电磁感应双杆问题含电容器问题

电磁感应双杆问题含电容器问题
电磁感应双杆问题含电容器问题

电磁感应双杆问题+含电容器电路

1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。4.“双杆”在不等宽导轨上同向运动。“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

典型例题

1.如图所示,间距为l、电阻不计的两根平行金属导轨MN、PQ(足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。开始时使a、b、C都处于静止状态,现释放C,经过时间t,C的速度为v1 、b的速度为v2 。不计一切摩擦,两棒始终与导轨接触良好,

重力加速度为g,求:

(1)t时刻C的加速度值;

(2)t时刻a、b与导轨所组成的闭合回路消耗的总电功率。

模型:导体棒等效为发电机和电动机,发电机相当于闭合回路中的电源,电动机相当于闭合回路中的用电元件

2.(2003年全国理综卷)两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s,金属杆甲的加速度为a=1.37 m/s2,问此时两金属杆的速度各为多少?

3.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量均为m,电阻均为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热最多是多少.

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

4.两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=

5.0m/s,如图所示.不计导轨上的摩擦. (1)求作用于每条金属细杆的拉力的大小.

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量.

5.如图所示,在倾角为300的斜面上,固定两条无限长的平行光滑导轨,一个匀强磁场垂直于斜面向上,磁感强度B=0.4T,导轨间距L=0.5m。两根金属棒ab、cd平行地放在导轨上,金属棒质量m ab=0.1kg,m cd=0.2kg,两金属棒总电阻r=0.2Ω,导轨电阻不计。现使金属棒ab以v=1.5m/s的速度沿斜面向上匀速运动,求:

(1)金属棒cd的最大速度;

(2)在cd有最大速度时,作用在金属棒ab上的外力做功的功率。

6.如图4所示,金属棒a跨接在两金属轨道间,从高h处以速度v0沿光滑弧形平行金属轨道下滑,进入轨道的光滑水平部分之后,在自下向上的匀强磁场中运动,磁场的磁感应强度为B.在轨道的水平部分另有一个跨接在两轨道间的金属棒b,在a棒从高处滑下前b棒处于静

(1)a棒进入磁场后做什么运动?b棒做什么运动?

(2)a棒刚进入磁场时,a、b两棒加速度之比.?

(3)如果两棒始终没有相碰,a和b的最大速度各多大?

(4)在整个全过程中,回路中消耗的电能是多大?

7.如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。先固定a,释放b,当b的速度达到10m/s时,再释放a,经过1s后,a的速度达到12m/s,则

8.

9.

在宽导轨道上运动。

10.如图所示,金属杆a在离地h高处从静止开始沿弧形轨道下滑,导轨平行的水平部分有竖直向上的匀强磁场B,水平部分导轨上原来放有一金属杆b.已知杆的质量为ma,且与b 杆的质量比为ma∶mb=3∶4,水平导轨足够长,不计摩擦,求:

(1)a和b的最终速度分别是多大?

(2)整个过程中回路释放的电能是多少?

11.如图所示,abcd和a/b/c/d/为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab、a/b/间的宽度是cd、c/d/间宽度的2倍。设导轨足够长,导体棒ef的质量是棒gh的质量的2倍。现给导体棒ef一个初速度v0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?

12.如图所示,在匀强磁场区域内与B垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L,质量为m,电阻为R,回路部分导轨电阻可忽略,棒与导轨无摩擦,不计重力和电磁辐射,且开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v0,试求两棒之间距离增长量x的最大值。

13.

(2)金属棒MN运动达到稳定状态后,1s内外力F做的功,并计算说明能量的转化是否守恒.

14.(2004年全国理综卷)图中a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1 y1与x2 y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。

重要结论:电磁感应中的一个重要推论——安培力的冲量公式

15.如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L的区域内,有一个边长为a(a

A. 完全进入磁场中时线圈的速度大于(v0+v)/2

B. 安全进入磁场中时线圈的速度等于(v0+v)/2

C. 完全进入磁场中时线圈的速度小于(v0+v)/2

D. 以上情况A、B均有可能,而C是不可能的

16.光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。

含电容器类问题

1.无外力充电式

2.有外力充电式

3.充电后放电式

典型例题分析

1.

结论:

2.

3.

