高考数学压轴专题《等差数列》难题汇编 百度文库

高考数学压轴专题《等差数列》难题汇编 百度文库
高考数学压轴专题《等差数列》难题汇编 百度文库

一、等差数列选择题

1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60

B .11

C .50

D .55

2.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1

B .2

C .3

D .4

3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11 B .10

C .6

D .3

4.定义

12n

n p p p ++

+为n 个正数12,,

,n p p p 的“均倒数”,若已知数列{}n a 的前

n 项的“均倒数”为

12n ,又2n n a b =,则1223

910

111

b b b b b b +++

=( ) A .

8

17 B .

1021

C .

1123 D .

919

5.已知数列{}n a 的前n 项和2

21n S n n =+-,则13525a a a a +++

+=( )

A .350

B .351

C .674

D .675

6.已知数列{}n a 的前n 项和n S 满足()

12n n n S +=,则数列11n n a a +??????

的前10项的和为( ) A .

89

B .

910

C .10

11

D .

1112

7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29

B .38

C .40

D .58

8.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则129

10

a a a a ++???+=

( ) A .

278

B .

52

C .3

D .4

9.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

10.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2

B .

43

C .4

D .4-

11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+

B .2

()4f x x =

C .3()4x

f x ??= ???

D .4()log f x x =

12.已知数列{}n a 的前项和2

21n S n =+,n *∈N ,则5a =( )

A .20

B .17

C .18

D .19

13.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12

B .20

C .40

D .100

14.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

15.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13 B .26 C .52 D .56 16.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )

A .24

B .23

C .17

D .16

17.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60

B .120

C .160

D .240

18.在等差数列{}n a 中,520164a a +=,S ,是数列{}n a 的前n 项和,则S 2020=( ) A .2019

B .4040

C .2020

D .4038

19.已知等差数列{}n a ,且()()35710133248a a a a a ++++=,则数列{}n a 的前13项之和为( ) A .24

B .39

C .104

D .52

20.已知数列{}n a 中,132a =

,且满足()*

1112,22

n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

二、多选题

21.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值

D .613S S =

22.已知数列{}n a 中,11a =,1111n n a a n n +??

-=+ ???

,*n N ∈.若对于任意的[]1,2t ∈,不等式

()22212n

a t a t a a n

<--++-+恒成立,则实数a 可能为( ) A .-4

B .-2

C .0

D .2

23.若数列{}n a 满足112,02

121,1

2

n n n n n a a a a a +?

≤≤??=??-<

( ) A .

1

5

B .

25

C .

45

D .

65

24.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )

A .若100S =,则50a >,60a <;

B .若412S S =,则使0n S >的最大的n 为15;

C .若150S >,160S <,则{}n S 中7S 最大;

D .若89S S <,则78S S <.

25.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

26.(多选题)在数列{}n a 中,若22

1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称

{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )

A .若{}n a 是等差数列,则{}

2

n a 是等方差数列

B .

(){}1n

-是等方差数列

C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.数列{}n a 满足11,121

n

n n a a a a +=

=+,则下列说法正确的是( ) A .数列1n a ??

????是等差数列

B .数列1n a ??????

的前n 项和2

n S n =

C .数列{}n a 的通项公式为21n a n =-

D .数列{}n a 为递减数列

28.已知等差数列{}n a 的前n 项和为n S (

)*

n N ∈,公差0d ≠,6

90S

=,7a 是3a 与9

a 的等比中项,则下列选项正确的是( ) A .2d =-

B .1

20a =-

C .当且仅当10n =时,n S 取最大值

D .当0n

S <时,n 的最小值为22

29.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )

A .2

n S n =

B .2

23n S n n =-

C .21n a n =-

D .35n a n =-

30.在下列四个式子确定数列{}n a 是等差数列的条件是( )

A .n a kn b =+(k ,b 为常数,*n N ∈);

B .2n n a a d +-=(d 为常数,

*n N ∈);

C .(

)

*

2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2

1

n S n n =++(*n N ∈).

【参考答案】***试卷处理标记,请不要删除

一、等差数列选择题 1.D 【分析】

根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】

因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()

1111161111552

a a S a +===.

故选:D. 2.C 【分析】

利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】

设等差数列{}n a 的公差为d ,

则3856522a a a a a +=+=+,解得652d a a =-=,

212112228S a a a d a =+=+=+=,解得13a =

故选:C

3.A 【分析】

利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】

由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,

213a a d =+=,

解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.D 【分析】

由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】

设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n

=,则:2

2n S n =, 当1n =时,112a S ==,

当2n ≥时,142n n n a S S n -=-=-, 且14122a =?-=,据此可得 42n a n =-, 故212n

n a b n =

=-,()()1

11111212122121n n b b n n n n +??==- ?-+-+??, 据此有:

1223910

1111111111233517191.21891919b b b b b b +++

????????=

-+-++- ? ? ???????

