空调系统中冰蓄冷技术的应用与发展

空调系统中冰蓄冷技术的应用与发展
空调系统中冰蓄冷技术的应用与发展

空调系统中冰蓄冷技术的应用与发展

发表时间:2016-03-09T13:33:57.120Z 来源:《工程建设标准化》2015年10月供稿作者:王奕[导读] 中国石油集团东北炼化工程有限公司吉林设计院随着越来越多的家庭使用空调后,也产生了一个重要的问题,那就是夏天用电负荷高,让电力部门供电产生了很多不平衡因素。(中国石油集团东北炼化工程有限公司吉林设计院,吉林,吉林,132002)【摘要】伴随着社会经济的快速发展,人民的生活水平逐年提高,家家户户用空调已经是一件非常普遍的事情,人们对空调的使用率越来

越高,空调在炎热夏季带来的凉爽让人们对其产生了依赖心理。但是随着越来越多的家庭使用空调后,也产生了一个重要的问题,那就是夏天用电负荷高,让电力部门供电产生了很多不平衡因素。基于此,文章主要对于空调系统冰蓄冷技术的应用和发展前景进行分析和研究。

【关键词】空调系统;冰蓄冷技术;应用与发展;

最近几年,随着家用电器的不断增多,居民生活用电大幅度提高。当城市处于用电高峰期时,商业住宅空调消耗的电量占到城市用电总量的20%-35%,这样就会导致一系列用电问题的发生,例如电网负荷加大、高峰期电力供应不足、用电不平衡性等。蓄冷空调技术能够消除电力不平衡问题,能做到“移峰填谷”简言之就是能在电力处于低谷时期时也能正常运行。这一技术得到了国家有关部门的鼓励,因为低谷电价是高峰电价的一半左右,利用蓄冷空调技术就能节约很大部分的电量,同时还能节省一部分电费开支。1.蓄冷空调系统与冰蓄冷技术1.1蓄冷空调系统简述

蓄冷空调技术的定义是在夜间电量低谷时期时。电动制冷机可以自动将一部分电量转化成潜热储存的冷量,当到了白天用电高峰期的时候,再把晚上储存在电机内的那部分冷量逐渐释放到外界环境之中,来让住宅房间内温度下降。在这种技术的制冷过程中,大部分电量都来自夜间低谷时期的储存用电,在电量高峰时段使用过程中只需要小部分电量就能实现工作,利用这一技术可以克服用电高峰期时供电不足的现状,实现移峰填谷的目标。这种技术其实也不是非常复杂,就是在传统的制冷装置外再加入蓄冷装置,就可以实现移峰填谷,这也是和传统空调的根本性区别。

1.2冰蓄冷技术分析

冰蓄冷技术相对来说就比较复杂一点,冰蓄冷空调系统与传统的空调系统相比,两者制冷系统差不多一样,只是前者比后者多了1套蓄冰设备。其具体的工作过程是:当电力处于低谷期时通过制冰循环过程将机载冷剂的冷量传给蓄冷槽中的水,最终水凝结后形成冰。当电力处于高峰期时,冰蓄冷系统通过放冷循环过程,载冷剂通过从蓄冷槽吸收冷量,给空调系统供冷。系统通过进出水量大小实现调节从而控制冰的融化速度,最终实现控制冷冻水的出水温度。

冰蓄冷技术的制冰方式有以下两种方法:1.静态制冰法。就是指制冰机和蓄冰槽实现一体化,冰在制备的同时也伴随着融化,两个过程在同一位置下进行。2.动态制冰法。就是指蓄冰设备和制冰设备不再是一体化结构,而是相互独立不受影响的,冰的制备过程和存储过程不是同时进行的,也不在同一位置。2.空调系统中蓄冷技术的主要用途2.1冰蓄冷低温送风系统