电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析 余姚八中陈新生 导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种: 1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。 2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等 3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等 4、求通过回路的电量 解题的方法、思路通常是首先进行受力分析和运动过程分析。然后运用动量守恒或动量定理以及能量守恒建立方程。按照不同的情景模型,现举例分析。 一、“单杆”切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强 度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一 阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势 差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m, 上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框 架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r= 0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度 达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知 sin37°=0.6,cos37°=0.8;g取10m/s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量. 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个 电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金 属棒ab可紧贴导轨自由滑动.现让ab由静止下滑, 不考虑空气阻力, 也不考 虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度 为多大? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m 的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初 速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒

高中物理-电磁感应双滑杆问题

电磁感应中的双杆运动问题 江苏省特级教师 戴儒京 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 例1.2006年高考重庆卷第21题 21.两根相距为L 的足够长的金属直角导轨如题21图所示放 置,它们各有一边在同一水平内,另一边垂直于水平面。质 量均为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路, 杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总 电阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向 上的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用 下以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下 匀速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为μmg +R V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ= 1222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断 A . 因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg +R V L B 2122,A 正确; B . 因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =, 或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为 R V L B f 2122μ=,总之,B 错误; C . 因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为 R BLV I 21=,C 错误; D . 根据B 中mg f =和R V L B f 2122μ=,得μ=1 222V L B Rmg ,所以D 正确。

电磁感应中的电容器问题

电磁感应中的电容器与金属棒相结合的问题 黄德利山东省兖州一中272100 摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。 关键词:电磁感应;电容器;金属棒 电容器是一个储存电荷的容器,它可以进行无数次的充放电。在充放电的过程中,可以理解为变化的电流可以通过电容器。因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。下面通过几个例题对与电容器相关的问题分类解决。 一、金属棒做匀加速直线运动 例1、.如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连 接一个耐压足够大的电容器,电容器的电容为C。放在 导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨 平面的水平力作用下从静止开始匀加速运动,加速度为 a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导 轨足够长,不计导轨和连接电容器导线的电阻,导体杆 的摩擦也可忽略。求从导体杆开始运动经过时间t电容 器吸收的能量E=? 解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力。因电容器在时间t内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。 设某时刻导体杆切割磁感线的速度为v,产生的感应电动势为E,电容器所带的电荷量为q,两极板间的电压为u,则有:u=E=BLv,q=Cu=CBLv。设经过一个很短的时间间隔Δt,速度的变化量为Δv,则电容器带电量的变化量为: Δq=CBLΔv。 在时间Δt内充电电流的平均值可表示为: i==CBLa

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

高中物理选修3-2第四章电磁感应中“滑轨”问题(含双杆)归类

电磁感应双导轨问题 1、两根足够长的平行金属导轨,固定在同一水平面上,导轨的电阻很小,可忽略不计。导轨间的距离L=0.2m 。磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s ,金属杆甲的加速度为1.37m/s 2,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少? R v v l B F 2)(2122-=安 ① ma F F =-安 ② 21mv mv Ft += ③ 由①②③三式解得:s m v s m v /85.1,/15.821== 对乙:2mv t HB =? ④ 得C Q mv QIB 85.12 == 又R BlS R Q 22相对=?=φ ⑤ 得m S 5.18=相对 2、如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存在磁感强度为B 、方向竖直向下的匀强磁场。ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。 ⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大? ⑵在达到稳定状态时ab 棒产生的热功率多大? 解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,速度分别为v 1、v 2,加速度分别为a 1、a 2,则

电磁感应双杆问题

电磁感应双杆问题(排除动量畴) 1.导轨间距相等 例3. (04)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。 解法1:设杆2的运动速度为v ,由于两杆运动时,两 杆间和导轨构成的回路中的磁通量发生变化,产生感 应电动势 )(0v v Bl E -= ① 感应电流 2 1R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([212 2202R R l B g m v g m P +- =μμ ⑤ 解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ① 对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③ 以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212 202R R l B g m v g m P g +- =μμ ⑤ 2. 导轨间距不等 例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11y x 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路上的热功率。 解:设金属杆向上运动的速度为υ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小υ)(21l l B E -= 回路中的电流R E I = 方向沿着顺时针方向 两金属杆都要受到安培力的作用,作用于杆11y x 的安培力为11BIL f =,方向向上;作用于杆22y x 的安培力为22BIL f =,方向向下。当金属杆作匀速运动时,根据牛顿第二定律有 0f f g m g m F 2121=-+-- 2 1 0v

