微孔滤膜的材质、品种和规格

微孔滤膜的材质、品种和规格
微孔滤膜的材质、品种和规格

试剂商城

微孔滤膜的材质、品种和规格

(1)纤维素酯类如二醋酸纤维素(CA);三醋酸纤维素(CTA);硝化纤维素(CN);乙基纤维素(EC);混合纤维素(CN-CA)等。其中混合纤维素制成的膜,是一种标准的常用滤膜。由于成孔性能良好,亲水性好,材料易得且成本较低,因此,该膜的孔径规格分级最多,从0.05~8um,约有近十个孔径型号。该膜使用温度范围较广。可耐稀酸。不适用酮类、酯类、强酸和碱类等液体的过滤。

(2)聚酰胺类如尼龙6(PA-6)和尼龙(PA-66)微孔膜。该种也具有亲水性能。较耐碱而不耐酸。在酮、酚、醚及高分子量醇类中,不易被腐蚀。孔径型号也较多。适用于电子工业光刻胶、显影液等的净化。

(3)聚砜类如聚砜(PS)和聚醚砜(PES)微滤膜。该类膜具有良好的化学性和热稳定性,耐辐射,机械强度较高,应用面也较广。

(4)含氟材料类如聚偏氟乙烯(PVDF)和聚四氟乙烯膜(PTFE)。这类微滤膜,都有极好的化学稳定性,适合在高温下使用。特别是PTFE膜,其使用温度为-40~260℃可耐强酸、强碱和各种有机溶剂。由于具有疏水性,可用于过滤蒸气及各种腐蚀性液体。

(5)聚碳酸酯和聚酯类主要用于制核孔微孔膜。核孔膜孔径非常均匀,一般厚度为5~15um。此膜的孔隙率只有百分之十几,因膜薄所以其流体的过滤速度与前叙的几种膜相当。但制作工艺较为复杂,膜价格高,应用受到限制。目前该核膜已能制成多种孔径价格。

(6)聚烯烃类如聚丙烯(PP)拉伸式微孔膜和聚丙烯(PP)纤维式深层过滤膜。该类微孔膜具有良好的化学稳定性,可耐酸、耐碱和各种有机溶剂。价格便宜。但该类膜孔径分布宽。目前的商品膜有平板式和中空钎维式多种构型。并具有多种孔径规格。

(7)无机材料如陶瓷微孔膜、玻璃微孔膜,各类金属微孔膜等。这是近几年来倍受重视的新的一族微孔膜。无机膜具有耐高温、耐有机溶剂、耐生物降解等优点。特别在高温气体分离和膜催化反应器及食品加工等行业中,有良好的应用前景。

试剂商城

超滤膜的使用与清洗

超滤膜的使用与清洗 超滤装置标准工艺流程图 超滤膜产品性能特点 超滤膜的性能特点: 超滤膜的孔径大约0.002~0.1um,截留分子量为500-500000,其操作压力在0.07-0.1Mpa左右。海德能超滤膜的结构特点:内外表面是一层极薄的双皮层滤膜,滤膜在整张膜面上的孔径结构并不相同。不对称超滤膜具有一层极其光滑且薄(0.12微米)的孔径在不同切割分子量的内外双层表面上,此内外双层表面由孔径达16微米的非对称结构海绵体支撑层支撑,整根膜丝依靠小孔径光滑膜表面和较大孔径支撑材料的结合,从而使过滤细微颗粒的流动阻力小并且不易堵塞,独特的成型结构性能使得污染物不会滞留在膜内部形成深层污染。 超滤膜由于其特殊的性质广泛应用在矿泉水的制备、反渗透设备的预处理、自来水净化处理、海水淡化的预处理、废水回用的净化处理、去除 水中的胶体和细菌、中药有效成分进行浓缩、制备浓缩茶等行业。 超滤膜组件的性能参数:

超滤膜产品性能特点超滤膜设计参数:

注:表内数值以25℃为基准 超滤膜的药物清洗 随着超滤膜截留的污染物在膜内表面和膜孔中的不断积累,超滤膜的水通量和分离能力逐渐下降,通过反冲洗可以部分恢复膜的水通量,但反 冲洗不能达到100%的恢复效果,因此当超滤膜的水通量下降超过30%时,必须进行药物清洗,及时清除附着在超滤膜壁和膜孔中的污染物, 防止超滤膜形成不可恢复的堵塞。 药物清洗的方法主要有以下几种: 1、循环药洗:采用RO水或超滤水配制柠檬酸液控制pH为2,经增压泵从超滤膜的进水阀处打入,自排放阀处循环回柠檬酸液,调节排放阀将压力稳定在0.25Mpa,循环清洗30分钟后,将超滤膜内的柠檬酸液冲洗干净,再配制氢氧化钠和次氯酸钠溶液控制pH值为12,从进水阀处打入,在0.25Mpa水压下循环清洗30分钟后冲洗干净,见下图所示。 2、药液浸泡:分别将酸洗液和碱洗液打入超滤膜后将进水阀、排放阀和调节阀全部关闭,对超滤膜密封浸泡2小时后再用超滤水冲洗干净。 3、药洗杀菌:配制pH值等于2的柠檬酸溶液或pH值等于12的氢氧化钠溶液对超滤膜进行药物清洗,并加入50ppm(mg/L)的氯或过氧氢再进行循环药洗或浸泡,同时可起到良好的灭菌作用。

膜的分类

膜的分类 环境与资源学院08级3班 周子雄史小辉 赵丽芳呼吉乐 (一)膜的定义 所谓的膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。 近年来,膜分离过程已逐渐成为化学工业、食品加工、废水处理、医药技术等方面的重要分离过程。已经工业化的有微孔过滤、超滤、反渗透、电渗析和气体分离等,渗透汽化也在最近几年中速成了工业规模的装置。膜分离与反应结合的过程,各种膜反应器的研究和应用也发展较快。其他非分离膜过程,如控制释放技术,医用人造膜和膜传感器等种类也不少,有的发展速度将超过膜分离过程。 (二)膜的特性 ◆不管膜多薄, 它一定有两个界面。这两个界面分别与两侧的流体相接触 ◆膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。 (三)膜的分类方法 膜种类和功能繁多,分类方法有多种,大致可按膜的材料、结构、形状、分离机理、分离过

