基于距离学习的生物医学文本聚类算法研究

基于距离学习的生物医学文本聚类算法研究
基于距离学习的生物医学文本聚类算法研究

K - M e a n s 聚 类 算 法

基于K-means聚类算法的入侵检测系统的设计 基于K-means聚类算法的入侵检测系统的设计 今天给大家讲述的是K-means聚类算法在入侵检测系统中的应用首先,介绍一下 聚类算法 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程的研究,就形成了历史学,有关世界空间地域的研究,则形成了地理学。 又如在生物学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将它们归属于不同的界、门、纲、目、科、属、种之中。 事实上,分门别类地对事物进行研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具有更多的近似特性。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analysis)作为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 (聚类分析我们说得朴实一点叫做多元统计分析,说得时髦一点叫做数据挖掘算法,因为这个算法可以在一堆数据中获取很有用的信息,这就不就是数据挖掘吗,所以大家平时也不要被那些高大上的名词给吓到了,它背后的核心原理大多数我们都是可以略懂一二的,再

比如说现在AI这么火,如果大家还有印象的话,以前我们在大二上学习概率论的时候,我也和大家分享过自然语言处理的数学原理,就是如何让机器人理解我们人类的自然语言,比如说,苹果手机上的Siri系统,当时还让杨帆同学帮我在黑板上写了三句话,其实就是贝叶斯公式+隐含马尔可夫链。估计大家不记得了,扯得有点远了接下来还是回归我们的正题,今天要讨论的聚类算法。) K-Means是常用的聚类算法,与其他聚类算法相比,其时间复杂度低,结果稳定,聚类的效果也还不错, 相异度计算 在正式讨论聚类前,我们要先弄清楚一个问题:如何定量计算两个可比较元素间的相异度。用通俗的话说,相异度就是两个东西差别有多大,例如人类与章鱼的相异度明显大于人类与黑猩猩的相异度,这是能我们直观感受到的。但是,计算机没有这种直观感受能力,我们必须对相异度在数学上进行定量定义。 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似程度。一个事物常常需要用多个特征变量来刻画,就比如说我们举一个例证,就有一项比较神奇的技术叫面部识别技术,其实听起来很高大上,它是如何做到的,提取一个人的面部特征,比如说嘴巴的长度,鼻梁的高度,眼睛中心到鼻子的距离,鼻子到嘴巴的距离,这些指标对应得数值可以组成一个向量作为每一个个体的一个标度变量(),或者说叫做每一个人的一个特征向量。 如果对于一群有待分类的样本点需用p 个特征变量值描述,则每

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

节理产状的动态聚类分析以及最大距离法统计方法的研究_毕业论文

成绩:______ 题目 节理产状的动态聚类分析以及最大距 离法统计方法的研究 专业:构造地质学 _________ 姓名: ____________________________ 学号: ___________________________ 班级: ______________________________

节理产状的动态聚类分析以及最大距离法 统计方法的研究 摘要:裂隙岩体内的节理往往是变化的,有时甚至变化很大。测得大量节理产状以后,对其分组是一项基础性的工作,但是如何分组目前还没有很好的理论和方法。采用动态聚类分析的方法,将节理产状的样本数据划分为不同的簇,通过不同簇的概率模型计算及其簇心的分布特性比较说明了簇数分类的适度性。形成了解决这类问题的系统实用的方法。又提出了一种合理、科学和简便的节理统计方法——最大距离法。其主要思路是对野外采集的节理产状数据做最优分组, 使组间距离最大,而组内距离最小。该方法逻辑简单、明了,操作过程简便,而且能有效地剔除原始数据中误差较大的数据,结果精确。通过应用,表明该统计方法正确、可靠。 关键词:节理产状;聚类分析;最大距离方法;地质统计。 1 引言 岩体中的节理裂隙系统往往由几个产状不同的节理组合成的,在野外测得的节理的倾向和倾角一般而言都是变化的,有的甚至变化很大,在测得大量节理的产状后,对大量的数据进行分组或分类是一项基础性的工作。在实际的工程中,有关学者用统计学的方法对岩石裂隙岩体围岩分类、岩体裂化程度、岩体裂隙分形技术及岩体裂隙的几何参数概率模型进行了研究,本文不考虑地理空间的相关性,将样本数据看作是相互独立的,用统计学中k 均值聚类分析的方法对节理分组。 聚类分析是统计学上研究分类问题的一种方法,它的任务是把所有的样本数据分配到若干的簇,使得同一个簇的样本数据聚集在簇中心的周围,它们之间距离比较近,而不同簇样本数据之间的距离比较远。但如何评判节理的分组是否合理?评判的依据又是如何?目前还没有很好的理论和方法。本文的目的就是结合工程意义,用k均值聚类分析的方法,将节理产状的样本数据划分为不同的组。用系统聚类法聚类,样品一旦划到某个类以后就不变了,这要求分类的方法比较准确,另一方面系统聚类法要存贮距离矩阵,尤其当研究的样品较多时,需占用很多的存贮单元,计算方法中的迭代法德思想给