所谓冰蓄冷低温送风系统就是指传统空调系统和冰蓄冷技术的完美融合,采用这种结合方式有很多优点,不仅可以降低系统建设的投资和维护费用,还能使室内温度尽可能的提高室内的空气质量,让人们更加舒适的在室内工作或生活。要想让冰蓄冷空调在居民生活中的使用率越来越高,就得让人们了解低温送风系统,只有这样才能实现冰蓄冷空调的早日投产。冰蓄冷与低温送风空调的融合方式一般有3种:一次冷源+低温送风散流器;一次冷源+二次冷源+串联式混合箱;一次冷源+二次冷源+诱导式风机盘管。低温送风空调系统和传统的空调系统在运行过程中还是有很大差异,具体差异主要体现在以下几个方面,首先低温送风空调系统更为节能,因为它使用的是DDC(直接数字控制)控制系统;其次,低温送风空调系统比传统空调使用时更加舒适,但是在运行时会出现结露现象,所以要注意空调的保温;最后,低温送风空调系统造价低廉,是传统空调造价的75%-85%,所以在销售价格上较传统空调更会受到人们的欢迎,再加上其具备冰蓄冰技术,同时也节约了使用费用。综上所述,低温送风空调系统和冰蓄冰技术的融合可以进一步提高整个系统的COP值,让其发展下去不仅能够受到人们的高度认可,还能创造更多的经济效益,这是未来空调系统的首选。

2.2区域性蓄冷空调供冷站

现阶段我国在区域性供冷方面做得还不够好,主要是缺乏成熟的经验和方法,实行区域性供冷可以很大程度的节约资源,从而减少了电力的消耗量。要想建立这种区域供冷站,就首先设计出实现区域空调负荷的自动控制系统,用户可以直接取用低温冷水进行空气调节。区域供冷的目标是实现根据不同建筑物用电程度的不同,合理分配设备的容量。同时在运行过程中要实行大温差技术,就是指把冰蓄冰、区域供冷、超低温送风空调系统有效的结合起来,让每个系统的优点都能结合起来,从而实现一个良好的供冷方式。当地的电力部门也应该合理控制电价,要鼓励人们使用新型的制冷空调就必须合理定制电力高峰期和低谷期的电费,这样才能从一定程度上消除在夏季供电紧张的矛盾,同时也可以达到保护环境的目的。

2.3实现热泵与冰蓄冷技术完美融合

现阶段,使用空气源热泵户型中央空调存在一些隐患。以空气为热源的热泵机组,受室外空气的影响很大,冬季土壤温度比空气温度高,夏季又比空气温度低,所以地源热泵的供热供冷的COP值均高。然而地源热泵COP值平均提高35%左右,所以而可以大大减少中央空调的耗电量,同时也节省了系统运行费用。而冰蓄冷系统具有移峰填谷的功能,因此,为了克服冰蓄冷技术和水源热泵技术单独应用时的局限性,将两者完美的融合起来是一个不错的选择。3.蓄冷技术发展前景3.1不断开发新型蓄冷材料

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点:

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

水蓄冷、冰蓄冷空调系统浅析

水蓄冷、冰蓄冷空调系统浅析 发表时间:2019-03-21T15:47:56.907Z 来源:《防护工程》2018年第34期作者:丁岳峰 [导读] 在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 中冶华天南京工程技术有限公司江苏南京 210000 引言 蓄冷技术,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并通过介质将冷量储存起来,在白天用电高峰时释放该冷量提供空调服务,从而缓解空调高峰电力的矛盾。目前较为流行的蓄冷方式有二种,即水蓄冷、冰蓄冷。 正文 随着现代工业的发展和人民生活水平的提高。中央空调的应用越来越广泛,其耗电量也越来越大,一些大中城市中央用电量已占其高峰用电量的20%以上,使得电力系统峰谷负荷差加大,电网负荷率下降,电网不得不实行拉闸限电,严重制约着工农业生产,对人们正常的生活带来不少影响。解决该问题的有效办法之一是应用于蓄冷技术,将空调用电从白天高峰期转移到夜间低谷期,均衡城市电网负荷,达到多峰填谷的目的,蓄冷技术的原理,简而言之,是利用夜间电网多余的谷荷电力继续运转制冷机制冷,并以冰的形式储存起来,在白天用电高峰时将冰融化提供空调服务,从而避免中央空调争用高峰电力,最常用的蓄冷方式主要有两大类:冰蓄冷和水蓄冷。 一、冰蓄冷 顾名思义蓄冷介质以冰为主,不同的制冰开式,构成不同的蓄冷系统。蓄冷系统的思想通常有两种,完全蓄冷与部分蓄冷。因为部分蓄冷方式可以削减空调制冷系统高峰耗电量,而且初投资夜间比较低所以目前采用较多,在确定部分负荷蓄冷系统的装置容量时,一般有两种情况, 1、空调系统夜间不运行,仅白天运行,或者夜间运行的空调负荷较小,在这种情况下,选择制冷机的最佳平衡计算公式应为 qc=Q/(N1+CfN2) Qs=N2Cfqc, 式中qc:以空调工况为基点时的制冷机制冷量,kw,Qs:蓄冰槽容量,KWH; N1:白天制冷主机在空调工况下的运行小时数,由于白天制冷机不一空均为满载运行,计算时该值可取(0.8-1.0)n. N2:夜间制冷主机在蓄冷工况下的运行小时数。 Cf:冷水机组系数,即冷水机组蓄冰工况制冷能力与空调工况制冷能力的比值,一般活塞式与离心式冷水机组约为0.65,螺杆式冷水机组约为0.7.它取决于工况的温度条件和机组型号。 根据这个公式,我们结合具体的工程,就可得出应配置的冷水机组的制冷能力与蓄冰槽容量。 2、空调系统部分夜间运行,而且所需的冷负荷比较大。在这种情况下,我样一般以夜间所需的冷负荷为依据。选择基载主机。然后从总负荷中扣除基载主机所承担的负荷,再按第一种情况合理配制冷水机与蓄冰槽。 二、水蓄冷 水蓄冷是利用3-7°C的低温水进行蓄冷,可直接与常规系统区配,无需其它专门设备。 其优点是:投资省,维修费用少,管理比较简单。但由于水的蓄能密度低,只能储存水的显热,故蓄水槽上地面积大。如若利用高层建筑内的消防水池,在确定制冷机容量与蓄冷槽的容量时,可根据消防水池的容量来计算出蓄冷量,然后根据剩余负荷量来确定制冷机组的制冷量。最后校核一下冷水机组能否满足夜间蓄冷的需要。 三、冰蓄冷与水蓄冷的对比 水蓄冷系统不仅从节能而且从节省初投资方面都具有很大的优越性,它充分利用了建筑的消防水池,不再占用建筑面积,节省了机房面积,但我们不能因此而完全肯定水蓄冷,否定冰蓄冷,他们各用各自的适用范围,下面我们来分析一下:根据公式qc=Q/(N1+CfN2) Qs=N2Cfqc 我们可得出蓄冷比率: η=Qs/Q=(N2Cfqc)/Q=(N2Cfqc)/[(N1+CfN2)×(N2Cfqc)/Q] =1/[1+(N1/(CfN2)) 对于一般的办公建筑来说,N1、Cf、N2均为确定值,分别为8.5,8,0.7,则η=1(1+8.5/0.7×8)=39.7% 在这个比率下,制冷机与蓄冷槽容量配置为最佳,对冰蓄冷而言,因蓄冰槽可根据蓄冷量的大小来配置,不受任何限制,我们就可根据这一比率来确定蓄冷量,从而配置出相应的制冷机与蓄冰槽,但对水蓄冷而言,因为它利用的是消防水池,而建筑物消防水池的容积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下限制下,对于空调面积只与建筑物的性质及使用功能有关,与建筑面积没有关系,那么在这一条件下,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接近于39.7%,则我们建议采用冰蓄冷系统,对空调面积较小的建筑物来说,水池所蓄存的冷量占全日总冷量的比率接于39.7%,甚至高于39.7%,则我们应采用水蓄冷系统,同时,应与水系统的分区结合起来。 造价方面,同等蓄冷量的水蓄冷系统造价约为冰蓄冷的一半或更低。冰蓄冷需要的双工况制冷机组价格高,装机容量大,增加了配电装置的费用,且冰槽的价格高,使用有乙二醇数量多,价格贵,管路系统和控制系统均较复杂,因此总造价高。 蓄冷系统装机容量方面,水蓄冷的蒸发温度与常规空调相差不大,且可采取并联供冷等方式使装机容量减小。冰蓄冷工质的蒸发温度较低,制冷机组在蓄冰工况下的制冷能力系数Cf为0.6~0.65(制冰温度为-6℃时),其制冷能力比制冷机组在空调工况下低0.4~0.35。相同制冷量下,冰蓄冷的双工况制冷机组容量要大于常规空调工况机组。 移峰量上看在同等投入的情况下,水蓄冷系统一般设计为全削峰,节省电费大大多于冰蓄冷系统。冰蓄冷为降低造价,一般为1/2或1/3削峰,节省电费少于水蓄冷系统。