3.1 按材料分类 无机膜和有机膜 (1) 有机膜 渗透汽化有机膜电镜图 ◆按IUPAC 制定的标准·,多孔无机膜按孔 径范围可分为三大类, 目前已经工业化的 ◆目前,实用的有机高分子膜材料有:纤维素酯类、聚砜类、聚酰胺类及其他材料。从品种来说,已有成百种以上的膜被制备出来,其中约40多种已被用于工业和实验室中。以日本为例,纤维素酯类膜占53%,聚砜膜占%,聚酰胺膜占%,其他材料的膜占2%,可见纤维素酯类材料在膜材料中占主要地位。 、按结构分类:对称膜(微孔膜、均质膜)、非对称膜、 复合膜 (1) 对称膜 膜的化学结构、物理结构在各个方向上是一致的,在所有方向上的孔隙率都相似,亦称各向同性膜(isotropic membrane)。对称膜虽是各向同性的,但由于膜结构中对称元素的存在,也可以是各向异性的,如中空纤维的径向各向异性膜,其他构型的横向各向异性膜和双皮层中空纤维膜都是对称膜

水处理超滤膜的形态结构及分类阐述

水处理超滤膜的形态 结构及分类阐述 超滤技术是一种以压力差为推动力,利用膜的透过性能,达到分离水中离子、分子以及某种微粒为目的的膜分离技术。水处理超滤膜的孔径范围大致在0.005~1微米之间,填补了微滤和纳滤之间空隙。 国内外学者提出超滤过程实际上同时存在三方面的情形: 1.溶质在膜表面以及微孔壁内产生吸附。 2.溶质的粒径大小与膜孔径相仿,溶质在孔中停留,引起堵塞。 3.溶质的粒径大于膜孔径,溶质在膜表面被机械截留,实现筛分。 超滤过程一般有两种方式:终端过滤和错流过滤。对浊度较低、水质较好的原水,一般采用终端过滤,这样可以大大降低工艺的能耗;对于浊度较高、污染较为严重的水,就采用错流过滤,这样可以避免大量的污染物累积在膜的表面,造成膜的污染,降低过滤性能。 超滤膜的形态结构和种类 超滤膜的横截面具有不对称结构。它一般是由一层厚度<1微米,起到筛分作用的致密层和一层厚度较大(通常为125微米)、具有海绵状或指状多孔结构的支撑层组成。目前,已经在工业生产和生活中常

用的膜组件主要有:管式、板框式、卷式和中空纤维式等几种。中空纤维膜又有内压膜(致密层在内)、外压膜(致密层在外)和双向膜(内外都有致密层)三种结构。总的来说,还是存在膜品种少、膜孔径分布较宽和性能不稳定等缺陷。 超滤膜对有机物的去除效果及影响因素 超滤膜的截留分子量范围一般为5000~10000ODalton,天然水体中有相当大一部分溶解性有机物的分子量低于该范围,导致超滤膜对其拦截效果很差。事实上,天然水中这一类的低分子溶解性有机物所占的比例往往较大。 超滤膜对有机物的去除,不同情况下差异很大。有学者用切割分子量为10万Dalton的中空纤维超滤膜对20种不同的原水进行过滤,TOC平均去除率为18%,UV25的平均去除率为28%。同样为去除水中的TOC,Laine等人用终端过滤的方式处理地表水,超滤膜对TOC的去除率在42%左右。 所以,寻找合适的方式尽可能地减少这种差异,提高超滤膜的处理效率是关键。从膜方面着手,就是寻找新的膜材料或者对膜进行改性;从处理工艺方面着手,就是寻找合适的处理工艺与超滤膜相组合,从而达到优化处理的效果。 预处理对膜过滤性能的影响

微孔滤膜的材质、品种和规格

微孔滤膜的材质、品种和规格 (1)纤维素酯类如二醋酸纤维素(CA);三醋酸纤维素(CTA);硝化纤维素(CN);乙基纤维素(EC);混合纤维素(CN-CA)等。其中混合纤维素制成的膜,是一种标准的常用滤膜。由于成孔性能良好,亲水性好,材料易得且成本较低,因此,该膜的孔径规格分级最多,从0.05~8um,约有近十个孔径型号。该膜使用温度范围较广。可耐稀酸。不适用酮类、酯类、强酸和碱类等液体的过滤。 (2)聚酰胺类如尼龙6(PA-6)和尼龙(PA-66)微孔膜。该种也具有亲水性能。较耐碱而不耐酸。在酮、酚、醚及高分子量醇类中,不易被腐蚀。孔径型号也较多。适用于电子工业光刻胶、显影液等的净化。 (3)聚砜类如聚砜(PS)和聚醚砜(PES)微滤膜。该类膜具有良好的化学性和热稳定性,耐辐射,机械强度较高,应用面也较广。 (4)含氟材料类如聚偏氟乙烯(PVDF)和聚四氟乙烯膜(PTFE)。这类微滤膜,都有极好的化学稳定性,适合在高温下使用。特别是PTFE膜,其使用温度为-40~260℃可耐强酸、强碱和各种有机溶剂。由于具有疏水性,可用于过滤蒸气及各种腐蚀性液体。 (5)聚碳酸酯和聚酯类主要用于制核孔微孔膜。核孔膜孔径非常均匀,一般厚度为5~15um。此膜的孔隙率只有百分之十几,因膜薄所以其流体的过滤速度与前叙的几种膜相当。但制作工艺较为复杂,膜价格高,应用受到限制。目前该核膜已能制成多种孔径价格。 (6)聚烯烃类如聚丙烯(PP)拉伸式微孔膜和聚丙烯(PP)纤维式深层过滤膜。该类微孔膜具有良好的化学稳定性,可耐酸、耐碱和各种有机溶剂。价格便宜。但该类膜孔径分布宽。目前的商品膜有平板式和中空钎维式多种构型。并具有多种孔径规格。 (7)无机材料如陶瓷微孔膜、玻璃微孔膜,各类金属微孔膜等。这是近几年来倍受重视的新的一族微孔膜。无机膜具有耐高温、耐有机溶剂、耐生物降解等优点。特别在高温气体分离和膜催化反应器及食品加工等行业中,有良好的应用前景。