聚类分析算法解析

聚类分析算法解析 一、不相似矩阵计算 1.加载数据 data(iris) str(iris) 分类分析是无指导的分类,所以删除数据中的原分类变量。 iris$Species<-NULL 2. 不相似矩阵计算 不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。dist()函数的基本形式是 dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) 其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。默认是计算欧式距离,所有的属性必须是相同的类型。比如都是连续类型,或者都是二值类型。 dd<-dist(iris) str(dd) 距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。Iris数据共150例样本间距离矩阵为150行列的方阵。下面显示了1~5号样本间的欧式距离。 dd<-as.matrix(dd)

二、用hclust()进行谱系聚类法(层次聚类) 1.聚类函数 R中自带的聚类函数是hclust(),为谱系聚类法。基本的函数指令是 结果对象<- hclust(距离对象, method=方法) hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。下面采用平均距离法聚类。 hc <- hclust(dist(iris), method="ave") 2.聚类函数的结果 聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。 str(hc) 下面列出了聚类结果对象hc包含的merge和height结果值的前6个。其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。 head (hc$merge,hc$height)

CLOPE-快速有效的聚类算法

CLOPE:针对交易的数据快速有效聚类算法 摘要 本文研究分类数据的聚类问题,特别针对多维和大型的交易数据。从增加聚簇直方图的高宽比的方法得到启发,我们开发了一种新的算法---CLOPE,这是一种非常快速、可伸缩,同时又非常有效的算法。我们展示了算法对两个现实数据集聚类的性能,并将CLOPE与现有的聚类算法进行了比较。 关键词 数据挖掘,聚类,分类数据,可伸缩性 1.简介 聚类是一种非常重要的数据挖掘技术,它的目的是将相似的交易[12, 14, 4, 1]分组在一起。最近,越来越多的注意力已经放到了分类数据[10,8,6,5,7,13]的聚类上,分类数据是由非数值项构成的数据。交易数据,例如购物篮数据和网络日志数据,可以被认为是一种特殊的拥有布尔型值的分类数据,它们将所有可能的项作为项。快速而精确地对交易数据进行聚类的技术在零售行业,电子商务智能化等方面有着很大的应用潜力。 但是,快速而有效聚类交易数据是非常困难的,因为这类的数据通常有着高维,稀疏和大容量的特征。基于距离的算法例如k-means[11]和CLARANS[12]都是对低维的数值型数据有效。但是对于高维分类数据的处理效果却通常不那么令人满意[7]。像ROCK这类的分层聚类算法在分类数据聚类中表现的非常有效,但是他们在处理大型数据库时表现出先天的无效。 LargeItem[13]算法通过迭代优化一个全局评估函数对分类数据进行聚类。这个评估函数是基于大项概念的,大项是在一个聚簇内出现概率比一个用户自定义的参数——最小支持度大的项。计算全局评估函数要远比计算局部评估函数快得多,局部评估函数是根据成对相似性定义的。这种全局方法使得LargeItem算法非常适合于聚类大型的分类数据库。 在这篇文章中,我们提出了一种新的全局评估函数,它试图通过增加聚簇直方图的高度与宽度之比来增加交易项在聚簇内的重叠性。此外,我们通过引用一个参数来控制聚簇紧密性的方法来泛化我们的想法,通过修改这个参数可以得到

