8、磁光效应解析

8、磁光效应解析
8、磁光效应解析

8、磁光效应

磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。包括法拉第效应、克尔磁光效应、塞曼效应和科顿- 穆顿效应等。这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。笔者认为这些磁光效应实验进一步说明光子具有电磁质量。

(一)、“法拉第效应”

1845年M.法拉第发现,当线偏振光在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度“与磁感应强度B和光穿越介质的长度I的

乘积成正比,即VBI,比例系数V称为费尔德常数,与介质性质及光波频率有关。偏转

方向取决于介质性质和磁场方向。上述现象称为法拉第效应或磁致旋光效应。该效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。

因为磁场下电子的运动总附加有右旋的拉穆尔进动,当光的传播方向相反时,偏振面

旋转角方向不倒转,所以法拉第效应是非互易效应。这种非互易的本质在微波和光的通信中

是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。

“法拉第是很熟悉借助于偏振光来研究产生在透明固体中的协变的方法的。他作了许多实验,希望发现偏振光在通过内部存在着电解导电或介电感应的媒质时所受到的某种作用。然而他并没有能找到任何这种作用,尽管实验是用按照最适宜发现拉力的效应的方式装置起来的--电力或电流和光线相垂直,并和偏振平面成45 度角。法拉第用各种方式改变了实验,但是没有发现由电解电流或静电感应引起的对光的任何作用。

然而他在确立光和磁之间的关系方面却取得了成功,而他作到这一点的那些实验则描述在他的《实验研究》的第十九组中。我们将把法拉第的发现取作我们有关磁的本性的进一步探索的出发点。从而我们将描述一下他所观察到的现象。一条平面偏振的光线从一种透明的抗磁性媒质中通过;当从媒质中出来时,用一个检偏器截断它的路程,以测定它的偏振面。然后加上一个磁力,使透明媒质中的磁力方向和光线的方向相重合。于是光立即重新出现,但是如果把检偏器转过某一角度,光就又被截断。这就表明,磁力的效应就是使偏振面以光线方向为轴而转过一个确定的角度,这个角度为了截断光线而必须使检偏器转过的那个角度来描述。偏振面转过的角度和下列各量成正比:(1)光线在媒质中超过的距离。因此偏振面是从它的原始位置开始而连续变化的。(2)磁力在光线方向上的分量。(3)转动角的大小依赖于媒质的种类。当媒质是空气或任何其他气体时,还没有观察到任何的转动。这三点说法被包括在一个更普遍的叙述中,那就是,旋转角在数值上等于光线从进入媒质的一点到离开媒质的一点的矢势增量乘以一个系数,而对抗磁性媒质来说,这个系数通常是正的。

在抗磁性物质中,偏振面被转向的方向(一般说来)和一个电流的正方向相同,那个电流就是为了产生和实际存在的磁力同方向的磁力而必须绕着光线运行的。然而外尔代特却发现,在某些铁磁性媒质中,例如在一种高氯化铁在木精或乙醚的浓溶液中,旋转方向却和将

会产生磁力的电流运行方向相反。这就表明,铁磁性物质和抗磁性物质的区别不仅仅起源于

“磁导率”在前一事例中大于而在后一事例中小于空气的磁导率,而这两类物体确实性质相

反。

一种物质在磁力作用下获得的使光的偏振面发生施转的能力,并不是恰好正比于它的抗

磁的或铁磁的磁化率。事实上,抗磁性物质中的旋转为正而铁磁性物质中的旋转为负这一法则。是有例外情况的,因为中性的铬酸钾是抗磁性的,但它却引起负旋转。

也存在另外一些物质,他们不依赖于磁力的施加就能在光线通过物质时使偏振面向左或向右旋转。在某些这种物质中,性质依赖于一个轴,例如在石英的事例中就是如此。在另一些物质中,性质并不依赖于光线在媒质中的方向,例如在松节油、糖溶液等等中就是如此。然而,在所有这些物质中,如果任何一条光线的偏振面在媒质中是像一个右手螺旋那样地扭转的,则当光线沿相反方向通过媒质时偏振面仍将像右手螺旋似的扭转。当把媒质放在光线