各类中空纤维超滤膜性能比较

中空纤维超滤膜性能比较一览 摘要:本文集中对目前市场上的进口中空纤维超滤膜的性能做了详细比较,列举各种超滤膜在设计使用过程中的注意要点,为各工程公司进行超滤系统设计提供技术参考。 关键词:超滤,产水量,截留分子量,膜材料,膜面积 一.中空纤维超滤膜技术的发展 超滤(简称UF)膜分离技术是近年发展起来的分子水平的高新分离技术。膜孔径在0.01-0.001μm,截留分子量可分为10万、5万、2万、6千等。比常见细菌的分子量小百余倍,可将细菌、菌尸、细菌碎片、病毒、与细菌大小相仿的微小悬浮物、胶体、热源等近100%地截留。超滤装置是水质高效、高精度的净化设备,滤后水质清澈味甘,可直接生饮。超滤装置具有设备简单,操作方便,能耗低,效率高,无污染等优点。超滤装置在水处理行业中得到广泛应用。并可用于化工分离、医药提纯、食品加工、酱油、醋、酒类及饮料的过滤净化。 超滤是一种以压力作为推动力的膜法物理分离技术。一般采用全量过滤、错流过滤方式,物料以流动的方式流过膜的一侧,当给物料加以一定的压力后,净化液即透过膜从膜的另一侧流出,从而达到净化的目的。 世界主要中空纤维超滤膜商业化产品发展历程: 1974 –Romicon (Koch) 公司发明聚砜中空纤维膜。 1975 –Nitto Denko 公司取得聚砜中空纤维膜研制的巨大进展; 发展了海绵状膜结构。 1984 –Aquasource公司发明醋酸纤维素中空纤维膜;1988年首台大型市政用超滤装置在Anoncourt安装使用。 1985 –Memcor公司发明聚丙烯中空纤维微滤膜。 1986 –Xflow (Norit)公司发明聚醚砜/聚乙烯吡咯酮共混中空纤维超滤膜。1991 –Zenon公司提出了浸没式中空纤维膜应用方式。 1993 –Xflow公司发展水平放置膜组件的理念;1999年首台大型市政用超滤装置在Heemskerk安装使用。 1997 –Memcor公司推出聚偏氟乙烯中空纤维膜和浸没式超滤系统。 2000 –Hydranautics公司推出性能优良的亲水性聚醚砜中空纤维超滤膜。

超滤膜性能优势与过滤技术原理详解

超滤膜性能优势与过滤 技术原理详解 超滤是一种与膜孔径大小相关的筛分过程,膜的材质在超滤工作中是至关重要的,不同的材料材质显示的特性也是不同的,像亲水性、成孔性、材料来源广泛、稳定,这些都是衡量材质适不适合自己需求的指标特性。 一、超滤膜性能与过滤原理阐述 超滤膜组件采用先进的内压式膜分离技术,在常温和低压下进行分离,它具有能耗低、过滤精度高、产水量大、抗污能力强等优点,可有效滤除水中的细菌、胶体、悬浮物、铁锈、大分子有机物等有害物质。 二、uf超滤膜系统特点 采用内装高强度高韧性的改性聚丙烯中空纤维膜的系列超滤元件,不断丝、通量大、抗污染性,运行时无需进行化学分散洗,通过反冲就可以恢复通量。各组件水力负荷均匀、无死角,在反冲洗和化学清洗时污染物更易排出。适应各种水质,产水清澈透明,SDI稳定小于等于3,优于反渗透系统的进水要求。设备紧凑、占地面积小、模块化设计便于扩充、全自动运行,免维护工作。

三、应用领域 过滤经生化处理后的城市污水达到杂用水回用标准,工业废水深度处理回用、自来水、地下水、地表水的除菌、除浊、净化、大型反渗透系统的前级预处理、海水淡化前级预处理,工业冷却水的净化回用。 目前,超滤膜元件主要使用的材质有大概有聚砜、聚丙烯腈、聚偏氟乙烯、聚氯乙烯和无机材料。主要应用于分离、浓缩、纯化生物制品、医药制品以及食品工业中、还用于血液处理、废水处理和超纯水制备中的终端处理装置。 浅谈UF超滤膜技术在酿造行业中的应用优势 超滤膜是最早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。现如今成熟的超滤膜技术在工业领域应用十分广泛,已成为新型化工单元操作。 成熟的超滤技术在酿造行业中发挥着浓缩、分离、提纯、除菌等重要作用。超滤与传统制备工艺相比,具有安全无二次污染、操作简单、生产成本较低、还能使成品酒质具有较好的芳香度及清澈度等优势被越来越多的行业所应用。 超滤膜工艺原理

微孔滤膜过滤技术EOODS产品中心

Microfiltration Technology in Pharmaceutical Industry

中美合资·杭州科诺过滤器材有限公司HANGZHOU ANOW WATER TREATMENT CO.,LTD. 目录(Catalogue)------------------ 2 1、纯化水(PW)膜过滤系统---------------------- 3 2、注射用水(WFI)膜过滤系统------------------- 4 3、大输液(LVP)膜过滤系统--------------------- 5 4、小针剂(SVP)膜过滤系统--------------------- 6 5、眼药液膜过滤系统---------------------------- 7 6、空气除菌膜过滤系统-------------------------- 8

三、配置与价格 注:1、过滤器的规格及滤芯的数量需根据厂家的实际产量而定; 2、终端绝对除菌过滤系统的清洗消毒可采用90°C左右的热水,在0.2MPa 的压力下进行,时间控制在半小时以内。

根据自己的实际生产情况调节好过滤的流量和压力。终端绝对除菌膜过滤芯要求能进行完整性测试,能经受重复多次蒸汽杀菌和热水消毒。空气过滤芯需采用疏水性膜材料。膜过滤芯属一次性消耗品,当滤器前后压差超过0.2~0.3Mpa或纯化水的过滤出口流量达不到实际要求时,建议厂家更换滤芯。 三、配置与价格 备注:1、过滤器的规格及滤芯的数量需根据厂家的实际产量而定; 2、终端绝对除菌过滤系统的清洗消毒可采用90°C左右的热水,在0.2MPa 的压力下进行,时间控制在半小时以内。

