继电保护课程设计__线路距离保护原理及计算原则

继电保护课程设计__线路距离保护原理及计算原则
继电保护课程设计__线路距离保护原理及计算原则

电力系统继电保护课程设计

题目:距离保护

专业:电气工程及其自动化

班级:

姓名:

学号:

2017年 6月 13 日

1 设计原始资料

1.1 具体题目

如下图1.1所示网络,系统参数为

:

E ?=、G210ΩX =、10ΩG3=X ,140(13%)41.2L =+=km 、403=L km ,

50=BC L km 、30=CD L km 、30=DE L km ,线路阻抗/4.0Ωkm ,?Ш0.85rel rel K K ==,??

0.8rel K =,

max 300BC I =A 、max 200CD I =A 、max 150CE I =A ,5.1=ss K ,15.1=re K ,Ш1=0.5t s 。

A

B

图1.1电力系统示意图

试对线路1L 、2L 、3L 进行距离保护的设计。

1.2 要完成的内容

本文要完成的内容是对线路的距离保护原理和计算原则的简述,并对线路各参数进行分析及对保护3和5进行距离保护的具体整定计算并注意有关细节。

2 分析要设计的课题内容

2.1 设计规程

根据继电保护在电力系统中所担负的任务,一般情况下,对动作于跳闸的继电保护在技术上应满足四个基本要求:选择性、速动性、灵敏性、可靠性。这几“性”之间,紧密联系,既矛盾又统一,按照电力系统运行的具体情况配置、配合、整定。

2.2 本设计的保护配置

2.2.1 主保护配置

距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。 (1) 距离保护的Ⅰ段

A

B

C

图2.1 距离保护网络接线图

瞬时动作,Ⅰt 是保护本身的固有动作时间。

保护1的整定值应满足:AB set Z Z

?1考虑到阻抗继电器和电流、电压互感器的误差,引入可靠系数I

rel K (一般取0.8-0.85),则

A B Ι

rel Ι1set Z K Z =?

同理,保护2的Ⅰ段整定值为:

BC Ι

rel Ι2set Z K Z =?

(2) 距离Ⅱ段

整定值的选择和限时电流速断相似,即应使其不超出下一条线路距离Ⅰ段的保护范围,同时带有高出一个t ?的时限,以保证选择性,例如在图2.1中,当保护2第Ⅰ段末端短路时,保护1的测量阻抗为:

Ι

2set A B m ?+=Z Z Z

引入可靠系数II

rel K (一般取0.8),则保护1的Ⅱ段的整定阻抗为:

[]??ΙΙΙ

set.1rel AB set.2AB BC =(+)=0.8+(0.8~0.85)Z K Z Z Z Z

2.2.2 后备保护配置

为了作为相邻线路的保护装置和断路器拒绝动作的后备保护,同时也作为距离Ⅰ段与距离Ⅱ段的后备保护,还应该装设距离保护第Ⅲ段。

距离Ⅲ段:整定值与过电流保护相似,其启动阻抗要按躲开正常运行时的负荷阻抗来选择,动作时限还按照阶梯时限特性来选择,并使其比距离Ⅲ段保护范围内其他各保

护的最大动作时限高出一个t ?。

3保护配合的整定

3.1 QF3距离保护的整定与校验

3.1.1 QF3距离保护第I 段整定

(1) QF3的Ⅰ段的整定阻抗为

??set.3rel BC 1= 1.2600.428.8Z K L z =??=Ω

(3.1)

(2) 动作时间

0s I =t (第Ⅰ段实际动作时间为保护装置固有的动作时间) 3.1.2 QF3距离保护第Ⅱ段整定

(1) 与相邻线路D C L -距离保护Ⅰ段相配合,QF3的Ⅱ段的整定阻抗为: ?????

set.3rel BC 1set.2=(+)=0.8(500.4+10.2)=24.16ΩZ K L z Z ??

(3.2)

??

set.2rel CD 1==0.850.430=10.2ΩZ K L z ??

(3.3)

(2) 灵敏度校验

距离保护Ⅱ段,应能保护线路的全长,本线路末端短路时,应有足够的灵敏度。

??set.3sen

BC 24.16===1.208<1.25500.4

Z K Z ? 即满足灵敏度sen 1.25K ≥的要求。

距离保护3的Ⅱ段应改为与相邻线路的Ⅱ段配合。

?????

set.2rel 1CD rel 1DE =(+)=0.8(0.430+0.850.420)=15.04ΩZ K z L K z L ????

(3.4)

??

.2

BC set sen

BC Z Z K Z +==2015.04 1.752 1.2520

+=>

即满足灵敏度sen 1.25K ≥的要求。

(3) 动作时间,与相邻线路D C L -距离Ⅰ段保护配合,则

???=+Δ=0.5t t t s

3.1.3 QF3距离保护第Ⅲ段整定

(1) 整定阻抗:按躲开被保护线路在正常运行条件下的最小负荷阻抗min L Z 来整定计

算。 Ш

ШLmin rel set.3

re ss 190.530.85===93.88Ω1.15 1.5

Z K Z

K K ?? (3.5)

1min Lmin Lmax =

==190.53ΩU Z I (3.6)

其中,rel =0.85K Ⅲ

,re =1.15K ,ss =1.5K 。

(2) 灵敏度校验

距离保护Ⅲ段,即作为本线路Ⅰ、Ⅱ段保护的近后备保护,又作为相邻下级线路的远后备保护,灵敏度应分别进行校验。

作为近后备保护时,按本线路末端短路进行校验,计算式为:

Ш

set.3sen

BC 93.88===4.69>1.5500.4Z K Z ?

即满足灵敏度sen 1.5K ≥的要求。

作为远后备保护时,按相邻线路末端短路进行校验,计算式为:

Шset.3sen

BC CD 93.88===2.93>1.2+20+12

Z K Z Z 即满足灵敏度sen 1.2K ≥的要求。

(3) 动作延时

ШШ31=+2Δ=1.5t t t s

3.2 QF5距离保护的整定与校验

3.2.1 QF5距离保护第I 段整定

(1) 线路3L 的Ⅰ段的整定阻抗为:

??set.5rel 31==0.85400.4=13.6ΩZ K L z ??