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

上海某酒店地源热泵 冰蓄冷设计方案

XX公寓式酒店地源热泵+冰蓄冷设计方案工程概况 XX公寓式酒店位于上海浦东,总占地面积34988 平方米,总建筑面积88375平方米,框架结构。由3幢11层~14层公寓式酒店,1组2层商业裙房及其附属配套设施组成。商业裙房部分夏季空调负荷为2227KW,冬季空调负荷为1486KW;公寓式酒店夏季生活热水负荷为925KW,冬季生活热水负荷为1272kW。 设计方案 本项目商业裙房设计采用中央空调系统,为节约能源采用地源热泵系统,降低建筑能耗,并同时向公寓式酒店供应生活热水。由于商业部分主要为9:00~22:00 营业,故采用冰蓄冷技术进行移峰填谷。采用三台地源热泵机组,其中两台为空调用三工况机组,一台为生活热水用地源热泵机组。地源热泵系统地下换热器采用垂直埋管,并联双U型连接,共计打孔480口。 冰蓄冷部分采用部分负荷蓄冰技术,制冷设备和蓄冰设备并联连接,供应7℃冷冻水,载冷剂采用25%乙二醇溶液。冰蓄冷系统可按以下四种模式运行:主机制冰、主机供冷、融冰供冷、主机与融冰同时供冷。夜间电价低谷时段制冰系统将冰蓄满,白天电价高峰时段融冰供冷,电价平峰时段制冷系统补充供冷,各工况转换通过电动阀门开关自动切换。空调水系统采用二管制,夏季冷冻水供回水温度分别为7℃/12℃,冬季热水供回水温度分别为45℃/40℃。空调末端系统采用风机盘管加新风的形式,便于室温独立控制,气流组织上送上回。 系统运行策略 由于本项目的中央空调系统为多种节能技术综合而成的复合系统,为了有效的实现设计的初衷,真正达到节能环保的要求,需制定专门的地源热泵冰蓄冷空调系统年运行方案,以中央空调能源管理系统的形式实施,实现长期有效稳定的节能运行。 秋、冬、春三季运行策略 XX公寓式酒店项目要求冬季可满足商业部分的供热需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制热模式满足商业部分的空调采暖需求,而由生活热水地源热泵机组满足生活热水的需求。在春秋季,项目要求满足公寓式酒店的生活热水供应,商业部分没有空调需求。此时生活热水需求由生活热水地源热泵机组满足。以上两种运行模式为较为普遍的热泵机组运行模式,故在此不再赘述。 夏季运行策略 XX公寓式酒店项目要求夏季可满足商业部分的供冷需求,同时满足公寓式酒店的生活热水供应。此时,三工况地源热泵切换为制冷模式,同时能源管理系统切换至冰蓄冷供冷运行模式。根据冰蓄冷运行的特点,有以下四种运行模式: 三工况地源热泵机组制冰模式 利用夜间低电费和商业部分无空调供冷需求的因素,三工况地源热泵机组切换为制冰模式,全力制冰蓄冷,此时公寓式酒店的生活热水需求通过三工况地源热泵机组的热回收模块免费制取。

广州汉正能源科技有限公司动态冰蓄冷介绍

蓄冷技术介绍 广州汉正能源科技有限公司

目录 一、广州汉正能源科技有限公司简介 (2) 二、蓄冷技术简介 (3) 2.1 蓄冷原理 (3) 2.2 蓄冷优势 (3) 2.3 蓄冷应用范围 (4) 2.4 蓄冷分类 (4) 三、广州汉正蓄冷技术 (6) 3.1、动态冰蓄冷介绍 (6) 3.1.1冰蓄冷发展历程 (6) 3.1.2第三代蓄冰技术——动态冰蓄冷 (7) 3.1.3动态冰蓄冷技术优势 (9) 3.1.4动态冰蓄冷系统 (13) 3.2平行流水蓄冷技术介绍 (15) 3.2.1平行流水蓄冷技术优势 (15) 四、工程案例 (19) 1、东莞晶苑毛织制衣有限公司——华南地区最大水蓄冷工程 (19) 2、深圳富士康冰蓄冷项目 (21)

一、广州汉正能源科技有限公司简介 广州汉正能源科技有限公司成立于2012年10月,是一家专业从事能源领域的公司。在工业冷冻、暖通空调、蓄能、变频节能、低压成套电气和自动化系统集成等领域有丰富的设计、施工经验和工程案例。公司拥有雄厚的技术开发力量,汇集了一批具有硕士、博士学历的高素质专业科研人员,与中国科学院广州能源研究所、中山大学、广东工业大学等相关科研单位、高等院校密切合作,先后开发出动态冰蓄冷、平行流水蓄冷、精密基站空调、变频喷淋螺杆冷水机组、高压开启式螺杆机组等系列产品。 “用心做好每件事”是汉正人的经营理念。公司将以雄厚的技术力量为依托,不断地研发新产品;以一流的工程质量为保障,不断地开拓新市场。 公司本着“诚毅”的核心价值观为每一个客户提供完美的产品和“诚毅”的服务。 ·主营业务:动态冰蓄冷工程的设计和工程建设 水蓄冷工程的设计和工程建设 ·为用户提供全面的蓄能和节能技术解决方案