微孔滤膜在食品与发酵工业中的应用

微孔滤膜在食品与发酵工业中的应用 何国庆 胡 政 (浙江大学食品科技系,杭州,310029) 3第一作者:博士,教授。 收稿时间:2000-03-27,改回时间:2000-09-15 摘 要 介绍了微孔滤膜及其发展简史,对微孔滤膜在啤酒工业,黄酒和酱油的生产,萃取发酵以及在食品微生物学检验等方面的应用进行了较详细的论述。关键词 微孔滤膜 食品工业 发酵工业 1 微孔滤膜及其发展简史 111 微孔滤膜的定义 膜分离技术是对液2液、气2气、液2固、气2 固体系中不同组分进行分离、纯化与富集的一门多学科交叉的新兴边缘学科高技术。膜分离技术的核心是膜,由于膜涉及到许多物质和多种结构,也涉及到各种不同的用途,因此分类方法有多种,如按膜的性质分类,按膜的结构分类,按膜的用途分类及按膜的作用机理分类等等。若根据膜的物理结构和化学性质进行分类,可分为以下几种基本类别:(1)微孔滤膜(多孔膜),(2)均质膜(非多孔膜),(3)非对称型膜,(4)复合膜,(5)荷电膜,(6)液膜;若根据膜孔径大小范围进行分类,可分为:(1)反渗透膜,(2)超滤膜,(3)微孔滤膜[1~3]。所谓微孔滤膜(MFM ),是指孔径为0102~10μm ,可以分离液体或气体中的微生物和微粒子的一种滤膜。它是用具有一定刚性和均匀性的纤维素酯或高分子聚合物制成。微孔滤膜表面均匀分布着许多微孔,每平方厘米有微孔107~1011个,固体物质仅占15%~35%(容积),其余为微孔所占孔隙,孔隙率相当总容积的65%~85%;折射指数1150~1151;自身无荧光醋酸纤维素(AC )和硝化纤维素(NC )滤膜,波长185~250nm ;介电常数45~50;电阻率约1010Ω?cm ;耐电强度约100kV/cm ,静电荷+013kV ,拉伸强度2314~7418kg/cm ,微孔滤膜为具有各向同 性三维空间网状结构。典型的微孔滤膜为微孔上下交错,多层叠置的海绵状多孔结构。以孔径110μm MFM 为例。叠置层数多至100层。虽然用气泡点压力法测出的最大孔径较大,但由于微孔上下交错叠置,使其通道实际有效直径减少,具有较好的截留效果。112 微孔滤膜的发展简史[4~7] 以人工合成的高分子聚合物制成的MFM 的现代过滤技术始于19世纪中叶,但对膜分离技术的系统研究始于本世纪。1907年Bechman 发表了第一篇系统研究微孔滤膜性质的报告,首先提出了用泡压法测滤膜孔径。1918年Zsimondy 等人最初提出了商业性生产硝化纤维滤膜的方法,并于1921年获得专利。1925年在德国哥丁根(G ottin 2gen )成立了世界上第一个滤膜公司———Sor 2torius GmBH 专门生产和经营滤膜。第二次世界大战后,美英等国得到德国滤膜公司的资料,于1947年相继成立了工业生产机构,开始生产硝化纤维素滤膜,用于水质和化学武器的检验。1960年Leb 和Sourirajan 公布了著名的L 2S 膜制备工艺,从60年代开始逐渐出现了聚乙烯和醋酸纤维素等其它材质的滤膜,接着又出现了硝化纤维素和醋酸纤维素混和酯滤膜,它容易制备,性能优良,成为现在应用最广的MFM 类型。70年代前后是MFM 飞跃发展的时期,美、英、法、德、日本都有自己牌号的MFM ,纷纷在国际市场上竞争,其中影响最大的是美国Millipore 公

反渗透膜的分类

反渗透膜一般用高分子材料制成。如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。有的高分子材料对盐的排斥性好,而水的透过速度并不好。有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。反渗透膜应具有以下特征: (1)在高流速下应具有高效脱盐率 (2)具有较高机械强度和使用寿命 (3)能在较低操作压力下发挥功能 (4)能耐受化学或生化作用的影响 (5)受pH值、温度等因素影响较小 (6)制膜原料来源容易,加工简便,成本低廉。 反渗透膜的结构,有非对称膜和均相膜两类。当前使用的加仑膜材料主要为醋酸酸纤维素和芳香聚酰胺类。其组件有中空纤维式、卷式、板框式和管式。可用于分离、浓缩、纯化等化工单元操作,主要用于纯水制备和水处理行业中。 反渗透是60年代发展起来的一项新的薄膜分离技术,是依靠反渗透膜在压力下使溶液中的溶剂与溶质进行分离的过程。要了解反渗透法除盐原理,先要了解“渗透”的概念。渗透是一种物理现象,当两种含有不同浓度盐类的水,如用一张半渗透性的薄膜分开就会发现,含盐量少的一边的水分会透过膜渗到含盐量高的水中,而所含的盐分并不渗透,这样,逐渐把两边的含盐浓度融和到均等为止。然而要完成这一过程需要很长时间,这个过程也称为自然渗透。但如果在含盐量高的水侧,试加一个压力,其结果也可以使上述渗透停止,这时的压力称为渗透压力。如果压力再加大,可以使水向相反方向渗透,而盐分剩下。由此,反渗透除盐原理,就是在有盐分的水中(如原水),施以比自然渗透压力更大的压力,使渗透向相反方向进行,把原水中的水分子压到膜的另一边,变成洁净的水,从而达到除去水中盐分的目的,这就是反渗透除盐原理。目前,反渗透膜如以其膜材料化学组成来分,主要有纤维素膜和非纤维素膜两大类。如按膜材料的物理结构来分,大致可分为非对称膜和复合膜等。在纤维素类膜中最广泛使用的是醋酸纤维素膜(简称CA膜)。该膜总厚度约为100μm,全表皮层的厚度约为0.25μm,表皮层中布满微孔,孔径约5一10埃,故可以滤除极细的粒子,而多孔支撑层中的孔径很大,约有几千埃,故该种不对称结构的膜又称为非对称膜。在反渗透操作中,醋酸纤维素膜只有表皮层与高压原水接触才能达到预期的脱盐效果,决不能倒置。非纤维素类膜以芳香聚酷胺为主要品种,其他还有聚呢喀酰胺膜,疆苯骈味哩膜,聚砜酰胺膜,聚四氟乙烯接枝膜,聚乙烯亚胺膜等等。 近年来发展起来的聚酰胺复合膜,是由一层聚酯无纺织物作支持层,由于聚酯无纺织物非常不规则并且太疏松,不适合作为盐屏障层的底层,因而将微孔工程塑料聚砜浇铸在无纺织物表面上。聚枫层表面的孔控制在大约150埃。屏障层采用高交联度的芳香聚酰胺,厚度大约在2000埃。高交联度芳香聚酷胺由苯三酰氯和苯二胺聚合而成。由于这种膜是由三层不同材料复合而成故称为复合膜。