(3.7)

(2) 动作时间

0s I =t (第Ⅰ段实际动作时间为保护装置固有的动作时间)

3.2.2 QF5距离保护第Ⅱ段整定

(1) 与相邻线路C B L -距离保护Ⅰ段相配合,线路3L 的Ⅱ段的整定阻抗为:

?????set.5rel 31 b.min set.2=(+=0.8(400.4+2.0317)=40.41ΩZ K L z K Z ???)

(3.8)

??

set.2

rel BC 1==0.85500.4=17ΩZ K L z ?? (3.9) 其中,Ω=48.161L Z ,16ΩL3=Z , 20ΩBC =Z 。

I I Z Z Z I 16.48

1616

L1L3L33+=+=

(3.10)

2.0316

16.48

16L3L1L33b.min =+=+==

Z Z Z I I K

(3.11)

L1

Z

图3.2 等效电路图 (2) 灵敏度校验

距离保护Ⅱ段,应能保护线路的全长,本线路末端短路时,应有足够的灵敏度。

??

set sen

L340.41===2.53>1.25400.4

Z K Z ? 即满足灵敏度sen 1.25K ≥的要求。 (3) 动作时间:与相邻线路C B L -距离Ⅰ段保护配合,则

??I =+Δ=0.5s t t t

3.2.3 QF5距离保护第Ⅲ段整定

(1) 整定阻抗:按躲开被保护线路在正常运行条件下的最小负荷阻抗min L Z 来整定。 Ш

Ш

Lmin rel set

re ss 190.530.85===93.88Ω1.15 1.5

Z K Z

K K ?? (3.12)

Lmin Lmin Lmax =

==190.53ΩU Z I

(3.13)

其中,Ш

rel =0.85K , 1.15re =K , 1.5ss =K 。

(2) 灵敏度校验

距离保护Ⅲ段,即作为本线路Ⅰ、Ⅱ段保护的近后备保护,又作为相邻下级线路的

远后备保护,灵敏度应分别进行校验。

作为近后备保护时,按本线路末端短路进行校验,计算式为:

Шset.5sen

L393.88===5.87>1.5400.4Z K Z ?

即满足灵敏度sen 1.5K ≥的要求。

作为远后备保护时,按相邻线路末端短路进行校验,计算式为:

Шset.5sen

L3 b.max BC 93.88

===1.66>1.2+16+2.0320Z K Z K Z ?

即满足灵敏度sen 1.2K ≥的要求。 (3) 动作延时

Ш

Ш51=+3Δ=2t t t s

4继电保护设备选择

4.1 互感器的选择

4.1.1 电流互感器的选择

根据电流互感器安装处的电网电压、最大工作电流和安装地点要求,选型号为LCWB6-110W2屋外型电流互感器。 4.1.2 电压互感器的选择

根据电压等级选型号为YDR-110的电压互感器。

4.2 时间继电器的选择

根据题目要求时间继电器选AC220V 、嵌入式、限时动作的继电器,则其型号为H3CR-G8EL 。

5 二次展开原理图的绘制

5.1 绝对值比较原理的实现

绝对值比较的一般动作A 表达式如式B A Z Z ≤所示。绝对值比较式的阻抗元件,

既可以用阻抗比较的方式实现,也可以用电压比较的方式实现。

A

B U U

(5.1) 式(5-1)称为电压形式的绝对值比较方程,电路图如图5.1所示。

5.2 保护跳闸回路

三段式距离保护主要由测量回路、起动回路和逻辑回路三部分组成,启动回路、测量回路、逻辑回路,如图5.2所示。

起动回路主要由起动元件组成,起动元件可由电流继电器、阻抗继电器、负序电流继电器或负序零序电流增量继电器构成。

测量回路的Ⅰ段和Ⅱ段,由公用阻抗继电器1、ZKJ 2组成,而第Ⅲ段由测量阻抗继电器ZKJ 3组成。测量回路是测量短路点到保护安装处的距离,用以判断故障处于那一段保护范围。

逻辑回路主要由门电路和时间电路组成。与门电路包括与门1Y 、2Y 、或门H 和禁止门JZ ,用以分析判断是否应该跳闸。

5.3 原理接线图

KT 为时间继电器,KS 为信号继电器,KZ 为阻抗继电器,TA 为电流互感器,如图5.3所示。

T

图5.1绝对值比较的电压形成

图5.2保护跳闸回路

TAa

图5.3原理展开图

6心得体会

从对继电保护所提出的基本要求来评价距离保护,可以得出如下几个主要的结论:

(1)根据距离保护工作原理,它可以在多电源的复杂网络中保证动作的选择性。

(2)距离I段是瞬时动作的,但是它只能保护线路全长的80%-85%。

(3)距离保护较电流、电压保护具有较高的灵敏度。

输电线路的距离保护习题答案

:___________ 班级: ___________ 序号:___________ 输电线路的距离保护习题 一、填空题: 1、常规距离保护一般可分 为、和三部分。 2、距离保护I段能够保护本线路全长的。 3、距离保护第Ⅲ段的整定一般按照躲开来整定。 4、阻抗继电器按比较原理的不同,可分为式 和式。 5、方向阻抗继电器引入非故障相电压的目的是为了__________________________________。 6、若方向阻抗继电器和全阻抗继电器的整定值相同,___________继电器受过渡电阻影响 大,继电器受系统振荡影响大。 7、全阻抗继电器和方向阻抗继电器均按躲过最小工作阻抗整定,当线路上发生短路时, _______________继电器灵敏度更高。 8、校验阻抗继电器精工电流的目的是__________________。 9、阻抗继电器的0°接线是指_________________,加入继电器的___________________。 10、助增电流的存在,使距离保护的测量阻抗,保护范 围,可能造成保护的。 11、根据《220~500kV电网继电保护装置运行整定规程》的规定,对50km以下的线路,相间距离保护中应有对本线末端故障的灵敏度不小于的延时保护。 二、选择题: 1、距离保护装置的动作阻抗是指能使阻抗继电器动作的。