冰蓄冷设计

东华大学环境学院冰蓄冷设计 姓名:何燕娜 班级:建筑1202 学号: 121430205 2014年12月

1.1 项目概述 本项目为浙江某办公楼建设项目的双工况冰蓄冷系统应用。 1.2 冰蓄冷系统在本项目中的应用 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 本文就对冰蓄冷系统设计进行详细阐述,并和传统的风冷系统进行初投资和运行成本的综合比较。 1.3 冰蓄冷系统的工作模式 冰蓄冷系统的工作模式是指系统在充冷还是供冷,供冷时蓄冷装置及制冷机组是各自单独工作还是共同工作。蓄冷系统需要在几种规定的方式下运行,以满足供冷负荷的要求,常用的工作模式有如下几种: (1)机组制冰模式

在此种工作模式下,通过浓度为25%的乙二醇溶液的循环,在蓄冰装置中制冰。此间,制冷机的工作状况受到监控,当离开制冷机的乙二醇溶液达到最低出口温度时制冷机关闭。此种工作模式的示意图如图1-2所示。 图1-2 机组制冰工作模式示意图 (2)制冰同时供冷模式 当制冰期间存在冷负荷时,用于制冷的一部分低温乙二醇溶液被分送至冷负荷以满足供冷需要,乙二醇溶液分送量取决于空调水回路的设定温度。一般情况下,这部分的供冷负荷不宜过大,因为这部分冷负荷的制冷量是制冷机组在制冰工况下运行提供的。蓄冷时供冷在能耗及制冷机组容量上是不经济合理的,因此,只要此冷负荷有合适的制冷机组可选用,就应设置基载制冷机组专供这部分冷负荷,该工作模式示意图如图1-3所示。 图1-3 制冰同时供冷模式示意图 (3)单制冷机供冷模式: 在此种工作模式下,制冷机满足空调全部冷负荷需求。出口处的乙二醇溶液不再经过蓄冰装置,而直接流至负荷端设定温度有机组维持。该工作模式示意图如图1-4所示。