超滤膜元件运行性能分析

能源与环境 超滤膜元件运行性能分析 Ξ 孟凤鸣,靖大为 (天津城市建设学院膜技术中心,天津300384) 摘要:以特定的水源和国产超滤膜元件为基础,较为系统地分析了国产超滤膜的水力特性、水质特性以及清洗特性,就此对该超滤膜的性能做出综合评价,从而为超滤膜元件的设计和运行提供依据. 关 键 词:超滤技术;膜性能;膜污染;膜清洗 中图分类号:T U991.2 文献标识码:A 文章编号:100626853(2004)0320186205 超滤技术是水处理领域最活跃的技术之一,广泛 应用于给水的深度处理、中水的回用、纯水和高纯水的制备等领域.超滤技术应用范围之广,处理规模之大,是其它膜技术无法比拟的. 经过多年的努力,国产超滤膜技术有了很大的发展.在制膜材料、制膜工艺、元件规格、膜的性能、膜系统工艺等诸多领域均取得了很大成就.但是,由于超滤工艺处理料液的多样性,很难给定超滤膜元件的性能参数.这一现象在客观上为超滤膜元件的设计与运行增添了障碍,在一定程度上制约了它的发展.因此,寻找有代表性的料液,检测并分析对应代表性料液的超滤膜元件的运行性能参数,并建立相应的数学模型是超滤系统设计的基础性工作. 笔者以特定的水源、特定的膜品种为例,给出了国产超滤膜的技术参数,以供设计和工程人员参考.相关技术参数主要包括给水水质、给水温度、错流量等外部参数对超滤膜元件的产水通量、产水水质的影响,同时,分析了膜系统的污染与清洗特性. 超滤膜的通量是产水流量与膜面积的比值,它是跨膜压差、水质、温度、错流量的函数,且与进水方式有关.设通量为Q ,跨膜压差为P ,水体温度为T ,给水水质为W ,错流量为B ,则产水通量可表示为 Q =f (P ,T ,W ,B ) 本文涉及的特定水源为湖水,特定膜元件为国产聚丙烯腈内压式超滤膜(膜面积为20m 2,规格为4040),水质的主要指标为C OD 和浊度. 1 进水水质的通量特性 1.1 标准曲线的测定 在以纯水作为原水,25℃,错流量分别为0,8,12,16L/min 的情况下,此膜元件的标准通量2压力特性曲线均为一条直线且重合,如图1中的纯水曲线.由于纯水中悬浮固体很少,对膜的污染、堵塞很小,因此有无错流对通量没有影响,通量是跨膜压差的一元一次函数.1.2 不同浊度的通量特性 当分别以其它水源水作为超滤膜的原水时,在同样的温度、同样的错流量下,超滤膜的通量2压力特性曲线不再是直线.在压力较低的情况下,由于污染刚刚开始,通量2压力特性仍然遵循线性关系;随着压力的增加,通量也增加,但由于污染越来越严重,甚至形成凝胶层,通量增加的幅度会明显减小,通量2压力特性曲线已不再是直线;如果压力进一步上升,通量增加的幅度进一步减小,直至通量的增加量几乎为零,此时压力增加,通量几乎不再增加. 通常把通量变化幅度明显下降,通量与跨膜压差明显不再遵循线性关系的点,称为凝胶层形成点.刚形成凝胶层的压力称为临界压力,此时的通量称为临界通量[1-2].膜的操作压力一定要在临界压力以下,当操作压力高于临界压力时,产生的污染为不可逆的,通过水洗无法恢复,必须要化学清洗. Ξ收稿日期:2004206202;修订日期:2004207208 作者简介:孟凤鸣(1975-),女,河北晋州人,天津城市建设学院硕士生. 天津城市建设学院学报  第10卷 第3期 2004年9月Journal of T ianjin Institute of Urban C onstruction V ol.10 No.3 Sep.2004

微孔滤膜

微孔过滤膜有:混合纤维素滤膜(CA-CN)、格栅膜、硝酸纤维素(CN)、醋酸纤维素(CA)、尼龙(JN)等滤膜,其孔径范围在0.15-5.0微米之间,是精细过滤工序中的必备产品。 一、微孔过滤膜主要特点: 1、亲水性好、适用于PH3-10的液体过滤; 2、孔隙率高:70-80%,孔径分布均匀; 3、薄膜厚度:100-160μm; 4、滤速快、吸附少、无介质脱落; 5、外观呈白色,平整、光滑、无针孔。 二、不同材料微孔滤膜性能和应用一览表 材质符号主要性能应用 混合纤维素CA-CN ①孔隙率高,截留效果好 ②不耐有机溶液和强酸、 强碱溶液 ③性价比高。 ①实验室、小生产工艺中除菌、除微粒的过 滤 ②水体中大肠肝菌群的测定; ③2微米和5微米的滤膜还用于油料过滤。 格栅膜G/CA-CN 是在超净混纤膜上印上网格,以 方便对截留物计数,用于微粒、 细菌的检测,作为培养基组成份, 均匀准确,是实验室、质检部门 进行微生物检测的理想产品。 ①水体中大肠肝菌群的测定; ②医用工业中微生物的检测。 硝酸纤维素CN 对蛋白等生物大分子吸附力强①医学研究及诊断的细菌培养和生物工程 ②DNA-RNA杂交实验和检定; ③做液闪测定、放射性示踪物的超净制备 ④电泳、微量元素分析等。 醋酸纤维素CA 对蛋白吸附比较低; ①适用于低分子醇类、油脂类溶液的过滤 ②科研中特殊成分的分析测定 尼龙JN 耐碱性和有机溶液 聚醚砜PES 通量大、对蛋白吸附力较低