(A)最小测量阻抗;(B)最大测量阻抗;(C)介于最小与最大测量阻抗之间的一个定值;(D)大于最大测量阻抗的一个定值。 2、为了使方向阻抗继电器工作在状态下,故要求继电器的最大灵敏角等于被保护线路的阻抗角。最有选择;(B)最灵敏;(C)最快速;(D)最可靠。 3、距离保护中阻抗继电器,需采用记忆回路和引入第三相电压的 是。 (A)全阻抗继电器;(B)方向阻抗继电器;(C)偏移特性的阻抗继电器;(D)偏移特性和方向阻抗继电器。 4、距离保护是以距离元件作为基础构成的保护装置。 (A)测量;(B)启动;(C)振荡闭锁;(D)逻辑。 5、从继电保护原理上讲,受系统振荡影响的有。 (A)零序电流保护;(B)负序电流保护;(C)相间距离保护;(D)相间过流保护。 6、单侧电源供电系统短路点的过渡电阻对距离保护的影响是。 (A)使保护范围伸长;(B)使保护范围缩短;(C)保护范围不变;(D)保护范围不定。 7、方向阻抗继电器中,记忆回路的作用是。 (A)提高灵敏度;(B)消除正向出口三相短路的死区;(C)防止反向出口短路动作;(D)提高选择性。 8、阻抗继电器常用的接线方式除了00接线方式外,还有。(A)900接线方式? (B)600接线方式? (C)300接线方式? (D)200接线方式 三、判断题: 1、距离保护就是反应故障点至保护安装处的距离,并根据距离的远近而确定动作时间的一种保护装置。() 2、距离Ⅱ段可以保护线路全长。() 3、距离保护的测量阻抗的数值随运行方式的变化而变化。() 4、方向阻抗继电器中,电抗变压器的转移阻抗角决定着继电器的最大灵敏角。() 5、阻抗继电器的最小精确工作电压,就是最小精确工作电流与电抗变压器转移阻抗值的乘积。() 6、在距离保护中,“瞬时测定”就是将距离元件的初始动作状态,通过起动元件的动作而固定下来,以防止测量元件因短路点过渡电阻的增大而返回,造成保护装置拒绝动作。()

继电保护课程设计(完整版)

继电保护原理课程设计报告评语: 考勤(10) 守纪 (10) 设计过程 (40) 设计报告 (30) 小组答辩 (10) 总成绩 (100) 专业:电气工程及其自动化 班级:电气1004 姓名:王英帅 学号:201009341 指导教师:赵峰 兰州交通大学自动化与电气工程学院 2013年7月18日

1 设计原始资料 1.1 具体题目 如下图所示网络,系统参数为: 3115/E =? kV ,G115X =Ω、G310X =Ω,160L =km ,340L =km ,B-C 50L =km , C-D 30L =km ,D-E 20L =km ,线路阻抗0.4Ω/km , I rel 1.2K =、III rel rel 1.15K K II ==,A 300I m ax C.-B =、C-D.max 200A I =、D-E.max 150A I =,SS 1.5K =,re 0.85K = G1 G3 98 4 51 2 3 A B C D E L1L3 1.2 要完成的任务 我要完成的是对保护5和保护3进行三段电流保护的整定设计,本次课程设计通过对线路的主保护和后备保护的整定计算来满足对各段电流及时间的要求。 2 设计的课题内容 2.1 设计规程 根据规程要求110kV 线路保护包括完整的三段相间距离保护、三段接地距离保护、三段零序方向过流保护和低频率保护,并配有三相一次重合闸功能、过负荷告警功能,跳合闸操作回路。在本次课程设计中涉及的是三段过流保护。其中,I 段、II 段可方向闭锁,从而保证了保护的选择性。 2.2 本设计保护配置 2.2.1 主保护配置 主保护:反映整个保护元件上的故障并能最短的延时有选择的切出故障的保护。在本设计中,I 段电流速断保护、II 段限时电流速断保护作为主保护。 2.2.2 后备保护配置

继电保护课程设计_线路距离保护原理

继电保护原理课程设计报告 专业: 班级: 姓名: 学号: 指导教师: 交通大学自动化与电气工程学院 2014年 7月11日

1 设计原始资料 1.1 具体题目 如下图1所示网络,系统参数为 : E ?=、 X G1=15Ω、X G2=11Ω、X G3=11Ω、L 1=L 2=61km ,51=BC L km 、31=CD L km 、21=DE L km ,线路阻抗/4.0Ωkm ,85.0===I I I I I I rel rel rel K K K ,I BCmax =311A 、I CDmax =211A 、 I DEmax =151A 、5.1=ss K ,2.1=re K 。 A B 图1电力系统示意图 试对线路中保护8和保护1做距离保护。 1.2 要完成的容 本次课程设计要完成的容是熟悉线路的距离保护原理及对保护1和护保护8进行整定计算,并对所要用的互感器进行选择。 2 分析要设计的课题容 2.1 设计规程 在设计中要满足继电保护的四个基本要求:选择性、速动性、灵敏性、可靠性。各个保护之间要相互配合,保证每个保护都不会出现勿动和拒动现象。并且在各个保护的配合下,实现全线的有效保护,杜绝“死区”的存在。 2.2 本设计的保护配置 2.2.1 主保护配置 距离保护Ⅰ段和距离保护Ⅱ段构成距离保护的主保护。

(1) 距离保护的Ⅰ段 A B C 图2距离保护网络接线图 瞬时动作,Ⅰt 是保护本身的固有动作时间,一般可以忽略。 保护1的整定值应满足:AB set Z Z

110KV线路继电保护课程设计15431汇编

第1章绪论 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。 随着计算机硬件的迅速发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护。 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以最常见的110KV电网线路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。 1.1 继电保护 电力系统的运行中最常见也是最危险的故障是发生各种形式的各种短路。发生短路时可能会产生以下后果: 1、电力系统电压大幅度下降,广大用户负荷的正常工作遭到破坏。 2、故障处有很大的短路电流,产生的电弧会烧坏电气设备。 3、电气设备中流过强大的电流产生的发热和电动力,使设备的寿命减少,甚至遭到破坏。 4、破坏发电机的并列运行的稳定性,引起电力系统震荡甚至使整个系统失去稳定而解列瓦解。 因此在电力系统中要求采取各种措施消除或减少发生事故的可能性,一旦发生故障,必须迅速而有选择性的切除故障,且切除故障的时间常常要求在很短的时间内(十分之几或百分之几秒)。实践证明只有在每个元件上装设保护装置才有可能完成这个要求,而这种装置在目前使用的大多数是由单个继电器或继电器及其附属设备的组合构成的,因此称为继电保护装置,它能够反应电力系统中电气元件发生故障或不正常运行状