冰蓄冷空调原理汇总

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

浅谈冰蓄冷空调与常规中央空调的优缺点

浅谈冰蓄冷空调与常规中央空调的优缺点 发表时间:2016-08-18T10:15:48.877Z 来源:《低碳地产》2015年第2期作者:韩广玉 [导读] 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置。 深圳机械院建筑设计有限公司广东深圳 518000 本人前段时间做了一个小型的冰蓄冷项目,通过这个项目认真学习了一下蓄冰系统,在此跟各位浅谈一下蓄冰空调与常规空调优缺点对比,以及本人累积的些许设计经验,希望能对初次做蓄冰项目的设计同行带来一些帮助。 现简单分析一下冰蓄冷中央空调系统、常规空调系统的特点。 1)冰蓄冷中央空调系统特点 冰蓄冷中央空调系统是在常规中央空调系统的基础上多加一套蓄冰装置,利用夜间低谷用电时段开启制冷机组,将蓄冰装置中的水制成冰,白天在空调用电高峰时段利用融冰取冷满足部分空调负荷,宏观上起到调峰移谷,微观上在提高室内空调品质的同时大大降低用户运行费用的作用。 该技术在二十世纪30年代起源于美国,在70年代能源危机中得到发达国家的大力发展。从美国、日本、韩国、台湾等较发达的国家和地区的发展情况来看,冰蓄冷已经成为中央空调的发展方向。比如,韩国明令超过2000㎡建筑,必须采用冰蓄冷或煤气空调,日本超过5000㎡的建筑物,就在设计时考虑采用冰蓄冷空调系统。很多国家都采取了奖励措施来推广这种技术,比如韩国转移1KW高峰电力,一次性奖励2000美元,美国一次性奖励500美元,等等。 中国在近年加大对蓄能技术的推广力度,国家计委和经贸委2001年底特地下达《节约用电管理办法》,要求各单位推广蓄能技术,并逐步加大峰谷电差价。一些建筑采用蓄能技术后直接给用户带去了收益,节约了运行成本。2001年10月举办APEC会议的10万㎡的上海科技城、广州大学城500万㎡等大型建筑采用的就是冰蓄冷空调系统。 冰蓄冷空调从其原理和实践中可以看出它有如下特点 优点: ①减少冷水机组容量(降低主机一次性投资),总用电负荷少,减少变压器配电容量与配电设施费。 ②冷主机制冷效率高(COP大于5.3),同时利用峰谷荷电价差,大大减少空调年运行费,可节约运行费用35%以上。 ③减少建筑的配电容量,节约变配电的投资,节约约30%(空调的配电投资);免双线路的高可靠性费用,节约投资。 ④使用灵活,部分区域使用空调可由融冰提供,不用开主机,节能效果明显。 ⑤可以为较小的负荷(如只使用个别办公室)融冰定量供冷,而无需开主机。 ⑥在过渡季节,可以融冰定量供冷,而无需开主机,不会出现大马拉小车的状况,运行更合理,费用节约明显。 ⑦具有应急功能,提高空调系统的可靠性。在拉闸限电时更能显示其优势:只要具备带动水泵的电力(如发电机发电、限电减电力供电)就能够融冰供冷,不会出现空调不能使用的状况。 ⑧制冷温度低而稳定,空调效果佳,提高大楼的舒适性和品位。 ⑨有低温冷源制冷速度快,上班前启动时间短。上班前启动时间越长,则空调无效运行越多,无谓的浪费越大。 ⑩作为驱动能源,清洁、环保、稳定、简单可靠,且峰谷电差价在不久的将来势必更优惠(周边省份在去年均已大幅优惠,国外的峰谷差更大)。 对于大型多建筑区域供冷,可以低温供水,降低送水能耗、减少管网投资;同时与每一建筑一个供冷站的形式比可以节约投资、减少管理费用、减少机房面积。 可以为末端提供低温冷冻水,降低末端的投资;加强除湿能力,大幅提高空调舒适性;如果采用低温送风系统,更是可以节约末端的风机能耗、提高空调品质、减少风管的尺寸和投资。 空调系统智能化程度高,可以实现系统的全自动运行,而且具备与大楼的BAS接口,是目前世界上最先进的空调系统。 不足之处: ①如果主机和蓄冰装置等设备均布置于冷冻机房内,蓄冰装置需要占用一定的空间。 ②机房设备投资比常规水冷电制冷和溴化锂机组系统稍高。 ③冰蓄冷只能夏天供冷,需要供热系统。(可以采用热网换热采暖,热网容量远低于溴化锂机组所需,只有50%左右容量)2)常规电制冷中央空调系统特点 是目前使用较多的空调形式,经过一个多世纪的发展,制冷主机的形式多种多样,具有制冷效率高等的优点,它有如下特点:优点: ①系统简单,占地比其他形式的稍小。

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

16华森李百公深圳财富港大厦动态冰蓄冷空调系统设计及应用

深圳财富港大厦动态冰蓄冷空调系统设计 及应用 深圳华森建筑与工程设计顾问有限公司李百公☆ 广州高菱能源技术有限公司漆科亮肖睿 摘要:动态冰蓄冷系统具有制冰效率高,放冷速度快的优点,但系统运行不够稳定,应用案例少;在深圳财富港大厦的过冷水式动态冰蓄冷空调系统的设计中采用了模块化设计、优化自控设计等方法,在运行调试中采取各种措施保证了过冷水换热器的稳定运行;通过实测运行工况,掌握了系统运行的实际运行工况,并对该系统的设计、运行维护提出了建议。 关键词:动态冰蓄冷过冷水换热器蓄冷放冷运行稳定 Shenzhen caifugang building dynamic ice storage air conditioning system design and application Baigong Li★ Abstract:Dynamic ice storage system has the advantages of high efficiency ice-making, fast speed cooling off, but the system is not stable, and less application case. In ShenZhen caifugang building dynamic supercooled water type adopted in the design of ice storage air conditioning system, and automatic optimization design method of modular design. In the running and debugging took various measures to ensure the stability of the supercooled water heat exchanger; Through actual operation condition, and master the practical operation of the system operation condition, and propose some advantages of the system design, the system running and maintenance Keywords:Dynamic ice storage Supercooled water heat exchanger Cold storage Release cold Running stability Shenzhen huasen architecture and engineering design consulting co. LTD, Shenzhen, Guangdong province, China 引言 由于深圳峰谷电价政策较为优越,近年来蓄冷空调系统的应用越来越多,因系统应用早,技术相对成熟,蓄冷装置占地面积小等原因,冰蓄冷系统特别是静态冰蓄冷成为蓄冷空调系统的主流。 静态冰蓄冷系统制冰时水静态地被冻结成冰并附着在传热壁面上[1],随着蓄冰量增加,冰层厚度逐渐加大,传热效率及制冷效率也大为降低。为克服上述缺点,动态冰蓄冷系统制冰时水与传热壁面发生热交换,但冰的形成并不在传热壁面,而是在远离传热壁面的空间解除过冷生成冰浆,即制冰过程是动态的,该系统消除了静态冰蓄冷技术的固态冰层导热热阻,同时液体和传热壁面间换热效率高。 ☆李百公,男,1971年3月生,大学,教授级高级工程师 518031深圳华森建筑与工程设计顾问有限公司(0755) 86126775 E-mail:libg@https://www.360docs.net/doc/c22246178.html,