K-means文本聚类算法

最大距离法选取初始簇中心的K-means文本聚类算法的研究 的评论 背景 随着计算机技术和网络技术的飞速发展,人们的生活方式产生了极大的改变。计算机从一个有几个房子大小的巨无霸,已经变成了小巧的笔记本。网络设备也已经从PC端走向移动端。越来越丰富的网络设备,让人们能在网络里畅游,网络对于人们来说触手可及,同时也产生了巨大的数据流量。人们如何从海量的数据中找到有用的信息,成为了现在计算机学科的研究热点。聚类是数据挖掘中重要的一支。由于聚类具有无需先验知识的优势,可以根据数据自然分部而获取知识。聚类成为数据挖掘领域一个非常活跃的领域,而且得到了广泛的应用。聚类就是把一个数据集合分成几个簇,在同一个簇里,数据相关性最高,但是在2个不同的簇里,数据相关性最低。K-means聚类算法主要针对处理大数据集时,处理快速简单,并且算法具有高效性和可伸缩性。但是,K-means聚类算法随机的选择初始簇中心会导致以下缺点:(1)得到的聚类结果中容易出现局部最优,而不是全局最优;(2)聚类结果不具有稳定性,很大程度上依赖于初始簇中心;(3)聚类过程中的迭代次数增加使聚类过程中的总耗时增加。 传统的k-means聚类算法 传统的聚类算法思想:首先从N个数据对象集合中随机选择k个对象,然后计算剩余的N-k个对象与k个对象的距离(相似度),与k个对象中哪个对象的距离最小,就把分给那个对象;然后在计算每个簇中的簇中心,即是每个簇中对象的均值;不断重复这一过程步骤,直到标准测度函数E开始收敛为止。 K-means算法描述如下: 输入:迭代终止条件ε,最大的迭代次数为max,簇的总数目是k,样本集有N个数据对象。 输出:满足迭代终止条件的k个簇和迭代次数s。 随机初始化k个簇中心: 对每个数据对象,分别计算该对象与k个簇中心均值的距离,并选择距离最小的簇将该对象加个到该簇里; 重新计算k个簇的中心,利用函数E计算出此时的函数值; 如果带到最大迭代次数或满足:

文本聚类

目录 1 概念及应用背景 (1) 1.1概念 (1) 1.2应用背景 (1) 2 系统设计框架 (2) 2.1总体框架 (2) 2.2文本聚类的具体过程 (3) 3应用程序具体实现及说明 (4) 3.1获取文档的输入 (4) 3.2提取文档的TF/IDF权重 (5) 3.3 k-means进行数据聚类 (6) 4 实验结果及分析 (7) 4.1实验结果 (7) 4.2结果分析 (10) 5结论 (10) 5.1实验结论 (10) 5.2个人感受 (11) 附录:项目框架和主程序代码 (12)

1 概念及应用背景 1.1概念 文本聚类(Text clustering)是在没有学习的条件下对文本集合进行组织或划分的过程,其主要依据著名的聚类假设:同类的文档相似度较大,而不同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程,以及不需要预先对文档手工标注类别,因此具有一定的灵活性和较高的自动化处理能力,已经成为对文本信息进行有效地组织、摘要和导航的重要手段,为越来越多的研究人员所关注。(代码下载:https://www.360docs.net/doc/c25294361.html,/source/3277899) 1.2应用背景 文本聚类是搜索引擎和语义Web的基本技术,Internet 已经发展为当今世界上最大的信息库和全球范围内传播信息最主要的渠道。随着Internet 的大规模普及和企业信息化程度的提高,各种资源呈爆炸式增长。在中国互联网络信息中心(CNNIC)2011年1月最新公布的中国互联网络发展状况统计报告中显示,自2003年开始,中国的网页规模基本保持翻番增长,2010年网页数量达到600亿个,年增长率78.6%,其中仍有62.3% 的网络信息均以文本形式体现。对于这种半结构或无结构化数据,如何从中获取特定内容的信息和知识成为摆在人们面前的一道难题。近年来,文本挖掘、信息过滤和信息检索等方面的研究出现了前所未有的高潮。 作为一种无监督的机器学习方法,聚类技术可以将大量文本信息组成少数有意义的簇,并提供导航或浏览机制。 文本聚类的主要应用点包括: (1) 文本聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤。 (2) 对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。 (3) 对用户感兴趣的文档(如用户浏览器cache中的网页)聚类,从而发现用户的兴趣模式并用于信息过滤和信息主动推荐等服务。 (4) 改善文本分类的结果。 (5) 数字图书馆服务。通过SOM神经网络等方法,可以将高维空间的文档拓扑保序地映射到二维空间,使得聚类结果可视化和便于理解。 (6) 文档集合的自动整理。如Scatter/Gather,它是一个基于聚类的文档浏览系统。