相间距离保护

实验二 距离保护 (1)实验目的 1. 了解距离保护的原理; 2. 熟悉相间距离保护的圆特性; 3. 掌握距离保护的逻辑组态方法。 (2)实验原理及逻辑框图 1.距离保护的原理及整定方法; 由于电流保护整定值的选择、保护范围以及灵敏系数等方面都直接受电网接线方式及系统运行方式的影响,在35KV 及以上电压的复杂网络中,很难满足选择性、灵敏性以及快速切除故障要求,为此采用距离保护来实现。 距离保护是反应故障点至保护安装地点之间的距离(阻抗),并根据距离的远近而确定动作时间的一种保护装置。 距离保护的Ⅰ段: 它和电流保护的Ⅰ段很类似,都是按躲开下条线路出口处短路,保护装置不误动来整定,可靠系数一般取0.8-0.85。AB K dz Z K Z =?2 ' 距离保护的Ⅱ段: 按以下两点原则来整定: 1)与相邻线路距离保护第Ⅰ段相配合,)'(12 ''??+=dz fz AB K dz Z K Z K Z K K -----一般取0.8;fz K -------应采用当保护1第Ⅰ段末端短路时可能出现的最 小值。如果遇到有助增电流或外汲电流的影响,系数fz K 取小。 2)躲开线路末端变电所变压器低压侧出口处短路时的阻抗值。 K K -----一般取0.7;fz K -------应采用当短路时可能出现的最小值。 计算后,取以上两式中的较小一个,动作时限为下条线路一段配合,一般为0.5S 。 校验:灵敏度一般为≥1.25。 距离保护的Ⅲ段: 一般按躲开最小负荷阻抗来整定。 2.距离保护评价 1)可以在多电源复杂网络中保证动作的选择性。 2)距离Ⅰ段不能保护全长,两端合起来就是30%-40%的线路不能瞬时切除,须经0.5S 的延时才能切除,在220KV 及以上电网中有时候是不满足稳定性要求的,不能作为主保护。 3)由于阻抗继电器同时反应于电压的减低和电流的增加而动作,它较电流、电压保护灵敏。 4)距离Ⅰ段的保护范围不受系统运行方式变化影响,其他两段影响也小,保护范围比较稳定。 5)距离保护接线复杂,可靠性比电流保护低。

继电保护课程设计

目录 电力系统继电保护课程设计任务书 (1) 一、设计目的 (1) 二、课题选择 (1) 三、设计任务 (1) 四、整定计算 (1) 五、参考文献 (2) 输电线路三段式电流保护设计 (3) 一、摘要 (3) 二、继电保护基本任务 (3) 三、继电保护装置构成 (4) 四、继电保护装置的基本要求 (4) 五、三段式电流保护原理及接线图 (6) 六、继电保护设计 (7) 1.确定保护3在最大、最小运行方式下的等值电抗 (7) 2.相间短路的最大、最小短路电流的计算 (8) 3.整定保护1、2、3的最小保护范围计算 (8) 4.整定保护2、3的限时电流速断保护定值,并校验灵敏度 (9) 5.保护1、2、3的动作时限计算 (11) 参考文献: (12)

电力系统继电保护课程设计任务书 一、设计目的 1、巩固和加深对电力系统继电保护课程基础理论的理解。 2、对课程中某些章节的内容进行深入研究。 3、学习工程设计的基本方法。 4、学习设计型论文的写作方法。 二、课题选择 输电线路三段式电流保护设计 三、设计任务 1、设计要求 熟悉电力系统继电保护、电力系统分析等相关课程知识。 2、原理接线图 四、整定计算 ,20,3/1151Ω==G X kV E φ

,10,1032Ω=Ω=G G X X L1=L2=60km ,L3=40km, LB-C=30km,LC-D=30km, LD-E=20km,线路阻抗0.4Ω/km, 2.1=I rel K ,=∏rel K 15.1=I ∏rel K , 最大负荷电流IB-C.Lmax=300A, IC-D.Lmax=200A, ID-E.Lmax=150A, 电动机自启动系数Kss=1.5,电流继电器返回系数Kre=0.85。 最大运行方式:三台发电机及线路L1、L2、L3同时投入运行;最小运行方式:G2、L2退出运行。 五、参考文献 [1] 谷水清.电力系统继电保护(第二版)[M].北京:中国电力出版社,2013 [2] 贺家礼.电力系统继电保护[M].北京:中国电力出版社,2004 [3] 能源部西北电力设计院.电力工程电气设计手册(电气二次部分).北京: 中国电力出版社,1982 [4] 方大千.实用继电保护技术[M].北京:人民邮电出版社,2003 [5] 崔家佩等.电力系统继电保护及安全自动装置整定计算[M].北京:水利电 力出版社,1993 [6] 卓有乐.电力工程电气设计200例[M].北京:中国电力出版社,2002 [7] 陈德树.计算机继电保护原理与技术[M].北京:水利电力出版社,1992

继电保护课程设计 实现对线路的距离保护利用短路时电压、电流同时变化的特征,比值反应故障点到保护处距离

电力系统继电保护课程设计 专业:电气工程及其自动化 班级:电气09 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2012 年 7月 7日