聚偏二氟乙 烯PVDF ①是疏水性膜,不吸潮,易恒重 ②能反复热压消毒,性能不变③ 质地薄、流速快④耐化学腐蚀、 耐氧化⑤酒精处理后变为亲水 膜。 ①醇、酸、烷烃、芳香烃、卤代烃等溶剂除 去微粒,提高试剂级别②空气中悬浮微粒的 净化和发酵工业中空气除菌,③油类中不溶 物的净化和固体微粒的重量分析④非特异 性蛋白的分离和提纯⑤水溶液的浓缩,化学 物质的分离和回收。 聚四氟乙烯PTFE 耐酸、碱性强聚丙烯PP 深层过滤 玻璃纤维膜BF 流速快、耐高温①空气污染监测; ②生物大分子沉淀物的过滤; ③滤膜前预过滤。 三、产品规格: 过滤精度(μm):0.15、0.22、0.45、0.65、0.8、1.2、2.0、5.0 四、使用方法: 1、清洗:使用前用蒸馏水清洗滤膜,然后在70-80℃蒸馏水中浸泡4小时,或在常温蒸馏水中浸泡12小时; 2、消毒:(本滤膜在出厂前未经消毒,因此使用前需作灭菌处理) 将清洗后的滤膜放入滤器中一起进行蒸汽热压灭菌处理120℃三十分钟,也可采用其它灭菌方法处理。 3、过滤液体时滤膜必须处于湿润状态,否则将影响过滤速度。 若因灭菌处理使滤膜呈干燥状态,需用无菌水润湿后使用。 五、运输与保存: ☆纤维素滤膜为易然品,在运输和贮存时要远离火源; ☆微孔滤膜必须在常温和相对湿度60%条件下避光保存, 若因干燥导致滤膜失水卷曲,则只须浸泡处理后即可使用。

分离膜的分类

气体分离膜的分类 成员:陈永涛,忽浩然,苗玉淇, 张岩磊,李龙飞

?气体膜分离过程是一种以压力差为驱动 力的分离过程,在膜两侧混合气体各组 分分压差的驱动下,不同气体分子透过膜 的速率不同,渗透速率快的气体在渗透侧富集,而渗透速率慢的气体则在原料侧富集。 ?气体膜分离正是利用分子的渗透速率差 使不同气体在膜两侧富集实现分离的。

分类 ?一:按照其化学组成 ?二:按膜组件分 ?三:按气体膜分离的机理分?四:按气体分离膜的应用分

按照其化学组成,气体分离膜材料可分为高分子材料、无机材料和有机—无机杂化材料

1.高分子材料 在气体分离膜领域,早期使用的膜材料主要有聚砜、纤维素类聚合物、聚碳酸酯等。上述材料的最大缺点是或具有高渗透性、低选择性或具有低渗透性、高选择性,使得以这些材料开发的气体分离器的应用受到了一定限制,特别是在制备高纯气体方面,受到变压吸附和深冷技术的有力挑战。为了克服上述缺点,拓宽气体分离膜技术的应用范围,发挥其节能优势,研究人员一直在积极开发兼具高透气性和高选择性、耐高温、耐化学介质的新型气体分离膜材料,聚酰亚胺、含硅聚合物、聚苯胺等就是近年开发的新型高分子气体分离膜材料。

2.无机材料 相对于有机高分子膜,无机材料由于其独特的 物理和化学性能,具有耐高温、结构稳定、孔径均一、化学稳定性好、抗微生物腐蚀能力强等优点。它在涉及高温和有腐蚀性的分离过程中的应用方面具有有机高分子膜所无法比拟的优势,具有良好的发展前景。无机膜的不足之处在于:制造成本相对较高,大约是相同膜面积高分子膜的10倍;无机材料脆性大,弹性小,需要特殊的形状和支撑系统;膜的成型加工及膜组件的安装、密封(尤其是在高温下)比较困难。

怎样选择超滤膜材料及其适用领域

怎样选择超滤膜材料及其适用领域 超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物(例如:醋酯纤维或与其性能类似的高分子材料)、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。由此可知,超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的材料可以分为: 一.纤维素酯类: 二醋酸纤维素(CA)为水系CA(醋酸纤维),其对蛋白吸附比较低,适用于低分子醇类、油脂类溶液的过滤或科研中特殊成分的分析测定 三醋酸纤维素(CTA),亲水性强,非特异性吸附极低,溶剂和小分子溶质在滤过时不会因被膜吸附而产身损失,因此在样品清洗、除蛋白以及需要回收滤过液的操作中,敬意使用三醋酸纤维素膜。 硝化纤维素(CN),其对蛋白等生物大分子吸附力强,用于医学研究及诊断的细菌培养和生物工程;DNA-RNA杂交实验和检定;做液闪测定、放射性示踪物的超净制备和电泳、微量元素分析等。 乙基纤维素(EC) 混合纤维素(CN-CA),适合水溶液,较低的蛋白吸附,流速高,热稳定性强,不适用于有机溶剂,特别适用于水基溶液。混合纤维素制成的膜,是一种标准的常用滤膜。由于成孔性孔隙率高,截留效果好,亲水性好,材料易得且成本较低,因此,该膜的孔径规格分级最多,从0.05~8um,约有近十个孔径型号。该膜使用温度范围较广。可耐稀酸,不耐有机溶液和强酸、强碱溶液。不适用酮类、酯类、强酸和碱类等液体的过滤。性价比高。应用于:实验室、小生产工艺中除菌、除微粒的过滤;水体中大肠肝菌群的测定,饮用水、地表水、井水等,除菌过滤,溶液中微粒及油类不溶物的分析,水质污染指数测定,气体、油类、饮料、酒等微粒和细菌过滤。为样品前处理过滤中最为广泛使用的滤膜之一;2微米和5微米的滤膜还用于油料过滤。 再生纤维素,一种高亲水的膜,对蛋白的吸附极低,但用于从低蛋白浓度的稀释溶液中回收蛋白时,可以得到极高的收率。再生纤维素膜可以高压灭菌,容易清洗,耐酸碱性能及耐溶剂性能好。 三醋酸纤维素 二.聚酰胺类 尼龙膜(聚酰胺NYLON),该种也具有亲水性能。较耐碱而不耐酸。在酮、酚、醚及高分子量醇类中,不易被腐蚀,孔径型号也较多。适用于电子工业光刻胶、显影液等的净化。耐温性能

