病变部位采用不同的电极放置方法。如鼻咽电极、鼓膜电极和蝶骨电极,在开颅时也可将电极置于皮层(皮层电极)或埋入脑深部结构(深部电极);此外,还可使用各种诱发试验,如睁闭眼、过度换气、闪光刺激、睡眠诱发、剥夺睡眠诱发以及静脉注射美解眠等。但蝶骨电极和美解眠诱发试验等方法,可给病人带来痛苦和损害,须在有经验者指导下进行。随着科技的日益发展,近年来又有了遥控脑电图和24小时监测脑电图。 (二)脑电地形图(BEAM) 是在EEG的基础上,将脑电信号输入电脑内进行再处理,通过模数转换和付立叶转换,将脑电信号转换为数字信号,处理成为脑电功率谱,按照不同频带进行分类,依功率的多少分级,最终使脑电信号转换成一种能够定量的二维脑波图像,此种图像能客观地反映各部电位变化的空间分布状态,其定量标志可以用数字或颜色表示,再用打印机打印在颅脑模式图上,或贮存在软盘上。它的优越性在于能发现EEG中较难判别的细微异常,提高了阳性率,且病变部位图像直观醒目,定位比较准确,从而客观对大脑机能进行评价。主要应用于缺血性脑血管病的早期诊断及疗效予后的评价,小儿脑发育与脑波变化的研究,视觉功能的研究,大浮肿瘤的定位以及精神药物的研究等。 (三)脑磁图 电流在导体内流动进,导体周围可以产生磁场。同理,脑细胞的电活动也有极微弱的磁场,可用高灵敏度的磁场传感器予以检测,并记录其随时间变化的关系曲线,是即脑磁图,其图形与EEG图形相似。与EEG相比,优点是:可发现有临床意义而又不能被EEG记录到的波形,或检测到皮质局限性的异常电磁活动;此外,磁检器不与头皮接触,也减少了干扰造成的伪差。若与EEG同时描记,还可对不同物理方位的皮质群进行分析。但由于屏蔽、电磁装置以及其他设备复杂、昂贵,目前国内尚无此项设备。 (四)诱发电位 给人体感官、感觉神经或运动皮质、运动神经以刺激,兴奋沿相应的神经通路向中枢或外周传导,在传导过程中,产生的不断组合传递的电位变化,即为诱发电位,对其加以分析,即或反映出不同部位的神经功能状态。由于诱发电位非常微小,须借助电脑对重复刺激的信号进行叠加处理,将其放大,并从淹没于肌电、脑电的背景中提取出来,才能加以描记。主要是对波形、主波的潜伏期、波峰间期和波幅等进行分析,为临床诊断提供参考,目前临床

脑电图(EEG)和事件相关电位(ERP)的区别

脑电图(EEG)和事件相关电位(ERP)的区别

脑电图(EEG)和事件相关电位(ERP)有什么区别? (一)脑电图(EEG)检查:是在头部按一定部位放置8-16个电极,经脑电图机将脑细胞固有的生物电活动放大并连续描记在纸上的图形。正常情况下,脑电图有一定的规律性,当脑部尤其是皮层有病变时,规律性受到破坏,波形即发生变化,对其波形进行分析,可辅助临床对及脑部疾病进行诊断。 脑波按其频率分为:δ波(1-3c/s)θ波(4-7c/s)、α波(8-13c/s)、β波(14-25c/s)γ波(25c/s以上),δ和θ波称为慢波,β和γ波称为快波。依年龄不同其基本波的频率也不同,如3岁以下小儿以δ波为主,3-6岁以θ波为主,随年龄增长,α波逐渐增多,到成年人时以α波为主,但年龄之间无明确的严格界限,如有的儿童4、5岁枕部α波已很明显。正常成年人在清醒、安静、闭眼时,脑波的基本节律是枕部α波为主,其他部位则是以α波间有少量慢波为主。判断脑波是否正常,主要是根据其年龄,对脑波的频率、波幅、两侧的对称性以及慢波的数量、部位、出现方式及有无病理波等进行分析。许多

脑部病变可引起脑波的异常。如颅内占位性病变(尤其是皮层部位者)可有限局性慢波;散发性脑炎,绝大部分脑电图呈现弥漫性高波幅慢波;此外如脑血管病、炎症、外伤、代谢性脑病等都有各种不同程度的异常,但脑深部和线部位的病变阳性率很低。须加指出的是,脑电图表现没有特异性,必须结合临床进行综合判断,然而对于癫痫则有决定性的诊断价值,在阗痫发作间歇期,脑电图可有阵发性高幅慢波、棘波、尖波、棘一慢波综合等所谓“痛性放电”表现。为了提高脑电图的阳性率,可依据不同的病变部位采用不同的电极放置方法。如鼻咽电极、鼓膜电极和蝶骨电极,在开颅时也可将电极置于皮层(皮层电极)或埋入脑深部结构(深部电极);此外,还可使用各种诱发试验,如睁闭眼、过度换气、闪光刺激、睡眠诱发、剥夺睡眠诱发以及静脉注射美解眠等。但蝶骨电极和美解眠诱发试验等方法,可给病人带来痛苦和损害,须在有经验者指导下进行。随着科技的日益发展,近年来又有了遥控脑电图和24小时监测脑电图。 (二)脑电地形图(BEAM) 是在EEG的基础上,将脑电信号输入电脑内

相关文档
最新文档