1 设计原始资料 1.1 具体题目 如图1.1所示系统中,发电机以发电机-变压器组方式接入系统,最大开机方式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台也可能1台运行。 参数为:E ?=, 1.1 2.1 1.2 2.215G G G G X X X X ====Ω,1.1 1.410T T X X =Ω ,0.10.430T T X X =Ω , 1.3 2.3 1.4 2.410G G G G X X X X ====Ω,1.5 1.620T T X X ==Ω, 0.50.640T T X X ==Ω,60km A B L -=,40km B C L -=,线路阻抗120.4Ωkm Z Z ==, 0 1.2km Z =Ω,线路阻抗角均为75°,m a x m a x ..300A A B L C B L I I --==,负荷功率因数角为30°; 1.2SS K =, 1.2re K =,0.85I rel K =,0.75II rel K =,变压器均装有快速差动保护。试对1、2、3、4进行距离保护的设计。 图1.1 系统网路连接图 1.2 完成内容 我们要完成的内容是实现对线路的距离保护。距离保护是利用短路时电压、电流同时变化的特征,测量电压与电流的比值,反应故障点到保护安装处的距离而工作的保护。 2 分析课题设计内容 2.1 保护配置 2.1.1 主保护配置 距离保护的主保护是距离保护Ⅰ段和距离保护Ⅱ段。 (1) 距离保护第Ⅰ段

电力系统继电保护课程设计

课程设计报告 课程名称电力系统继电保护 设计题目110kV线路距离保护的设计 设计时间2016-2017学年第一学期 专业年级电气134班 姓名王学成 学号 2013011983 提交时间 2016年12月19日 成绩 指导教师何自立许景辉 水利与建筑工程学院

第1章、概述 (2) 1.1距离保护配置 (2) 1.1.1主保护配置 (2) 1.1.2后备保护配置 (3) 1.2零序保护配置 (4) 1.2.1零序电流I段(速断)保护 (4) 1.2.2零序电流II段保护 (5) 第2章、系统分析 (5) 2.1故障分析 (5) 2.1.1故障引起原因 (5) 2.1.2故障状态及其危害 (5) 2.1.3 短路简介及类别 (6) 2.2输电线路保护主要形式 (7) (1)电流保护 (7) (2)低电压保护 (7) (3)距离保护 (7) (4)差动保护 (7) 2.3对该系统的具体分析 (8) 2.3.1对距离保护的分析 (8) 2.3.2对零序保护的分析 (8) 2.4整定计算 (8) 2.4.1距离保护的整定计算 (8) 2.4.2零序保护的整定计算 (14) 2.4.3结论 (20) 2.5原理图及动作分析 (20) 2.5.1原理图 (20) 2.5.2动作分析 (22) 第3章、总结 (22)

摘要 距离保护是以距离测量元件为基础构成的保护装置,又称阻抗保护。当系统正常运行时,保护装置安装处的电压为系统的额定电压,电流为负载电流,而发生短路故障时,其电压降低、电流增大。因此,电压和电流的比值,在正常状态下和故障状态下是有很大变化的。由于线路阻抗和距离成正比,保护安装处的电压与电流之比反映了保护安装处到短路点的阻抗,也反映了保护安装处到短路点的距离。所以可按照距离的远近来确定保护装置的动作时间,这样就能有选择地切除故障。 本设计为输电线路的距离保护,简述了输电线路距离保护的原理具体整定方法和有关注意细节,对输电网络距离保护做了详细的描述,同时介绍了距离保护的接线方式及阻抗继电器的分类,分析了系统振荡系统时各发电机电势间的相角差随时间周期性变化和短路过渡电阻影响。最后通过MATLAB建模仿真分析本设计的合理性,及是否满足要求。 关键词:距离保护;整定计算;

输电线路的距离保护

课程设计题目35kv输电线路的继电保护 专业: 班级: 学号: 学生姓名: 指导教师:

目录 第一章:任务的提出与方案的提出 1.1前言 (3) 1.2绪论 (4) 1.3摘要 (5) 1.4基本原理 (6) 第二章:详细设计: 2.1最大负荷电流的计算 (7) 2.2短路电流的计算 (7) 2.3线路距离保护的设计 (7) 第三章:总体设计 3.1距离保护的优缺点 (10) 3.2继电保护装置的选择 (10) 3.3结论 (12) 第四章:结束 4.1设计感言 (22) 4.2参考文献 (13)

第一章 1.1前言: 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了五大部分,电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。

1.2、绪论 (一)电力系统继电保护的作用 电力系统在运行中,可能发生各种故障和不正常运行状态,最常见同时也是最危险的故障是发生各种型式的短路。在发生短路时可能产生以下的后果. 1.通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏; 2.短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命; 3.电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量; 4.破坏电力系统并列运行的稳定性,引起系统振动,甚至使整个系统瓦解; 电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。例如,因负荷超过电气设备的额定值而引起的电流升高(一般又称过负荷),就是一种最常见的不正常运行状态。由于过负荷,使元件载流部分和绝缘材料的温度不断升高,加速绝缘的老化和损坏,就可能发展成故障。此外,系统中出现功率缺额而引起的频率降低,发电机突然甩负荷而产生的过电压,以及电力系统发生振荡等,都属于不正常运行状态。 故障和不正常运行状态,都可能在电力系统中引起事故。事故,就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。 系统事故的发生,除了由于自然条件的因素(如遭受雷击等)以外,一般者是由于设备制造上的缺陷、设计和安装的错误、检修质量不高或运行维护不当而引起的。因此,只要充分发挥人的主观能动性,正确地掌握客观规律,加强对设备的维护和检修,就可能大大减少事故发生的机率,把事故消灭在发生之前。 在电力系统中,除应采取各项积极措施消除或减少发生故障的可能性以外,故障一旦发生,必须迅速而有选择性地切除故障元件,这是保证电力系统安全运行的最有效方法之一。

线路保护介绍

保护配置 基本配置 系统差异 接地系统和不接地系统的差异 分相保护和不分相保护的差异:不一致、单跳、单重 电压的差异:电容电流和末端过电压、网架中心和重要程度 功能介绍 距离保护: 距离元件采用比相式姆欧继电器,即由工作电压Uop 与极化电压Up 构成比相方程。 比相式距离继电器的通用动作方程为:0 09090<<-P OP U U Arg 式中:工作电压 OP set U U I Z =-?,极化电压1P U U =-。 对接地距离继电器,工作电压为: ()set OP Z I K I U U ??+-=ΦΦΦ03 对相间距离继电器,工作电压为: set OP Z I U U ?-=ΦΦΦΦΦΦ 装置中三段式接地与相间距离继电器,在正序极化电压较高时由正序电压极化否则进入三相低压程序,此时采用记忆正序电压作为极化电压。 采用非记忆的正序电压作为极化电压,故障期间,正序电压主要由健全相电压形成,正