专题:电磁感应现象中有关电容器类问题及答案

专题:电磁感应现象中有关电容器类问题 1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制 新武器和航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。首先开关S接1,使电容器完全充电。然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导 轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后的最大速度v m的大小。 试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出 MN离开导轨后最大速度. 解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下. 2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器 C(开始未充电).另一根质量为m的金属棒ab可沿导轨下滑, 导轨宽度为L,在讨论的空间范围内有磁感应强度为B、方向垂 直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab棒 由静止开始下滑,求它下滑h高度时的速度v.

高中物理电磁感应双杆模型

电磁感应双杆模型 学生姓名:年级:老师: 上课日期:时间:课次: 电磁感应动力学分析 1.受力情况、运动情况的动态分析及思考路线 导体受力运动产生感应电动势→感应电流→通电导体受安培力→合力变化→加速度变化→速度变化→感应电动势变化→…周而复始地循环,直至最终达到稳定状态,此时加速度为零,而导体通过加速达到最大速度做匀速直线运动或通过减速达到稳定速度做匀速直线运动. 2.解决此类问题的基本思路 解决电磁感应中的动力学问题的一般思路是“先电后力”. (1)“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E和r; (2)“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力; (3)“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; (4)“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 3.两种状态处理 (1)导体处于平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零),列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析寻找过程中的临界状态,如由速度、加速度求最大值或最小值的条件. (2)基本思路 注意当导体切割磁感线运动存在临界条件时: (1)若导体初速度等于临界速度,导体匀速切割磁感线; (2)若导体初速度大于临界速度,导体先减速,后匀速运动; (3)若导体初速度小于临界速度,导体先加速,后匀速运动. 1、【平行等间距无水平外力】如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为

电磁感应中的单杆和双杆问题(习题,问题详解)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度; (2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程过ab 的电荷量.关键:在于能量观,通过做功求位移。 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大? 例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下 穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、“双杆”滑切割磁感线型 a b C v 0

电磁感应,杆,双杆模型(教师版)

第九章冲刺985深化内容 电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型) 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 模型一 单杆+电阻+导轨模型 [初建模型] [母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 [思路点拨] [解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+1 2mv m 2 又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θ B 4L 4。 [答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2 ,方向沿导轨平面向下 (2)1 2 mgx sin θ-m 3g 2R 2sin 2θ B 4L 4 [内化模型] 单杆+电阻+导轨四种题型剖析 杆以速度v 切割

电磁感应中的双杆运动问题

电磁感应中的双杆运动问题 有关“电磁感应”问题,是物理的综合题,是高考的重点、热点和难点,往往为物理卷的压轴题。电磁感应中的“轨道”问题,较多见诸杂志,而电磁感应中的“双杆运动”问题的专门研究文章,在物理教学研究类杂志还很咸见,兹举例说明如下。 例1.2006年高考重庆卷第21题 两根相距为L 的足够长的金属直角导轨如题21图所示放置, 它们各有一边在同一水平内,另一边垂直于水平面。质量均 为m 的金属细杆ab 、cd 与导轨垂直接触形成闭合回路,杆 与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电 阻为2R 。整个装置处于磁感应强度大小为B ,方向竖直向上 的匀强磁场中。当ab 杆在平行于水平导轨的拉力F 作用下 以速度V 1沿导轨匀速运动时,cd 杆也正好以速度V 2向下匀 速运动。重力加速度为g 。以下说法正确的是 A.ab 杆所受拉力F 的大小为μmg +R V L B 2122 B.cd 杆所受摩擦力为零 C.回路中的电流强度为R V V BL 2)(21+ D.μ与V 1大小的关系为μ=1 222V L B Rmg 【解析】因4个选项提出的问题皆不同,要逐一选项判断 1、因为ab 杆做匀速运动,所以受力平衡,有安F f F +=,其中mg f μ=, BIL F =安,R E I 2=, 1BLV E =, 所以R BLV I 21=, 所以F=μmg+R V L B 2122,A 正确; 2、因为cd 杆在竖直方向做匀速运动,受力平衡,所以cd 杆受摩擦力大小为mg f =,或者,因为cd 杆所受安培力作为对轨道的压力,所以cd 杆受摩擦力大小为R V L B f 2122μ=,总之,B 错误; 3、因为只有ab 杆产生动生电动势(cd 杆运动不切割磁感线),所以回路中的电流强度为R BLV I 21=,C 错误; 4、根据B 中mg f =和R V L B f 2122μ=,得μ=1 222V L B Rmg ,所以D 正确。 本题答案为AD 。 【点评】ab 杆和cd 杆两杆在同一个金属直角导轨上都做匀速运动,因为ab 杆切割磁感线而cd 杆不切割磁感线,所以感应电动势是其中一个杆产生的电动势,即1BLV E =,而不是)(21V V BL E +=, 电流是R BLV I 21=,而不是R V V BL I 2)(21+=。