MATLAB中聚类分类算法中距离计算方法

样本之间的距离计算方法: 给定m*n阶数据矩阵X,xs和xt之间的各种距离定义如下: 1、欧氏距离(euclidean): 2、标准欧氏距离(seuclidean): 其中,V是n*n阶对角矩阵,第j个元素是2 S j,S是标准偏差向量。 () 3、马氏距离(mahalanobis): 其中,C是X中样品的协方差 4、绝对值距离(cityblock): 5、闵科夫斯基距离(minkowski): P=1时,是绝对值距离;p=2时,是欧氏距离,p=∞时是契比雪夫距离。 6、契比雪夫距离(chebychev): 7、余弦距离(cosine):

8、相关性距离(correlation): 其中, 9、海明距离(hamming): 10、Jaccard距离(jaccard): 11、斯皮尔曼距离(spearman): 其中, MATLAB中通过pdist函数计算样本点两两之间的距离,在该函数中可指定距离的计算方法 类之间距离的计算方法:

注:类r是由类p和类q合并而来,r n是类r中样品的个数,ri x是类r中的第i个样品 1、单链(single):也叫最短距离法,定义类与类之间的距离为两类最近样品的距离,即 2、全链(complete):也叫最长距离法,类与类之间的距离为两类最远样本间的距离,即 3、组平均(average):定义为两类中所有样品对的平均距离,即 4、重心法(centroid):定义为两类重心之间的欧氏距离,即 其中, 5、中间距离(median):定义为两类加权重心之间的欧氏距离,即

其中,其中, r x , s x 分别是类r 和类s 之间的加权重心,如果类r 是由类p 和类q 合并而来,那么定义为 6、离差法(ward):定义为两类合并时导致的类内平方和的增量,类内平方和定义为类内所有样本点与类重心之间的距离的平方和,平方和的测量等价于下边的距离公式: 其中,是欧氏距离, r x , s x 是类r 和类s 的重心,r n ,s n 是类r 和类s 的元素个数。 在一些参考书中,离差法没有用到r s n n 的2倍,在以上距离中用 到使得两个单独的类之间的距离等于欧氏距离。 7、加权平均法(weighted average):在两类之间应用递归定义,如果类r 是由类p 和类q 合并得到的,那么类r 与另一个类s 的距离定义为类p 与类s 距离和类q 和类s 的距离的平均 以上七种距离中,使用重心距离和中间距离产生的聚类树可能不具有单调性,这种情况发生在类r 和类s 合并后与第三个类的距离小于类r 与类s 的距离。为了避免这种情况,可以使用其他方法。