序电压同故障前保持一致,继电器具有很好的方向性。 距离保护正方向故障动作特性 应用于较短输电线路时,为了提高抗过渡电阻能力,极化电压中使用了接地距离偏移角如图中所示θ1,该定值可以由用户整定为0°, 15° 或 30°。接地距离偏移角会使动作特性圆向第一象限移动。 虽然这可提高测量过渡电阻的能力,在高阻接地故障条件下保证很好的动作性能,但是如果在线路对侧存在助增电源的情况下,对于经过渡电阻接地的故障可能会出现超越现象。为了防止超越,通常距离保护Ⅰ、Ⅱ段和零序电抗元件配合使用。 零序电抗 工作电压: ()s e t OP Z I K I U U ??+-=ΦΦΦ03 极化电压: D P Z I U ?-=Φ0,式中D Z 为模拟阻抗,幅值为1,角度为78°。 比相方程为 ()0 00090390

继电保护及课程设计_第二次作业

继电保护及课程设计_第二次作业 36. 电力系统发生故障时,继电保护装置应将故障部分切除 ,电力系统出现不正常工作时,继电保护装置一般应发出信号。 37. 继电保护的可靠性是指保护在应动作时不拒动 ,不应动作时不误动。 38. 本线路限时电流速断保护的保护范围一般不超出相邻下一线路电流速 断保护的保护范围,故只需带0.5s 延时即可保证选择性。 39. 检验电流保护灵敏系数时,最小短路电流I d.min是指在被保护范围末端,在最小运行方式下的两相短路电流。40. 为保证选择性,过电流保护的动作时限应按阶梯原则整定,越靠近电源处的保护,时限越长。 41. 电流继电器的返回系数过低,将使过电流保护的动作电流增 大,保护的灵敏系数降低。 42. 电流保护的接线系数定义为流过继电器的电流与电流互感器二次电 流之比,故两相不完全星形接线的接线系数 为 1 。 43. 中性点不接地电网发生单相接地后,将出现零序电压U0,其值为故障前相电压 值,且电网各处零序电压相等。44. 绝缘监视装置给出信号后,用依次断开线路方法查找故障线路,因此该装置适用于出线较少的情况。 45. 阻抗继电器根据比较原理的不同分为幅值比较式和相位比较式两类。 46. 当保护范围不变时,分支系数越大(小),使保护范围越小(大),导致灵敏性越低(高)。 47. 阻抗继电器的执行元件越灵敏,其精确工作电流越小。 48. 三种圆特性的阻抗继电器中,方向阻抗继电器受过渡电阻的影响最大,全阻抗继电器受过

渡电阻的影响最小。 49. 阻抗继电器受系统振荡影响的程度取决于两个因素,即保护的安装地点和阻抗继电器的特性。 50. 闭锁式高频方向保护在故障时启动发信,而正向元件动 作时停止发信,其动作跳闸的基本条件是正向元件动作且收不到闭锁信号。 51. 方向高频保护是比较线路两侧端功率方向,当满足功率方向同时指向线路条件时,方向高频保护动作。 52. 线路纵联保护载波通道的构成部件包括输电线 路、高频阻波器、耦合电容器、结合滤波器、高频电缆、保护间隙、接地刀闸和收发信机。 53. 相差高频保护是比较线路两端电流的相位,当满足电流相位同相条件时,相差高频保护动作。54. 高频保护启动发信方式有保护启 动、远方启动和手动启动。 55. 具有同步检定和无电压检定的重合闸,在线路一侧,当线路无电压时,允许该端线路的重合闸重合;而在另一侧,需检测母线电压和线路电压满足同期 条件时允许重合闸重合。 56. 在变压器的励磁涌流中,除有大量的直流分量外,还有大量的高次谐波分量,其中以二次谐波为主。 57. 对于变压器纵差动保护,在正常运行和外部故障时,流入差动继电器的电流为零(理论值)。 58.名词解释:选择性 答:选择性——是指首先由故障设备的保护切除故障,系统中非故障部分仍继续运行,以尽量缩小停电范围。当保护或断路器拒动时,才由相邻设备的保护或断路器失灵保护切除故障。 59.名词解释:速动性 答:速动性——是指保护装置应尽可能快的切除短路故障。 60.名词解释:灵敏性 答:灵敏性——是指在设备的被保护范围内发生金属性短路时,保护装置应具有的反应能力。 61.名词解释:系统最大(小)运行方式

继保整定计算课程设计报告()(1)

$ 课程设计报告 ( 2015 -- 2016 年度第 1 学期) < 名称:继电保护整定计算 院系:电气与电子工程学院 班级: 学号: 学生姓名: 指导教师:肖仕武、薛安成 \ 设计周数:两周 成绩: 日期:2016年 1 月 7 日