????

=?= 故选:D 5.A 【分析】

先利用公式11,1

,2n n

n S n a S S n -=?=?

-≥?求出数列{}n a 的通项公式,再利用通项公式求出

13525a a a a +++

+的值.

【详解】

当1n =时,2

1112112a S ==+?-=;

当2n ≥时,()

()()2

2

121121121n n n a S S n n n n n -??=-=+---+--=+??

.

12a =不适合上式,

2,121,2n n a n n =?∴=?+≥?

.

因此,()()

3251352512127512235022

a a a a a a ?+?+++++=+

=+=;

故选:A. 【点睛】

易错点睛:利用前n 项和n S 求通项n a ,一般利用公式11,1

,2

n n n S n a S S n -=?=?

-≥?,但需要验证

1a 是否满足()2n a n ≥.

6.C 【分析】

首先根据()12

n n n S +=得到n a n =,设11111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】

当1n =时,111a S ==, 当2n ≥时,()()11122

n n n n n n n a S S n -+-=-=

-=. 检验111a S ==,所以n a n =. 设()11111

11

n n n b a a n n n n +=

==-++,前n 项和为n T , 则10111111101122310111111T ??????

=-+-++-=-= ? ? ?

??????

…. 故选:C 7.A 【分析】

根据等差中项的性质,求出414a =,再求10a ; 【详解】

因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =,

故选:A. 8.A 【分析】

根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】

因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-, 所以

()1129510101992727

88

49a a a a a d a a d d a d ++???+====++.

故选:A 9.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 10.C 【分析】

由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:

()111116

11111322

a a S a

+?=

==,

612a ∴=,

5620a a +=,

58a ∴=,

654d a a ∴=-=.

故选:C . 11.D 【分析】

把点列代入函数解析式,根据{x n }是等比数列,可知

1

n n

x x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】

对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以

1

n n

x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;

对于B ,函数2

()4f x x =上的点列{x n ,y n },有y n =2

4n x ,由于{x n }是等比数列,所以1

n n

x x +为

常数,

因此1n n y y +-=()

2222

14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;

对于C ,函数3()4x

f x ??= ???上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1

n n

x x +为常数, 因此1n n y y +-=133()()44n n x x

+-=3

3

()()144n q

x

??

-????

,这是一个与n 有关的数,故{y n }不是等

差数列;

对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x

,由于{x n }是等比数列,所以

1

n n

x x +为常数, 因此1n n y y +-=11

444

4log log log log n n n n

x x x x q ++-==为常数,故{y n }是等差数列;

故选:D . 【点睛】 方法点睛:

判断数列是不是等差数列的方法:定义法,等差中项法. 12.C 【分析】

根据题中条件,由554a S S =-,即可得出结果. 【详解】

因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=?+-?+=. 故选:C .

13.B 【分析】

由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:

1011045100S a d =+=,

12920a d ∴+=, 4712920a a a d ∴+=+=.

故选:B. 14.B 【分析】

根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】

根据题意可知正整数能被21整除余2,

21+2n a n ∴=, 5215+2107a ∴=?=.

故选:B. 15.B 【分析】

利用等差数列的下标性质,结合等差数列的求和公式即可得结果. 【详解】

由等差数列的性质,可得3542a a a +=,891371013103a a a a a a a ++=++=, 因为()()3589133224a a a a a ++++=, 可得410322324a a ?+?=,即4104a a +=, 故数列的前13项之和()()113410131313134

26222

a a a a S ++?====. 故选:B. 16.A 【分析】 由题意可得52820

45252

a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,52820

45252

a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 17.B 【分析】

利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】

因为7916+=a a ,

所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()

11515815151581202

a a S a +===?=. 故选:B 18.B 【分析】

由等差数列的性质可得52012016024a a a a +==+,则

()15202020

202016202010102

a a a a S +=

?=?+可得答案. 【详解】 等差数列{}n a 中, 52012016024a a a a +==+

()12020

202052016202010104101040402

a a a a S +=

==?=+?? 故选:B 19.D 【分析】

根据等差数列的性质计算求解. 【详解】

由题意()()357101341041073232236()1248a a a a a a a a a a ++++=?+?=+==,

74a =,∴11313713()

13134522

a a S a +=

==?=. 故选:D . 20.A 【分析】 将11122

n n n a a -=

+变形为11221n n n n a a --=+,由等差数列的定义得出2

2n n n a +=,从而得

出()

22n

n n λ+≥,求出()max

22n n n +??????的最值,即可得出答案. 【详解】 因为2n ≥时,111

22

n n n a a -=

+,所以11221n n n n a a --=+,而1123a = 所以数列{

}

2n

n a 是首项为3公差为1的等差数列,故22n

n a n =+,从而2

2

n n n a +=

.