的路程上时,观察者为了截断光线就必须旋转他的检偏器,而不论光线是从南或从北向他射

来,旋转的方向相对于观察者来说都是相同的。当光线的方向反向时,旋转在空间中的方向

当然也会反向。但是当旋转是由磁作用引起的时,它在空间中的方向却不论光是向南还是向

北传播都是相同的。如果媒质属于正类,则旋转方向总是和产生或将会产生实际的磁场状态的电流的方向相同,而如果媒质属于负类则旋转方向总是和该电流的方向相反。由此可以推知,如果光线在从北向南通过了媒质以后受到一个镜面的反射而从南向北返回媒质中,则当旋转是由磁作用引起的时,旋转就会加倍。当旋转只依赖于媒质的种类(而不依赖于光线的方向),就像在松节油等等中那样时,光线在被反射而回到媒质中再从媒质中出来时,它的偏振将是入射时在相同的平面上的,第一次通过时的旋转将在第二次通过时被恰好倒了回来。现象的物质解释带来了相当大的困难。不论是在磁致旋转方向,还是在某些媒质的表现

方面,这些困难还几乎不能说已经解决。然而我们可以通过分析已经观察到的事实来给一种

解释作些准备。

运动学中的一个众所周知的定理就是,两个振幅相同、振动周期相同、在同一平面上但

沿相反方向转运的匀速圆周振动,当合成在一起时是和一个直线振动相等价的。这一振动的

周期等于圆周振动的周期,它的振幅等于圆周振动的振幅的两部,它的方向是两个点的连线,

那就是在同一圆周上沿不同方向描述圆周运动的两个质点即将相遇的两个点。因此,如果一

个圆周运动的周相被加速,则直线振动的方向将沿着圆周运动的方向转过一个等于周相加速度的二分之一的角。也可以通过直接的光学实验来证明,两条沿相反方向而圆偏振的强度相同的光线,当合并在一起时就变成一条平面偏振的光线,而且,如果其中一条圆偏振光线的周相由于任何原因被加速了,则全光线的偏振平面会转过一个等于周相加速度之一半的角度。

因此我们可以表示偏振面的旋转现象如下:有一条平面偏振光线射在媒质上。这条光线和两条圆偏振光线相等价,其中一条是右手圆偏振的,而另一条是左手圆偏振的(对观察者而言)。通过了媒质以后,光线仍然是平面偏振的,但在两条圆偏振光线中,右手圆偏振的那一条的周相一定是在通过媒质时相对于另一条而被加速了。

换句话说,右手圆偏振的光线曾经完成了更多次数的振动,从而在媒质内部比周期相同

的左手圆偏振的光线具有较小的波长。现象的这种叙述方式是和任何光的学说都无关的,因为虽然我们使用了波长、圆偏振等等的在我们头脑中可能和某种形式的波动学说相联系的术语,但是推理过程却和这种联系无关而只依赖于被实验证明了的事实。

其次让我们考虑其中一条光线在某一给定时刻的位形。每时刻的运动都是圆周运动的任何波动,都可以用一个螺纹线或螺旋来代表。如果让螺旋绕着它的轴线旋转而并不发生任何纵向运动,则每一个粒子都会描述一个圆,而与此同时,波动的传播则将由螺旋纹路上位置相似的各部分的表现纵向运动来代表。很容易看到,如果螺旋是右手的,而观察者是位于波动所传向的一端的,则在他看来螺旋的运动将显得是左手的,也就是说,运动将显得是逆时针的。因此,这样的一条光线曾经被称为一条左手圆偏振的光线;这名称最初起源于一些法国作者,现在已经在整个的科学界都通行了。

一条右手圆偏振的光线可以按相似的方式用一个左手螺旋来表示。右侧的右手螺旋线A 表示一条左手圆偏振的光线,而左侧的左手螺旋线B 则表示一条右手圆偏振的光线。现在让我们考虑在媒质内部具有相同波长的两条这样的光线。他们在一切方面都是几何地相似的,只除了其中一条是另一条的“反演”,即有如另一条在镜子里的像一样。然而,其中一条,譬如说是A,却比另一条具有较短的旋转周期。如果运动完全起源于由位移所引起的力,那么这就表明,当位形像A那样时,由相同的位移引起的力要比位形像B那样时大一些。因此,

在这一事例中,左手光线将相对于右手光线而被加速,而且不论各光线是从北向南还是从南向北行进,情况都将是这样的。因此这就是松节油等等引起的那种现象的解释。在这些媒质

中,当位形像A那样时,由一条圆偏振光线所造成的位移将比位形像B那样时引起较大的恢

复力。于是这些力就只依赖于位形,而不依赖于运动的方向。”

“但是,各物体的性质是可以定量地测量的。因此我们就得到媒质的数据,例如一种扰

动通过媒质而传播的那一速度的数值,而这一速度是可以根据电磁实验来算出的,也是在光的事例中可以直接观测的。如果居然发现电磁扰动的传播速度和光的速度相同,而且这不但

在空气中是如此,在别的透明媒质中也是如此,则我们将有很强的理由相信光是一种电磁现象,而且光学资料和电学资料的组合也将产生一种关于媒质之实在性的信念,和我们在其他种类的物质的事例中通过感官资料的组合而得到那种信念相似。” [ 见《电磁通论》第二十章,光的电磁学说的第三自然段。]