第3章 聚类分析答案

第三章 聚类分析 一、填空题 1.在进行聚类分析时,根据变量取值的不同,变量特性的测量尺度有以下三种类型: 间隔尺度 、 顺序尺度 和 名义尺度 。 2.Q 型聚类法是按___样品___进行聚类,R 型聚类法是按_变量___进行聚类。 3.Q 型聚类统计量是____距离_,而R 型聚类统计量通常采用_相似系数____。 4.在聚类分析中,为了使不同量纲、不同取值范围的数据能够放在一起进行比较,通常需要对原始数据进行变换处理。常用的变换方法有以下几种:__中心化变换_____、__标准化变换____、____规格化变换__、__ 对数变换 _。 5.距离ij d 一般应满足以下四个条件:对于一切的i,j ,有0≥ij d 、 j i =时,有0=ij d 、对于一切的i,j ,有ji ij d d =、对于一切的i,j,k ,有kj ik ij d d d +≤。 6.相似系数一般应满足的条件为: 若变量i x 与 j x 成比例,则1±=ij C 、 对一 1≤ij 和 对一切的i,j ,有ji ij C C =。 7.常用的相似系数有 夹角余弦 和 相关系数 两种。 8.常用的系统聚类方法主要有以下八种: 最短距离法 、最长距离法、中间距离法、重心法、类平均法、可变类平均法、可变法、离差平方和法。 9.快速聚类在SPSS 中由__K-mean_____________过程实现。 10.常用的明氏距离公式为:()q p k q jk ik ij x x q d 11?? ????-=∑=,当1=q 时,它表示 绝 对距离 ;当2=q 时,它表示 欧氏距离 ;当q 趋于无穷时,它表示 切比雪夫距离 。 11.聚类分析是将一批 样品 或 变量 ,按照它们在性质上 的 亲疏、相似程度 进行分类。 12.明氏距离的缺点主要表现在两个方面:第一 明氏距离的值与各指标的量纲有关 ,第二 明氏距离没有考虑到各个指标(变量)之间的相关性 。 13.马氏距离又称为广义的 欧氏距离 。 14,设总体G 为p 维总体,均值向量为()'p μμμμ,, ,= 21,协差阵为∑,则样品()'=p X X X X ,,,21 与总体G 的马氏距离定义为 ()()()μμ-∑'-=-X X G X d 12,。 15.使用离差平方和法聚类时,计算样品间的距离必须采用 欧氏距离 。 16.在SPSS 中,系统默认定系统聚类方法是 类平均法 。 17.在系统聚类方法中, 中间距离法和 重心法 不具有单调性。 18.离差平方和法的基本思想来源于 方差分析 。 19.最优分割法的基本步骤主要有三个:第一,定义类的直径 ;第二, 定义目标函数 ;第三, 求最优分割 。 20.最优分割法的基本思想是基于 方差分析的思想 。 二、判断题 1.在对数据行进中心化变换之后,数据的均值为0,而协差阵不变,且变换后后的数据与变量的量纲无关。 ( ) 2.根据分类的原理,我们可以把聚类分为样品聚类和变量聚类。 ( )

基于向量空间模型的文本聚类算法

基于向量空间模型的文本聚类算法 转自:https://www.360docs.net/doc/c25294361.html,/2009/0910/15270.php 1 文本聚类研究现状 Internet 已经发展为当今世界上最大的信息库和全球范围内传播信息最主要的渠道。随着Internet 的大规模普及和企业信息化程度的提高,各种资源呈爆炸式增长。在中国互联网络信息中心(CNNIC)2007 年1 月最新公布的中国互联网络发展状况统计报告中显示,70.2% 的网络信息均以文本形式体现。对于这种半结构或无结构化数据,如何从中获取特定内容的信息和知识成为摆在人们面前的一道难题。近年来,文本挖掘、信息过滤和信息检索等方面的研究出现了前所未有的高潮。 作为一种无监督的机器学习方法,聚类技术可以将大量文本信息组成少数有意义的簇,并提供导航或浏览机制。 文本聚类的主要应用点包括: (1) 文本聚类可以作为多文档自动文摘等自然语言处理应用的预处理步骤。其中比较典型的例子是哥伦比亚大学开发的多文档自动文摘系统Newsblaster[1] 。该系统将新闻进行 聚类处理,并对同主题文档进行冗余消除、信息融合、文本生成等处理,从而生成一篇简明扼要的摘要文档。 (2) 对搜索引擎返回的结果进行聚类,使用户迅速定位到所需要的信息。比较典型的系统有Infonetware Real Term Search 。Infonetware 具有强大的对搜索结果进行主题分类的功能。另外,由Carrot Search 开发的基于Java 的开源Carrot2 搜索结果聚合聚类引擎2.0 版也是这方面的利用,Carrot2 可以自动把自然的搜索结果归类( 聚合聚类) 到相应的语义类别中,提供基于层级的、同义的以及标签过滤的功能。 (3) 改善文本分类的结果,如俄亥俄州立大学的Y.C.Fang 等人的工作[2] 。 (4) 文档集合的自动整理。如Scatter/Gather[3] ,它是一个基于聚类的文档浏览系统。 2 文本聚类过程 文本聚类主要依据聚类假设:同类的文档相似度较大,非同类的文档相似度较小。作为一种无监督的机器学习方法,聚类由于不需要训练过程、以及不需要预先对文档手工标注类别,因此具有较高的灵活性和自动化处理能力,成为对文本信息进行有效组织、摘要和导航的重要手段。文本聚类的具体过程如图 1 所示。 图 1 文本聚类过程