超滤膜、纳滤、反渗透比较及性能

超滤膜及纳滤和反渗透的比较 一、超滤膜 超滤膜是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。 超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冷冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。家用工业用都可以。 超滤技术的关键是膜。膜有各种不同的类型和规格,可根据工作的需要来选用。 二、纳滤 纳滤,介于超滤与反渗透之间。现在主要用作水厂或工业脱盐。脱盐率达百分之90以上。反渗透脱盐率达99%以上但,若对水质要求不是特别高,利用纳滤可以节约很大的成本。 三、反渗透 反渗透,是利用压力表差为动力的膜分离过滤技术,源于美国二十世纪六十年代宇航科技的研究,后逐渐转化为民用,目前已广泛运用于科研、医药、食品、饮料、海水淡化等领域。 用作太空水、纯净水、蒸馏水等制备;酒类制造及降度用水;医药、电子等行业用水的前期制备;化工工艺的浓缩、分离、提纯及配水制备;锅炉补给水除盐软水;海水、苦咸水淡化;造纸、电镀、印染等行业用水及废水处理。

四、六种膜处理方法的区别 电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从一部分水中迁移到另一部分水中的物理化学过程。电渗析淡化器,就是利用多层隔室中的电渗析过程达到使水除盐的目的。 电渗析在废水处理工程中的应用主要是废水脱盐,以及有用物质的回收和利用。 在一些生物化工废水中, COD 以及含盐量都非常高。用生化法处理这些废水时,由于高浓度的盐分导致细菌无法生长,因此,可先用电渗析器对这些废水进行脱盐,降低含盐量后再进行生化处理。 在造纸废水、电镀废水等含有可回收的无机盐类,可以用电渗析进行回收利用 二、技术性能 电渗析器运行结果取决于各种各样的运行条件。以下是保证电渗析器正常运行的最低条件。为了使系统运行效果更佳,系统设计时应适当提高这些条件。

过滤膜的选择

过滤膜的选择 1.尼龙膜(Nylon) 特点:耐温性能良好,可耐121℃饱和蒸汽热压消毒30min,最高工作温度60℃,化学稳定良好,能耐受稀酸、稀碱、醇类、酯类、油类、碳氢化合物、卤代烃及有机氧化物等多种有机和无机化合物。 用途:电子、微电子、半导体工业水过滤、组织培养基过滤。药液过滤、饮料过滤、高纯化学制品过滤、水溶液和有机流动相的过滤的过滤。 2.聚偏氟乙烯膜(PVDF) 特点:膜机械强度高、抗张强度高,具有良好的耐热性和化学稳定性,蛋白吸附率低;具有较强的负静电性及疏水性;具有疏水和亲水两种形式。但不能耐受丙酮,DMSO,THF,DMF,二氯甲烷,氯仿等。 用途:疏水性聚偏氟乙烯膜主要应用于气体及蒸汽过滤、高温液体的过滤; 亲水性聚偏氟乙烯膜主要应用于组织培养基、添加剂等除菌过滤溶剂和化学原料的净化过滤,试剂的无菌处理,高温液体的过滤等。 3.混合纤维素酯 特点:孔径比较均匀,孔隙率高,无介质脱落,质地薄,阻力小,滤速快,吸附极小,使用价格成本低,但不耐有机溶液和强酸、强碱溶液。 用途:医药工业需热压灭菌的水针剂,大输液滤除微粒。 对热敏性药物(胰岛素ATP、辅酶A等生化制剂)的除菌,用0.45微米的滤膜(或0.2)溶液中微粒及油类不溶物的分析测定,及水质污染指数测定。应用于体细胞杂交和线粒互补预测杂种优势研究等科研部门。 4.聚丙烯 特点:无任何粘接剂,化学性能稳定,柔韧,不易破损,耐高温,能经受高压灭菌。无毒无味,耐酸碱。 用途:适用于制作各种粗、精滤器,折叠式滤芯。适用于饮料、医药等行业的板框压滤机滤膜。适用于反渗透膜,超滤膜的支撑及预处理。聚丙烯膜无毒性,可在医药、化工、食品、饮料等领域广泛应用;具疏水性,对气体过滤尤佳。5.聚醚砜(PES) 特点:醚砜材质的微孔滤膜,属于亲水性滤膜,具有高流率、低溶出物、良好的强度的特点,不吸附蛋白和提取物,对样品五污染。 用途:低蛋白质吸附及高药物相容性,专为生化、检验、制药以及除菌过滤装置而设计。 6.聚四氟乙烯(PTFE) 特点:最广泛的化学兼容性,能耐受DMSO,THF,DMF,二氯甲烷,氯仿等强溶剂。 应用:所有有机溶液的过滤,特别是其它滤膜不能耐受的强溶剂的过滤。

微孔膜过滤技术

微孔膜过滤技术 摘要 本文介绍了微孔滤膜的种类、微孔过滤膜的性质及检测、微孔过滤膜设备及其注意事项以及微孔过滤膜技术在生物化学和制药工业中的应用。 关键词:微孔滤膜;过滤技术;应用 目录 第一章前言 (1) 第二章微孔过滤膜 (1) 2.1微孔滤膜的优点及种类 (1) 2.2微孔滤膜的制备 (3) 2.3微孔滤膜的性质与检测 (3) 第三章微孔膜过滤设备 (5) 3.1设备 (5) 3.2过滤操作与注意事项 (6) 第四章微孔膜过滤的应用 (7) 4.1在生物化学中的应用 (7) 4.2在制药工业中的应用 (9) 第五章结论 (10) 参考文献 (10)