(二)、克尔磁光效应

1876 年由J. 克尔发现,入射的线偏振光在已磁化的物质表面反射时,振动面发生旋转的现象,克尔磁光效应分极向、纵向和横向三种,分别对应物质的磁化强度与反射表面垂直、与表面和入射面平行、与表面平行而与入射面垂直三种情形。极向和纵向克尔磁光效应的磁致旋光都正比于磁化强度,一般极向的效应最强,纵向次之,横向则无明显的磁致旋光。克尔磁光效应的最重要应用是观察铁磁体的磁畴。不同的磁畴有不同的自发磁化方向,引起反射光振动面的不同旋转,通过偏振片观察反射光时,将观察到与各磁畴对应的明暗不同的区域。用此方法还可对磁畴变化作动态观察。

(三)、科顿- 穆顿效应

1907年A.科顿和H.穆顿首先在液体中发现,光在透明介质中传播时,若在垂直于光的传播方向上加一外磁场,则介质表现出单轴晶体的性质,光轴沿磁场方向,主折射率之差正比于磁感应强度的平方。此效应也称磁致双折射。W?佛克脱在气体中也发现了同样

效应,称佛克脱效应,它比前者要弱得多。当介质对两种互相垂直的振动有不同吸收系数时,就表现出二向色性的性质,称为磁二向色性效应。

(四)刘武青旋光效应

早在20 世纪初,人们就已经有了圆偏振光能够输运角动量以致引起旋转的概念。

坡印亭(J.H.Poynting)于1909 年将光与力学系统进行类比后,认为圆偏振光具有角动量。5 年后,爱泼斯坦(P.S.Epstein)通过计算波作用在各向异性介质中感应电偶极子上的力,精确地得到引起旋转的力偶。如果假设引起光偏振的系统由波和起偏晶片组成,这个系统当然应符合角动量守恒这一普遍规律,所以,必须承认电磁波也具有角动量,而且它的变化与晶片的角动量变化相反。具体地说,光有三类:不旋转的、左向旋转的和右向旋转的光。1936 年,首先是美国人贝思(Beth) ,紧接着美国人霍尔朋(Holbourn) 从实验上证明了上述结论的正确性。他们设计了一个圆筒型的暗箱,用一根极细的石英丝将一系列的波片和平面镜悬挂在暗箱中。将一束圆偏振光射入暗箱,结果发现波片发生了偏转。上述实验虽然验证了光线具有角动量,但是由于可见光和近红外光的频率大于1014 赫,所以合

力矩极小。即使在实验中采用扭转系数很小的扭丝,如石英细丝,这个偏转角也只不10-3弧度。对这么小的变化进行定量测量,在当时几乎是不可能的。增大作用力矩的有效办法之一就是增大光线的波长,也就是必须提供频率相对低的电磁波。20 世纪40 年代,随着雷达技术的发展,射频波成为了理想的光源。它的波长要比我们眼睛能看到的可见光波长要大上千倍,作为有别于以前的新光源相当理想。意大利科学家卡拉拉(Carrara) 于1949 年利用射频波很容易地完成了定量测量光角动量的实验,他采用的装置类似于贝思的,只不过将波片替换成能吸收射频波的器件。当然,我

们今天已经清楚地知道,光的能量传播以光子形式进行,能量P=h w/2 n (h为普朗克常量),因而它同时带有P/w=h /2 n的角动量。我们采用右手螺旋法则,定义沿磁场方向右手旋进的光为+偏振,反之为-偏振,角动量为零的是n线偏振光。

而在当初,得到这样定量的结果相当不容易。光具有角动量这一性质最终被应用于实际研究中,人们通过它得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。

中国的刘武青先生发现光通过旋转透明介质,对光电池产生的电流、比光通过静止的透明介质时的要大,同时光波长也会发生变化。这一现象称为刘武青旋光效应。

早在20 世纪初,人们就已经有了圆偏振光能够输运角动量以致引起旋转的概念。

坡印亭(J.H.Poynting) 于1909 年将光与力学系统进行类比后,认为圆偏振光具有角动量。5 年后,爱泼斯坦(P.S.Epstein) 通过计算波作用在各向异性介质中感应电偶极子上的力,精确地得到引起旋转的力偶。如果假设引起光偏振的系统由波和起偏晶片组成,这个系统当然应符合角动量守恒这一普遍规律,所以,必须承认电磁波也具有角动量,而且它的变化与晶片的角动量变化相反。具体地说,光有三类:不旋转的、左向旋转的和右向旋转的光。1936 年,首先是美国人贝思(Beth) ,紧接着美国人霍尔朋(Holbourn) 从实验上证明了上述结论的正确性。他们设计了一个圆筒型的暗箱,用一根极细的石英丝将一系列的波片和平面镜悬挂在暗箱中。将一束圆偏振光射入暗箱,结果发现波片发生了偏转。上述实验虽然验证了光