一种基于密度的快速聚类算法

第37卷第11期 2000年11月计算机研究与发展JOU RNAL O F COM PU T ER R ESEA RCH &D EV ELO PM EN T V o l 137,N o 111N ov .2000 原稿收到日期:1999209220;修改稿收到日期:1999212209.本课题得到国家自然科学基金项目(项目编号69743001)和国家教委博士点教育基金的资助.周水庚,男,1966年生,博士研究生,高级工程师,主要从事数据库、数据仓库和数据挖掘以及信息检索等的研究.周傲英,男,1965年生,教授,博士生导师,主要从事数据库、数据挖掘和W eb 信息管理等研究.曹晶,女,1976年生,硕士研究生,主要从事数据库、数据挖掘等研究.胡运发,男,1940年生,教授,博士生导师,主要从事知识工程、数字图书馆、信息检索等研究. 一种基于密度的快速聚类算法 周水庚 周傲英 曹 晶 胡运发 (复旦大学计算机科学系 上海 200433) 摘 要 聚类是数据挖掘领域中的一个重要研究方向.聚类技术在统计数据分析、模式识别、图像处理等领域有广泛应用.迄今为止人们提出了许多用于大规模数据库的聚类算法.基于密度的聚类算法DBSCAN 就是一个典型代表.以DBSCAN 为基础,提出了一种基于密度的快速聚类算法.新算法以核心对象邻域中所有对象的代表对象为种子对象来扩展类,从而减少区域查询次数,降低I O 开销,实现快速聚类.对二维空间数据测试表明:快速算法能够有效地对大规模数据库进行聚类,速度上数倍于已有DBSCAN 算法. 关键词 空间数据库,数据挖掘,聚类,密度,快速算法,代表对象 中图法分类号 T P 311.13;T P 391 A FAST D ENSIT Y -BASED CL USTER ING AL G OR ITH M ZHOU Shu i 2Geng ,ZHOU A o 2Y ing ,CAO J ing ,and HU Yun 2Fa (D ep a rt m en t of Co mp u ter S cience ,F ud an U n iversity ,S hang ha i 200433) Abstract C lu stering is a p rom ising app licati on area fo r m any fields including data m in ing ,statistical data analysis ,p attern recogn iti on ,i m age p rocessing ,etc .In th is paper ,a fast den sity 2based clu stering algo rithm is developed ,w h ich con siderab ly speeds up the o riginal DB SCAN algo rithm .U n like DB SCAN ,the new DB SCAN u ses on ly a s m all num ber of rep resen tative ob jects in a co re ob ject’s neighbo rhood as seeds to exp and the clu ster so that the execu ti on frequency of regi on query can be decreased ,and con sequen tly the I O co st is reduced .Experi m en tal resu lts show that the new algo rithm is effective and efficien t in clu stering large 2scale databases ,and it is faster than the o riginal DB SCAN by several ti m es . Key words spatial database ,data m in ing ,clu stering ,den sity ,fast algo rithm ,rep resen tative ob jects 1 概 述 近10多年来,数据挖掘逐渐成为数据库研究领域的一个热点[1].其中,聚类分析就是广为研究的问题之一.所谓聚类,就是将数据库中的数据进行分组,使得每一组内的数据尽可能相似而不同组内的数据尽可能不同.聚类技术在统计数据分析、模式识别、图像处理等领域都有广泛的应用前景.迄今为止,人们已经提出了许多聚类算法[2~7].所有这些算法都试图解决大规模数据的聚类问题.以基于密度的聚类算法DB SCAN [4]为基础,本文提出一种基于密度的快速聚类算法.通过选用核心对象附近区域包含的所有对象的代表对象作为种子对象来扩展类,快速算法减少了区域查询的次数,从而减低了聚类时间和I O 开销 .本文内容安排如下:首先在第2节中介绍基于密度的聚类算法DB SCAN 的基本思想,并分析它的局限