蓄冷空调系统设计

(1)一、空调蓄冰 电能难于储存,单靠供电机构本身的设备难以达到"削峰填谷"的目标,无法尽 量在电力低谷期间使用电力;当然,有些电力公司由于电网调峰能力不足,建 设抽水蓄能电站进行调峰,但其初投资高、运行费用大,难以推广。因此,大 多数国家的供电机构都采用各种行政和经济手段,迫使用户各自将用电高峰削平,并尽量将用电时间转移到夜间,蓄冷系统就是在这种情况下发展起来的。 蓄冷系统就是在不需冷量或需冷量少的时间(如夜间),利用制冷设备将 蓄冷介质中的热量移出,进行蓄冷,然后将此冷量用在空调用冷或工艺用冷高 峰期。蓄冷介质可以是水、冰或共晶盐。因此,蓄冷系统的特点是:转移制冷 设备的运行时间;这样,一方面可以利用夜间的廉价电,另一方面也就减少了 白天的峰值电负荷,达到电力移峰填谷的目的。 空调系统是现代公用建筑与商业用房不可缺少的设施,其耗电量很大,而且 基本处于电负荷峰值期。例如,饭店和办公楼每平米建筑面积的空调峰值耗电 量约40~60瓦;以北京为例,目前,公用与商用建筑的空调用电负荷约为60 万千瓦,约为高峰电负荷的16%,因此,空调负荷具有很大的削峰填谷潜力。二、全负荷蓄冷与部分负荷蓄冷 除某些工业空调系统以外,商用建筑空调和一般工业建筑用空调均非全日空调,通常空调系统每天只需运行10~14小时,而且几乎均在非满负荷下工作。图1-1中的A部分为某建筑典型设计日空调冷负荷图。如果不采用蓄冷,制冷 机组的制冷量应满足瞬时最大负荷的需要,即qmax 为应选制冷机组的容量。 蓄冷系统的设计思想通常有二种,即:全负荷蓄冷和部分负荷蓄冷。 1. 全负荷蓄冷 全负荷蓄冷或称负荷转移,其策略是将电高峰期的冷负荷全部转移到电力 低谷期。如图1-1,全天所需冷量A均由用电低谷或平峰时间所蓄存的冷量供给;即蓄冷量B+C等于A,在用电高峰时间制冷机不运行。这样,全负荷蓄冷 系统需设置较大的制冷机和蓄冷装置。虽然,运行费用低,但设备投资高、蓄