一、课程设计的目的与要求 1.课程设计的目的 1.1巩固《电力系统继电保护原理》课程的理论知识,掌握运用所学知识分析和解决生产实际问题的 能力。 1.2通过对国家行业颁布的有关技术规程、规范和标准学习,建立正确的设计思想,理解我国现行的 技术政策。 1.3初步掌握继电保护设计的内容、步骤和方法。 1.4提高计算、制图和编写技术文件的技能。 2.课程设计的要求 2.1理论联系实际。对书本理论知识的运用和对规程、规范的执行必须考虑到任务书所规定的实际情 况,切忌机械地搬套。 2.2独立思考。在课程设计过程中,既要尽可能参考有关资料和主动争取教师的指导,也可以在同学 之间展开讨论,但必须坚持独立思考,独自完成设计成果。 2.3认真细致。在课程设计中应养成认真细致的工作作风,克服马虎潦草不负责的弊病,为今后的工 作岗位上担当建设任务打好基础。 2.4按照任务书规定的内容和进度完成。 二、设计正文 1.某一水电站网络如图所示。 已知: (1)发电机为水轮立式机组,功率因数为、额定电压、次暂态电抗为、负序阻抗为; (2)水电站的最大发电容量为2×5000kW,最小发电容量为5000kW,正常运行方式发电容量为2×5000kW;(3)平行线路L1、L2同时运行为正常运行方式; (4)变压器的短路电压均为10%,接线方式为Yd-11,变比为。 (5)负荷自起动系数为; (6)保护动作时限级差△t =; (7)线路正序电抗每公里均为Ω,零序电抗为3倍正序电抗; 试求: (1)确定水电站发电机、变压器相间短路主保护、后备保护的配置方式; (2)确定6QF断路器的保护配置方式,计算它们的动作定值、动作时限,并进行灵敏度校验; (3)确定平行线路L1、L2的1QF、3QF相间短路主保护和后备保护,计算它们的动作定值、动作时限,并进行灵敏度校验; (4)假设平行线路L1、L2两侧配置有三相重合闸,计算三相重合闸装置的整定值。 (5)继电保护6QF的接线图及展开图。

线路距离保护的设计

线路距离保护的设计Revised on November 25, 2020

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 线路距离保护的设计 初始条件: 原始数据:接线图如图所示, 参数说明:发电机、变压器的参数示于图中,线路正序阻抗为Ω/km,线路长度示于图中,降压变电站变压器差动保护动作时限为0s,过流保护动作时间为1s. 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.选择并整定1、3、4、5、8、9号保护装置; 2.绘制10km长线路(1DL与5DL所在线路)上保护的原理图; 3.编写设计说明书; 时间安排: 5月21日:领取任务书,分小组学习设计指导书及设计规程; 5月22日:分小组学习电流电压保护、距离保护工作原理和整定方法; 5月23-27日:决定保护整体设计方案; 5月28-29日:进行保护整定计算、设备选型及图纸绘制; 5月30日:对配置结果进行分析并调试修改配置及整定方法; 5月30日:撰写设计说明书; 5月30日:答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月 日

线路距离保护的设计 摘要 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电路保护和计算机继电保护。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。 关键字:继电保护,电流保护,距离保护

继电保护课程设计

1. 前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次110kv电网继电保护设计的任务主要包括了五大部分,运行方式的分析,电路保护的配置和整定,零序电流保护的配置和整定,距离保护的配置和整定,原理接线图及展开图。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

2. 运行方式分析 电力系统运行方式的变化,直接影响保护的性能,因此,在对继电保护进行整定计算之前,首先应该分析运行方式。需要着重说明的是,继电保护的最大运行方式是指电网在某种连接情况下通过保护的电流值最大,继电保护的最小运行方式是指网在某种连接情况下通过保护的电流值最小。 图1 110kV电网系统接线图 系统接线图如图1所示,发电机以发电机—变压器组方式接入系统,最大开机方 式为4台机全开,最小开机方式为两侧各开1台机,变压器T5和T6可能2台 也可能1台运行。参数如下: 电动势:E = 115/3kv; 发电机:= = = = 5 + (15 5)/14=, = = = = 8 + (9 8)/14=; 变压器:~ = 5 + (10 5)/14=, ~ = 15 + (30 15)/14=., = = 15 + (20 15)/14=, = = 20 + (40 20)/14=; 线路:L A-B = 60km,L B-C = 40km,线路阻抗z1 = z2 = /km,z0 = /km, =60km× /km=24,=40km×/km=16; =60km×/km=72,=40km×/km=48; = = 300A; K ss = ,K re = ; 电流保护:K I rel = ,K II rel = , 距离保护:K I rel = ,K II rel = 负荷功率因数角为30,线路阻抗角均为75,变压器均装有快速差动保护。

220kV输电线路距离保护设计课程设计(论文)

辽宁工业大学 电力系统继电保护课程设计(论文)题目:220kV输电线路距离保护设计(3) 院(系):电气工程学院 专业班级:电气1 学号: 学生姓名: 指导教师:(签字) 起止时间: 2013.12.30-2014.1.10

课程设计(论文)任务及评语

续表 注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算

摘要 对于如今现代电网环境,对输电线路的电流电压保护构成简单,对没有特殊要求的中低压电网,都能满足保护要求。但是随着对电网质量的日益提高,灵敏度受系统运行方式的影响有时保护范围很小,再者,该保护的整定计算比较麻烦,这使得其在35KV及以上的复杂网络中很难适用,为此研究了性能更好的保护原理和方案距离保护。 本文主要设计对220kV输电线路距离保护,按照躲开下一条线路出口处短路的原则计算保护1距离保护第Ⅰ段,第Ⅱ段,第Ⅲ段的整定值和灵敏度。分析系统在最小运行方式下振荡时,保护1各段距离保护的动作情况。并且分析在具体故障点给定后,保护1的三段式距离保护的反应。最后绘制三段式距离保护的原理框图,分析其动作过程,并采用MATLAB建立简单电力系统三段式距离保护的模型,进行仿真分析。 关键词:三段式距离保护;MATLAB仿真;系统振荡;

目录 第1章绪论 (1) 1.1继电保护概述 (1) 1.2本文研究内容 (1) 第2章输电线路距离保护整定计算 (2) 2.1 距离Ι段整定计算 (2) 2.2距离Ⅱ段整定计算 (2) 2.3距离Ⅲ段整定计算 (3) 2.4系统振荡和短路过渡电阻影响分析 (4) 第3章距离保护原理图的绘制与动作过程分析 (5) 3.1距离保护原理图 (5) 3.2距离保护原理说明 (5) 第4章 MATLAB建模仿真分析 (7) 4.1距离保护的MATLAB仿真 (7) 4.2距离保护仿真波形及分析 (8) 第5章课程设计总结 (10) 参考文献 (11)