(完整版)聚类算法总结.doc

1.聚类定义 “聚类是把相似的对象通过静态分类的方法分成不同的组别或者 更多的子集( subset),这样让在同一个子集中的成员对象都有一 些相似的属性”—— wikipedia “聚类分析指将物理或抽象对象 的集合分组成为由类似的对象组 成的多个类的分析过程。它是一种重要的人类行为。聚类是将数 据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对 象有很大的相似性,而不同簇间的对象有很大的相异性。”——百度百科 说白了,聚类( clustering)是完全可以按字面意思来理解的——将相同、相似、相近、相关的对象实例聚成一类的过程。简单理 解,如果一个数据集合包含 N 个实例,根据某种准则可以将这 N 个 实例划分为 m 个类别,每个类别中的实例都是相关的,而不同类别 之间是区别的也就是不相关的,这个过程就叫聚类了。 2.聚类过程 : 1)数据准备 :包括特征标准化和降维 . 2)特征选择 :从最初的特征中选择最有效的特征 ,并将其存储于向量 中 . 3)特征提取 :通过对所选择的特征进行转换形成新的突出特征.

4)聚类 (或分组 ):首先选择合适特征类型的某种距离函数 (或构造新的距离函数 )进行接近程度的度量 ;而后执行聚类或分组 . 5)聚类结果评估 :是指对聚类结果进行评估 .评估主要有 3 种 :外部有效性评估、内部有效性评估和相关性测试评估. 3聚类算法的类别 没有任何一种聚类技术(聚类算法 )可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,有多种聚类算法.聚类算法有多种分类方法将聚类算法大致分成层次化聚类算法、划分式聚类算 法、基于密度和网格的聚类算法和其他聚类算法,如图1 所示的4 个类别.

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/c25294361.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.360docs.net/doc/c25294361.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.360docs.net/doc/c25294361.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.360docs.net/doc/c25294361.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

各种聚类算法介绍及对比教学内容

各种聚类算法介绍及 对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

一种快速聚类算法的GPU加速

Chapter43 Fast Clustering of Radar Re?ectivity Data on GPUs Wei Zhou,Hong An,Hongping Yang,Gu Liu,Mu Xu and Xiaoqiang Li Abstract In short-term weather analysis,we use clustering algorithm as a fun-damental tool to analyze and display the radar re?ectivity data.Different from ordinary parallel k-means clustering algorithms using compute uni?ed device architecture,in our clustering of radar re?ectivity data,we face the dataset of large scale and the high dimension of texture feature vector we used as clustering space. Therefore,the memory access latency becomes a new bottleneck in our application of short-term weather analysis which requests real time.We propose a novel parallel k-means method on graphics processing units which utilizes on-chip registers and shared memory to cut the dependency of off-chip global memory. The experimental results show that our optimization approach can achieve409 performance improvement compared to the serial code.It sharply reduces the algorithm’s running time and makes it satisfy the request of real time in appli-cations of short-term weather analysis. Keywords Clustering algorithmáReal timeáShort-term weather forecastáGPUáCUDA W.Zhou(&)áH.AnáG.LiuáM.XuáX.Li Department of Computer Science and Technology, University of Science and Technology of China, 230027Hefei,China e-mail:greatzv@https://www.360docs.net/doc/c25294361.html, H.Yang China Meteorological Administration,Meteorological Observation Centre, 100081Beijing,China W.Zhou Hefei New Star Research Institute of Applied Technology, 230031Hefei,China 487 J.J.Park et al.(eds.),Proceedings of the International Conference on Human-centric Computing2011 and Embedded and Multimedia Computing2011,Lecture Notes in Electrical Engineering102, DOI:10.1007/978-94-007-2105-0_43,óSpringer Science+Business Media B.V.2011

相关文档
最新文档