电磁感应中“滑轨”问题(含双杆)归类

电磁感应中“滑轨”问题归类例析1 一、“单杆”滑切割磁感线型 例1、杆与电阻连接组成回路 例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P 间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置 (1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。 (2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以 及ab发生的位移x。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个 电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的 匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻 r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程 中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/ s2)求: (1)杆ab的最大速度; (2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;在该过程中通过ab的电荷量.

例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m的金属棒ab可紧贴导轨自由滑动. 现让ab从高h处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间?问金属棒的做什么运动?棒落地时的速度为多大? 解析:I=0,安培力为0 ,自由下落 2 1 ,, 2 a g h gt t v === 请问解答是否正确? 例4、光滑U型金属框架宽为L,足够长,其上放一质量为m的金属棒ab,左端连接有一电容为C的电容器,现给棒一个初速v0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。

电磁感应中的电容器问题完整版

电磁感应中的电容器问 题 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电磁感应中的电容器与金属棒相结合的问题 黄德利山东省兖州一中 272100 摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。 关键词:电磁感应;电容器;金属棒 电容器是一个储存电荷的容器,它可以进行无数次的充放电。在充放电的过程中,可以理解为变化的电流可以通过电容器。因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。下面通过几个例题对与电容器相关的问题分类解决。 一、金属棒做匀加速直线运动 例1、.如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连接一个耐压足够大的电容器,电容器的电容为C。放在导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动,加速度为a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导轨足够长,不计导轨和连接电容器导线的电阻,导体杆的摩擦也可忽略。求从导体杆开始运动经过时间t电容器吸收的能量E=? 解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力。因电容器在时间t内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。

(完整版)4.4电磁感应中的双杆问题分类例析

电磁感应中的双杆问题分类例析 “双杆”类问题是电磁感应中常见的题型,也是电磁感应中的一个难道,下面对“双杆”类问题进行分类例析 1、“双杆” 在等宽导轨上向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆” 在等宽导轨上同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 4.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 【例5】如图所示,间距为l 、电阻不计的两根平行金属导轨MN 、PQ (足够长)被固定在同一水平面内,质量均为m 、电阻均为R 的两根相同导体棒a 、b 垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a 棒连接,其下端悬挂一个质量为M 的物体C ,整个装置放在方向竖直向上、磁感应强度大小为B 的匀强磁场中。开始时使a 、b 、C 都处于静止状态,现释放C ,经过时间t ,C 的速度为1υ、b 的速度为2υ。不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g ,求: (1)t 时刻C 的加速度值; (2)t 时刻a 、b 与导轨所组成的闭合回路消耗的 总电功率。 解析:(1)根据法拉第电磁感应定律,t 时刻回路的感应电动势12()E Bl t φυυ?= =-? ① 回路中感应电流 2E I R = ② 以a 为研究对象,根据牛顿第二定律 T BIl ma -= ③ 以C 为研究对象,根据牛顿第二定律 Mg T Ma -= ④ 联立以上各式解得 22122()2() MgR B l a R M m υυ--=+ (2)解法一:单位时间内,通过a 棒克服安培力做功,把C 物体的一部分重力势能转化为闭合回路的电能,而闭合回路电能的一部分以焦耳热的形式消耗掉,另一部分则转化为b 棒的动能,所以,t 时刻闭合回路的电功率等于a 棒克服安培力做功的功率,即 221211()2B l P BIl R υυυυ-?== 解法二:a 棒可等效为发电机,b 棒可等效为电动机 a 棒的感应电动势为 1a E Blv = ⑤ 闭合回路消耗的总电功率为 a P IE = ⑥ 联立①②⑤⑥解得 221211()2B l P BIl R υυυυ-?==