第一章前言 微孔膜过滤又称精密过滤,主要用于分离亚微米级颗粒,是目前应用最广泛的一种分离分析微细颗粒和超净除菌的手段。微孔膜过滤技术因其独特的优点已逐渐取代许多经典手段而成为独立的分离和分析方法,其适应性很强。 微孔滤膜孔径在0.025~14μm范围内,操作压力在1~10磅/英寸2之间。 孔径为0.01~0.05μm的膜可以截留噬菌体、较大病毒或大的胶体颗粒,可用于病毒分离。 孔径为0.1μm的膜用于试剂的超净、分离沉淀和胶体悬液,也可模拟生物膜。 孔径为0.2μm的膜用于高纯水的制备、制剂除菌、细菌计数、空气病毒定量测定等。 孔径为0.45μm的微孔滤膜用的最多,常用来进行水的超净化处理、汽油超净、电子工业检查、注射液的无菌检查、饮用水的细菌检查、放射免疫测定、光测介质溶液的净化以及锅炉水中Fe(OH)3的分析等。 随着微孔膜过滤技术的发展,微孔滤膜的商品种类日益增多,用来制膜的材料也叫多,如纤维素、纤维素脂、聚氯乙烯、聚四氟乙烯、聚乙烯、聚酰胺、丙稀腈/氯乙烯聚合物及聚碳酸酯,甚至玻璃纤维等。用各种材料以不同方法制造的微孔滤膜能够适应多种分离和测定的需要。目前,用于水处理的膜材料很多,不仅有疏水性聚合物如聚乙烯、聚偏氟乙烯、聚氯乙烯等[1~3]。还有亲水性聚合物如聚乙烯醇、聚砜等[4,5]。 第二章微孔过滤膜 2.1微孔滤膜的优点及种类 1.微孔滤膜的优点是: ①设备简单,只需要微孔滤膜和一般过滤装置便可进行工作。 ②操作简单、快速,适于同时处理多个样品。 ③分离效率高,重现性好。因膜孔径比超滤膜大,流速大大加快,且可在同一片微孔膜上进行分离、洗涤、干燥、测定等操作,所以不会因样品转移而导致损失。

超滤膜技术

超滤膜 中文名称:超滤膜英文名称:ultrafiltration membrane;hyperfiltration membrane 定义:膜状的超滤材料。 应用学科:生物化学与分子生物学(一级学科);方法与技术(二级学科)本内容由全国科学技术名词审定委员会审定公布 超滤膜超滤膜,是一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。在膜的一侧施以适当压力,就能筛出小于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜是最早开发的高分子分离膜之一,在60年代超滤装置就实现了工业化。 简介 超滤膜的工业应用十分广泛,已成为新型化工单元操作之一。用于分离、浓缩、纯化生物制品、医药制品以及食品工业中;还用于血液处理、废水处理和超纯水制备中的终端处理装置。在我国已成功地利用超滤膜进行了中草药的浓缩提纯。超滤膜随着技术的进步,其筛选功能必将得到改进和加强,对人类社会的贡献也将越来越大。 产品结构 超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。 超滤膜过滤 采用超滤膜以压力差为推动力的膜过滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。 工艺特点 以压力差为推动力的膜过滤可区分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。它们的区分是根据膜层所能截留的最小粒子尺寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。由此可知,超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。

膜材料对比

膜材料对比 一.膜分离技术 膜分离技术是一种利用半透膜将组分从流过半透膜的料液进行机械分离的一种先进的分离技术。在半透膜的膜壁上分布着众多的微孔,正是这些微孔决定了半透膜的分离性能。根据微孔孔径的不同,可将分离膜分为微滤(MF )、超滤(UF )、反渗透(RO )、纳滤(NF )等。 由于膜分离技术具有诸多优势,如常温下操作、分离过程无相变、节能、污染小等,作为一项成熟的技术,它已被广泛应用于工业用水及生活用水的制备,藻类和细菌的脱除,食品工业以及饮料果汁的提纯等。 超/微滤是细菌和隐孢子虫、鞭毛虫等原生寄生虫的绝对屏障(一般细菌的粒径范围在0.2~0.6μm 之间),因此超滤膜被广泛应用于污水回用和城市给水处理,特别是作为RO 系统的预处理方法,更显示了超滤膜的优越性。 膜分离孔径和分离对象如下表和下图所示 表1 膜分离孔径 图1 膜分离图谱 上图显示了水中各种杂质的大小和去除它们所使用的分离方法, 反渗透主要用来去除水中溶解的 细菌、悬浮物,贾 第鞭毛虫,隐孢子虫,酵母 蛋白质、病毒、盐、胶体 盐、胶体、杀虫剂 蛋白质、病毒 盐、胶体、杀虫剂 盐 盐 水 微滤 超滤 纳滤 反渗透

无机盐;而超滤则可以去除病毒、大分子物质、肢体等;超/微滤能够去除水中的细菌、灰尘, 具有很好的除浊效果,这是传统的过滤 ( 如砂滤、多介质过滤等 )工艺无法实现的。 起滤膜分离产品从形式上分为中空纤维、管式、卷式、平板式等,从材质上分 PP、PE、PS、PES、PVDF、PAN 等多种。这些膜产品能够具备优异的分离能力 , 是和它的结构及材料密不可分的。图2显示了聚合物膜材料的结构。 图2 聚合物膜材料的结构 膜分离产品最近受到了市场的高度关注,这是因为它具有如下的优点: √对杂质的去除效率高,产水水质大大好于传统方法; √大大减少化学药剂的使用,避免相当污染; √系统易于自动化,可靠性高。运行简易,设施只有开启,关闭两档; √占地面积小; √节约水源,比常规水处理系统费用低廉。 二.技术对比分析 2.1 中空纤维超滤膜材料性能 目前市场上比较常见的是聚砜(PS)、聚丙烯(PP)、聚乙烯(PE)、聚氯乙稀(PVC)、聚醚砜(PES)、聚偏氟乙烯(PVDF)等六类。 其中,PS多用于水质较好的处理过程(如纯水制备)、血液透析、气体分离等领域。PE、PP、PVC 多用于水净化领域(如自来水处理等)。PES的适应性较强,可适用于水净化、中水回用等领域。PVDF 适应性最强,可适用于水净化、中水回用、工业废水处理等各个领域。 2.1.1 烯烃类(PP、PE、PVC) (1)聚乙烯(PE) 聚乙烯是最结构简单的高分子,也是应用最广泛的高分子材料。它是由重复的–CH2–单元连接而成的。聚乙烯是通过乙烯(CH2=CH2 )的加成聚合而成的。聚乙烯的性能取决于它的聚合方式。在中等压力(15-30大气压)有机化合物催化条件下进行Ziegler-Natta聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压

相关文档
最新文档