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

动态冰浆蓄冷空调系统特点

冰浆是由微小的冰晶和溶液组成,而溶液通常是由水和冰点调节剂(如乙二醇、乙醇或氯化钠等)构成。由于冰晶的融解潜热大,使得冰浆具有较高的蓄冷密度;同时由于冰晶具有较大的传热面积,使其具有较快的供冷速率和较好的温度调解特性。它不象传统的盘管式(内融冰、外融冰)和封装式(冰球、冰板)蓄冷系统的冰凝结在换热器的壁面上,增加了冰层的传热热阻,使其传热效率较低。 冰浆蓄冷系统现已被用于空调系统中,夜间低谷时蓄冷,白天高峰时供冷,冰浆蓄冷空调系统的容量一般只有高峰冷负荷的20%—50%,使其整个系统小巧、紧凑。由于冰浆蓄冷空调系统具有低温送风特性,使得整个空调系统的风管、水管尺寸减小,冷量输送的功耗也大为降低,运行成本减小。 一、冰蓄冷满足制冷需求 1)晚上蓄冰,白天融冰,移峰填谷,改善国家用电结构; 2)通过蓄冰,减少制冷机组容量。制冷机组运行时可保障一直运行在高负荷段,以提高制冷效率; 4)蓄冰系统可做为备用冷源,可应对紧急停电事故; 5)蓄冰系统扩容方便,可轻松面对空调使用面积的增加; 6)采用冰蓄冷,由于减小制冷机组装机容量而减小电力设备投资,如变压器、配电柜及自备发电设施等,整套制冷系统的辅助设备及辅件也都减小,制冷机房面积减小;配合峰谷电价,大温差系统设计,运行费用与末端费用投资减小,整体经济效益显著。 力合islurry冰桨蓄冷的特点: 1)机组既可以制冰,又可以做为常规冷水机组使用,功能齐全; 2)机组为一体化设计,结构紧凑,转运方便,可在各工况下高效运行,蓄冰槽内只有制冰介质溶液和冰浆,无任何维护量; 3)制冰器设计独特,冰晶制成工艺先进,换热器内不粘附冰,实现较高的蒸发温度,降低能耗,比传统的蓄冰方式节能15%以上; 4)机组体积小,可减少机房占地面积,对机房无特殊要求; 5)冰浆以流体形式储存与蓄冰槽中,蓄冰槽可以为任何形式,尽可能减少机房的占地面积,节省基建费用;6)冰晶有极大的换热表面,融冰迅速,彻底,可提供更低的供水温度,与低温送风技术相结合,可进一步降低系统投资费用; 7)设备可集中或分离设计,易于实现在负荷变化时机组依然保持在较高的效率下运行。模块化设计易于对系统能量进行调整——扩容或缩减。

冰雪世界会议中心冰蓄冷空调设计

冰雪世界会议中心冰蓄冷空调设计 工程概况 冰雪世界会议中心位于北京市潮白河畔,为滑雪馆的配套设施,其主体建筑在滑雪馆的雪道正下方,总建筑面积为26700平方米。主要由客房及群房两部分组成,客房面积为13679平方米;群房的功能有会议、餐厅、厨房、多功能厅、体检中心、设备用房等,面积为13021平方米。地下二层,地上十层,建筑高度为43.35米。图1为该会议中心的正立面图。原滑雪馆已于2005年已建成,多种原因使得该滑雪馆制冷机未设置备用机组,此次会议中心制冷系统的设计需要考虑到为滑雪馆制冷系统提供备用的可能。 设计基本数据 电价政策及电价结构 冰蓄冷空调系统对电网移峰的意义在此不再赘述,影响冰蓄冷项目经济性的一个重要原因,是当地的电价政策及电价结构。项目所在地北京市顺义区的峰谷电时段及相应商业用电 电价如表1:

从表1可看出,尖峰电价与低谷电价的比为4:1,高峰电价与低谷电价的比为3.83:1,这对该建筑采用冰蓄冷空调系统提供了很好的电价基础。 设计日逐时冷负荷 经逐时冷负荷计算,设计日总冷负荷为36423kW,最大小时冷负荷(峰值)为3400kW,作为宾馆,其夜间也有一部分冷负荷。设计日的冷负荷曲线见图2。 对照表1和图2,可以看出,该建筑在电价的尖峰和高峰时段逐时冷负荷较大,在平电及低谷电时段有较低的连续的负荷,其负荷特点决定了该系统设置基载主机更为合理。 冰蓄冷系统设计 概述 冰蓄冷系统的设计应综合考虑多方面的因素,如建筑的规模、使用性质、设计日的冷负荷曲线以及所能采用的蓄冷装置的特性等等。建筑有可能提供的使用空间对蓄冷装置的选择有很大的限制。就本建筑而言,采用导热塑料(聚乙烯)蓄冰盘管,该盘管一般做成整体式的 蓄冰桶,为内融冰方式。 蓄冷系统的确定及主要设备 该建筑采用部分蓄冷的方式,在电网的尖峰及高峰时段,蓄冷设备提供部分空调负荷。双工况主机位于蓄冰设备的上游,为串联方式。同时考虑到连续空调负荷的比例设置基载主机一台。从系统运行的安全性及经济性的角度出发,设置了板式换热器,由乙二醇换取冷冻水(供回水温度为7℃/12℃)向空调系统供冷。蓄冷系统流程见图3。表2是蓄冷系统的主要 设备。

相关文档
最新文档