专题电磁感应现象中有关电容器类问题及答案

专题:电磁感应现象中有关电容器类问题 1、电磁轨道炮利用电流与磁场的作用使炮弹获得超高速度,其原理可用来研制新武器与航天运载器。电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。两根固定于水平面内的光滑平行金属导轨间距为L,电阻不计。炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在 两导轨间处于静止状态,并与导轨良好接触。首先 开关S接1,使电容器完全充电。然后将S接至2, 导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN 开始向右加速运动。当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。问: (1)磁场的方向; (2)MN刚开始运动时加速度a的大小; (3)MN离开导轨后的最大速度v m的大小。 试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势与电荷量的关系,以及动量定理求出MN离开导轨后最大速度、 解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.

2、一对无限长平行导轨位于竖直平面内,轨道上串联一电容器 C(开始未充电)、另一根质量为m 的金属棒ab 可沿导轨下滑, 导轨宽度为L,在讨论的空间范围内有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v 、 解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt,其速度的增加量为Δv=a i ·Δt 、 棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt 电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt 电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt 电路中的充电电流为:I=t Q ??=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i

电磁感应中的电容器

1、如图所示的甲、乙、丙图中,MN、PQ是固定在同一水平面内足够长的平行金属导轨。导体棒ab垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C原来不带电。今给导体棒ab 一个向右的初速度,在甲、乙、丙图中导体棒ab在磁场中的最终运动状态是()。 A: 甲、丙中,棒ab最终将以相同速度做匀速运动;乙中ab棒最终静止 B: 甲、丙中,棒ab最终将以不同速度做匀速运动;乙中ab棒最终静止 C: 甲、乙、丙中,棒ab最终均做匀速运动 D: 甲、乙、丙中,棒ab最终都静止 答案详解B 2、如图所示,光滑平行金属导轨固定在绝缘水平面上,轨道间距为,金属杆ab的质量为,电容器电容为,耐压足够大, 为理想电流表,导轨与杆接触良好,各自的电阻忽略不计,整个装置处于磁感应强度大小为,方向垂直导轨平面向下的匀强磁场中.现用水平外力F拉ab向右运动,使电流表示数恒为. (1)求时电容器的带电量 (2)说明金属杆做什么运动 (3)求时外力做功的功率. 答案解:(1)由, (2)设杆某时刻的速度为v,此时电容器的电压 电容器的电量 电流恒定,a恒定,即金属杆做匀加速直线运动 (3) 由牛顿第二定律得:

由公式 答:(1)时电容器的带电量是1C; (2)金属杆做匀加速直线运动; (3)时外力做功的功率是. 3、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系;(25分) (2)金属棒的速度大小随时间变化的关系。(75分) 答案详解 解: (1)设金属棒下滑的速度大小为v,则感应电动势为 ① 平行板电容器两极板之间的电势差为② 设此时电容器极板上积蓄的电荷为Q,按定义有 ③ 联立①②③得 ④ (2)设金属棒到达速度大小为v时经历的时间为t,通过金属棒的电流为i,金属棒受到的磁场力为 ⑤ 设在时间间隔内流经金属棒的电荷量为,按定义有

电磁感应中的“双杆问题要点

问题3:电磁感应中的“双杆问题” 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。下面对“双杆”类问题进行分类例析 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 [例5] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。 (1)求作用于每条金属细杆的拉力的大小。 (2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。 解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为: 因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。 由以上各式并代入数据得N (2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代 入数据得Q=1.28×10-2J。 2.“双杆”同向运动,但一杆加速另一杆减速 当两杆分别沿相同方向运动时,相当于两个电池反向串联。 [例6] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd静止,棒ab有指向棒cd 的初速度v0。若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少。 (2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?