电力系统继电保护课程设计

前言 《电力系统继电保护》作为电气工程及其自动化专业的一门主要课程,主要包括课堂讲学、课程设计等几个主要部分。在完成了理论的学习的基础上,为了进一步加深对理论知识的理解,本专业特安排了本次课程设计。电能是现代社会中最重要、也是最方便的能源。而发电厂正是把其他形式的能量转换成电能,电能经过变压器和不同电压等级的输电线路输送并被分配给用户,再通过各种用电设备转换成适合用户需要的其他形式的能量。在输送电能的过程中,电力系统希望线路有比较好的可靠性,因此在电力系统受到外界干扰时,保护线路的各种继电装置应该有比较可靠的、及时的保护动作,从而切断故障点极大限度的降低电力系统供电范围。电力系统继电保护就是为达到这个目的而设置的。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过此次线路保护的设计可以巩固我们本学期所学的《电力系统继电保护》这一课程的理论知识,能提高我们提出问题、思考问题、解决问题的能力。

1 所做设计要求 电网接线图 × × × ×cosφ=0.85X〃=0.129 X〃=0.132 cosφ=0.85cosφ=0.8cosφ=0.8cosφ=0.8 图示110kV 单电源环形网络:(将AB 线路长度改为45km,CD 长度改为20km ) (1)所有变压器和母线装有纵联差动保护,变压器均为Yn ,d11接线; (2)发电厂的最大发电容量为(2×25+50)MW,最小发电容量为2×25MW; (3)网络的正常运行方式为发电厂发电容量最大且闭环运行; (4)允许的最大故障切除时间为; (5)线路AC 、BC 、AB 、CD 的最大负荷电流分别为250、150、230和140A,负荷自起动系数5.1 ss K ;

线路距离保护的设计

精心整理 课程设计任务书 学生姓名:___________ 专业班级:_____________ 指导教师:__________ 工作单位:____________ 题目:线路距离保护的设计 初始条件: 原始数据:接线图如图所示, 参数说明:发电机、变压器的参数示于图中,线路正序阻抗为0.55Q/km,线路 长度示于图中,降压变电站变压器差动保护动作时限为Os,过流保护动作时间为1s. 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.选择并整定1、3、4、5、8 9号保护装置; 2.绘制10km长线路(1DL与5DL所在线路)上保护的原理图; 3.编写设计说明书; 时间安排: 5月21日:领取任务书,分小组学习设计指导书及设计规程; 5月22日:分小组学习电流电压保护、距离保护工作原理和整定方法; 5月23-27日:决定保护整体设计方案; 5月28-29日:进行保护整定计算、设备选型及图纸绘制; 5月30日:对配置结果进行分析并调试修改配置及整定方法; 5月30日:撰写设计说明书;

5月30日:答辩。 精心整理 指导教师签名:年月日 系主任(或责任教师)签名:年月日

线路距离保护的设计 摘要 电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力。因此,继电保护技术得天独厚,在40余年的 时间里完成了发展的4个历史阶段:继电保护的萌芽期、晶体管继电保护、集成运算放大器的集成电 路保护和计算机继电保护。继电保护技术未来趋势是向计算机化,网络化,智能化,保护、控制、测量和数据通信一体化的发展。 继电保护的原理是利用被保护线路或设备故障前后某些突变的物理量为信号量,当突变量到达一定值时,起动逻辑控制环节,发出相应的跳闸脉冲或信号。对电力系统继电保护的基本性能要求是有选择性,速动性,灵敏性,可靠性。 这次课程设计以路保护设计为例进行分析设计,要求对整个电力系统及其自动化专业方面的课程有综合的了解。特别是对继电保护、电力系统、电路、发电厂的电气部分有一定的研究。重点进行了电路的化简,短路电流的求法,继电保护中电流保护、距离保护的具体计算。 关键字:继电保护,电流保护,距离保护 1?系统初始条件 0 1.1............................................................................................................................... 主接线图0 1.2............................................................................................................................... 相关参数0 2.三段式电流保护整定计算 0 2.1.计算网络参数 0 2.2.最大短路电流计算和整定计算 (1) ...................................................... 错误!未定义书签。 (2)保护8QF的整定 (2) ...................................................... 错误!未定义书签。 (2)保护6QF的整定 (3) ...................................................... 错误!未定义书签。 (2)保护4QF的整定 (5)

继电保护课程设计

继电保护课程设计

————————————————————————————————作者:————————————————————————————————日期:

电力系统继电保护原理 课程设计 班级:2008级生信1班 学号:20085097 姓名:曹学博 专业:电气工程及其自动化 指导老师:王牣 评分:A(优),B(良),C(中),D(合格),E(不合格) 项目学生自评指导老师评定 设计内容完整性 计算公式准确性 计算数据正确性 绘图质量 文档规范性 综合评定 教师签名(盖章): 日期:年月日

目录 第一节设计任务书 (1) 1、继电保护课程设计的目的 (1) 2、原始数据 (2) 2.1 基础数据 (2) 2.2 系统接线图 (3) 3、课程设计要求 (4) 3.1 需要完成的设计内容 (4) 3.2 设计文件内容 (5) 第二节馈线保护配置与整定计算 (6) 1、馈线保护配置 (6) 2、馈线保护整定计算 (6) 2.1 电流速断定值计算 (6) 2.2 阻抗I段定值计算 (6) 2.3 阻抗II段定值计算 (7) 2.4 过电流定值计算 (7) 第三节变压器保护配置与整定计算 (8) 1、变压器保护配置 (8) 2、变压器电量保护整定计算 (8) 2.1 差动速断保护 (8) 2.2 二次谐波制动的比率差动保护 (8) 2.3 三相低电压过电流保护 (9) 2.4 单相低电压过电流保护 (9) 2.5 零序过电流保护 (10) 2.6 过负荷保护 (10) 3、变压器非电量计算 (10) 3.1 瓦斯保护整定计算 (10) 3.2 主变过热整定计算 (10) 第四节并联电容补偿装置配置与整定计算 (11) 1、并联补偿装置保护配置 (11) 2、并联补偿装置整定计算 (11) 2.1 电流速断保护 (11) 2.2 差流保护 (11) 2.3 过电流保护 (12) 2.4 高次谐波过流保护 (12) 2.5 差压保护 (13) 2.6 低电压保护 (14) 2.7 过电压保护 (14) 第五节 B相馈线保护原理接线图和展开图 (15) 1、电流保护 (15) 2、阻抗保护 (16)