又因为

n a n λ

≥恒成立,即()22n

n n λ+≥恒成立,所以()max

22n n n λ+??≥????. 由()()()

()()()()

1

*121322,221122n n n

n n n n n n n n n n n +-?+++≥??∈≥?

+-+?≥??N 得2n = 所以()()2

max

2222222n n n +?+??

==????,所以2λ≥,即实数λ的最小值是2 故选:A

二、多选题

21.ABD 【分析】

由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】

∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187

5282

a a d a d ?++=+

,解得19a d =-, 故10190a a d =+=,故A 正确;

∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119

2

22

n n n n S na d d d n -=+=-? ,它的最值,还跟d 的值有关,

故C 错误; 由于61656392S a d d ?=+=-,1311312

13392

S a d d ?=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】

思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 22.AB 【分析】 由题意可得

11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n

=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为

()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.

【详解】

111

n n n a a n n

++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111

122

a a -=-, 上述式子累加可得:111n a a n n -=-,1

22n a n n

∴=-<,

()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,

整理得()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,

对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42??-????

,包含[]1,2,故A 正确;

对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22??-????

,包含[]1,2,故B 正确;

对C ,当0a =时,不等式()210t t +≤,解集1,02??-????

,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2

??-???

?

,不包含[]1,2,故D 错误,

故选:AB. 【点睛】

本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题. 23.ABC 【分析】

利用数列{}n a 满足的递推关系及13

5

a =

,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】

数列{}n a 满足112,02

121,1

2n n n n n a a a a a +?

≤≤??=??-<

211215a a =-=

,32225a a ==,43425a a ==,5413

215

a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234

,,,5555

. 故选:ABC. 【点睛】

本题考查了数列的递推公式的应用和周期数列,属于基础题. 24.ABD 【分析】

利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】

对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()

02

a a S +=

=,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,

所以561112894()0a a a a a a ++???++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +?=

==>,116891616()16()

022

a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为1158

15815()15215022

a a a S a +?=

==>,则80a >, 116891616()16()022

a a a a S ++=

==,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;

对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】

解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 25.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC. 【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项. 26.BCD 【分析】

根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】

对于A 选项,取n a n =,则

()()()422444221111n n a a n n n n n n +????-=+-=+-?++????

()()221221n n n =+++不是常数,则{}

2

n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()

()2

2

111110n n +????---=-=?

???

为常数,则(){

}

1n

-是等方差数列,B 选项

中的结论正确;

对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得22

1n n a a p +-=,则数列

{}2n

a 为等差数列,所以(

)

2

21kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方

差数列,C 选项中的结论正确;

对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得

n a dn m =+,

则()()()()2

2

2

1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,

由于数列{}n a 也为等方差数列,所以,存在实数p ,使得22

1n n a a p +-=,

则()2

22d n m d d p ++=对任意的n *∈N 恒成立,则(

)2202d m d d p ?=?

?+=??,得0p d ==,

此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】

本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 27.ABD 【分析】 首项根据11,121n n n a a a a +=

=+得到

1112n n a a +-=,从而得到1n a ??

????

是以首项为1,公差为2的等差数列,再依次判断选项即可.

【详解】

对选项A ,因为121

n

n n a a a +=

+,11a =, 所以121112n n n n a a a a ++==+,即1112n n

a a +-= 所以1n a ??

????

是以首项为1,公差为2的等差数列,故A 正确.

对选项B ,由A 知:

1

121

21n

n n a

数列1n a ??????

的前n 项和()21212n n n S n +-==,故B 正确.

对选项C ,因为1

21n n a =-,所以121

n a n =-,故C 错误. 对选项D ,因为1

21

n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】

本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题. 28.AD 【分析】

运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .

【详解】

等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即

12530a d +=,①

由7a 是3a 与9a 的等比中项,得2

739a a a =,即()()()2

111628a d a d a d +=++,化为

1100a d +=,②

由①②解得120a =,2d =-,则202(1)222n a n n =--=-,

21

(20222)212

n S n n n n =+-=-,

由2

2144124n S n ??=--+ ??

?,可得10n =或11时,n S 取得最大值110; 由2

102n S n n -<=,解得21n >,则n 的最小值为22.

故选:AD 【点睛】

本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 29.AC 【分析】

利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S . 【详解】

等差数列{}n a 的前n 项和为n S .39S =,47a =,

∴31413239237

S a d a a d ??

=+=???=+=?, 解得11a =,2d =,

1(1)221n a n n ∴+-?=-=.

()21212

n n n S n +-=

=

故选:AC . 【点睛】

本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题. 30.AC 【分析】

直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】

A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,

B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;

C 选项中()

*

2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差

数列,故正确;

D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2

n S An Bn =+,所以{}n a 不

为等差数列.故错误. 故选:AC 【点睛】

本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.

相关主题
相关文档
最新文档