(九)——电磁感应中的含容电路分析

微讲座(九)——电磁感应中的含容电路分析 一、电磁感应回路中只有电容器元件 这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流. (2013·高考新课标全国卷Ⅰ)如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L .导轨上端接有一平行板电容器,电容为C .导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于导轨平面.在导轨上放置一质量为m 的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g .忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系. [解读] (1)设金属棒下滑的速度大小为v ,则感应电动势为E =BL v ① 平行板电容器两极板之间的电势差为U =E ② 设此时电容器极板上积累的电荷量为Q ,按定义有C =Q U ③ 联立①②③式得Q =CBL v .④ (2)设金属棒的速度大小为v 时经历的时间为t ,通过金属棒的电流为i .金属棒受到的磁场的作用力方向沿导轨向上,大小为F 安=BLi ⑤ 设在时间间隔(t ,t +Δt )内流经金属棒的电荷量为ΔQ ,据定义有i =ΔQ Δt ⑥ ΔQ 也是平行板电容器两极板在时间间隔(t ,t +Δt )内增加的电荷量.由④式得:ΔQ =CBL Δv ⑦ 式中,Δv 为金属棒的速度变化量.据定义有a =Δv Δt ⑧ 金属棒所受到的摩擦力方向斜向上,大小为F f =μF N ⑨ 式中,F N 是金属棒对导轨的正压力的大小, 有F N =mg cos θ⑩ 金属棒在时刻t 的加速度方向沿斜面向下,设其大小为a ,根据牛顿第二定律有mg sin θ-F 安-F f =ma ? 联立⑤至?式得a =m (sin θ-μcos θ)m +B 2L 2C g ? 由?式及题设可知,金属棒做初速度为零的匀加速运动.t 时刻金属棒的速度大小为v =m (sin θ-μcos θ)m +B 2L 2C gt . [答案] (1)Q =CBL v (2)v = m (sin θ-μcos θ)m +B 2L 2C gt [总结提升] (1)电容器的充电电流用I =ΔQ Δt =C ΔU Δt 表示. (2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,

电磁感应中的单双杆模型

电磁感应中的单双杆问题 一、单杆问题 (一)与动力学相结合的问题 1、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN,电阻为R,左端连接一电动势为E,内阻为r的电源,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 2、水平放置的光滑金属轨道上静止一根质量为m的金属棒MN, 电阻为R,左端连接一电阻为R,MN在恒力F的作用下从静止开始运动,其他部分及连接处电阻不计,试求:金属棒在轨道上的最大速度? 3、金属导轨左端接电容器,电容为C,轨道上静止一长度为L的金属棒cd, 整个装置处于垂直纸面磁感应强度为B的匀强磁场当中,现在给金属棒一初 速度v,试求金属棒的最大速度? (二)与能量相结合的题型 1、倾斜轨道与水平面夹角为 ,整个装置处于与轨道相垂直的匀强磁场当中,导轨顶端连 有一电阻R,金属杆的电阻也为R其他电阻可忽略,让金属杆由静止释放,经过一段时 V,且在此过程中电阻上生成的热量为Q。 间后达到最大速度 m 求:(1)金属杆达到最大速度时安培力的大小 (2)磁感应强度B为多少 (3)求从静止开始到达到最大速度杆下落的高度 2.(20分) 如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的 光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑 金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2

=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。 (1)求导体棒ab从A下落r/2时的加速度大小。 (2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h 和R2上的电功率P2。 (3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab 从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。 二、双杆问题 (一)、同一磁场中的等宽轨道 1、水平放置的光滑金属轨道上静止两根质量为m的金属棒MN、PQ。电阻均为R,现给PQ一个向右的初速度v,其他部分及连接处电阻不计,试求:(1)金属棒MN在轨道上 的最大速度?(2)回路中产生的最大热量 (二)、同一磁场不等宽轨道 如图所示,光滑、足够长、不计电阻、轨道处在磁感应强度为B的匀强磁场当中,间距左边为l,右边为2l的平行金属导轨上静止M、N两根同样粗细的同种金属棒,除金属棒上电阻为R、2R外,其他电阻均不计。现给N棒一根瞬时冲量I (1)求金属棒N受到冲量后的瞬间通过金属导轨的感应电流 (2)设金属棒N在运动到宽轨道前M已经达到最大速度,求金属棒M的最大速度值;(3)金属棒N进入Ⅱ宽轨道区后,金属棒MN再次达到匀速运动状态,。求整个过程中金属棒MN中产生的总焦耳热。 (三)、不同磁场区域的平行轨道 1、(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2。在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b。开始时b静止,给a 一个向右冲量I后a、b开始运动。设运动过程中,两金属棒总是与导轨垂直。 (1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流; (2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值;

相关文档
最新文档