线具有角动量,但是由于可见光和近红外光的频率大于1014 赫,所以合力矩极小。即使在实验中采用扭转系数很小的扭丝,如石英细丝,这个偏转角也只不1 0-3弧度。对这么小的变

化进行定量测量,在当时几乎是不可能的。增大作用力矩的有效办法之一就是增大光线的

波长,也就是必须提供频率相对低的电磁波。20世纪40年代,随着雷达技术的发展,射频

波成为了理想的光源。它的波长要比我们眼睛能看到的可见光波长要大上千倍,作为有别于

以前的新光源相当理想。意大利科学家卡拉拉(Carra⑻于1949年利用射频波很容易地完成了定量测量光角动量的实验,他采用的装置类似于贝思的,只不过将波片替换成能吸收射频

波的器件。-偏振,角动量为零的是n线偏振光。而在当初,得到这样定量的结果相当不容易。+偏振,反之

为当然,我们今天已经清楚地知道,光的能量传播以光子形式进行,能量P=h w/2 n (h为普朗克常量),因而它同时带有P/w=h 12 n的角动量。我们采用右手螺旋法则,定义沿磁场方向右手旋进的光为

光具有角动量这一性质最终被应用于实际研究

中,人们通过它得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。

(五)塞曼效应

塞曼效应实验是物理学史上一个著名的实验,在1896年,塞曼(Zeeman发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体,使其光谱发生变化,一条谱线

即会分裂成几条偏振化的谱线,这种现象称为塞曼效应,塞曼效应的实验证实了原子具有

磁矩和空间取向的量子化,并得到洛伦兹理论的解释。1902年塞曼因这一发现与洛伦兹

(H.A丄orentz )共享诺贝尔物理学奖金。至今,塞曼效应仍然是研究原子内部能级结构

的重要方法。本实验通过观察并拍摄Hg( 546.1 nm)谱线在磁场中的分裂情况,测量其裂

e_

距并计算荷质比m。由于外磁场对电子的轨道磁矩和自旋磁矩的作用,或使能级分裂才

产生的。其中谱线分裂为2条(顺磁场方向观察)或3条(垂直于磁场方向观察)的叫正常塞曼效应;

3条以上的叫反常塞曼效应。在定强度的磁场中,分裂后谱线的间隔与磁场强度

成正比;谱线成分沿磁场方向观察是左、右圆偏振光,而沿垂直磁场方向观察是互相垂直的两种线偏振光。塞曼效应的经典理论解释是H.A.洛仑兹首先提出的。历史上将符合

洛仑兹理论的谱线分裂现象称为正常塞曼效应,而将其它不符合洛仑兹理论的谱线分裂现象称为反常塞曼效应。量子力学理论能够全面地解释塞曼效应。

实验原理

1 ?谱线在磁场中的能级分裂

对于多电子原子,角动量之间的相互作用有LS耦合模型和JJ耦合某型。对于LS耦合, 电子之间的轨道与轨道角动量的耦合作用及电子间自旋与自旋角动量的耦合作用强,而每个

都发生分裂,新谱线的频率 V ’与能级的关系为

hv'=(E 2 巳)-(E 1 E) =(E 2 -巳)(汨2 - :巳) 分裂后谱线与原谱线的频率差为

4B B

? :V =v -v' = (M 2g 2 -M 1gJ — h (3)

卩-eh

代入玻尔磁子 4二m ,得到

e

v =(M 2g 2 -M 1gJ B 4rm (4)

等式两边同除以c ,可将式(4)表示为波数差的形式

塞曼跃迁的选择疋则为: M 0,为n 成为,是振动方向平行于磁场的线偏振光,只在 垂直于磁场的方向上才能观察到, 平行于磁场的方向上观察不到, 但当二J = 0时,M 2 到M 1 的跃迁被禁止; M = 1,为b 成分,垂直于磁场观察时为振动垂直于磁场的

线偏振光,沿磁场正向观察时, = 1为右旋圆偏振光, = -1为左旋圆偏振光。

以汞的546.1 nm 谱线为例,说明谱线分裂情况。波长 546.1 nm 的谱线是汞原子从{6S =(M 2g 2 - M 1g 1) e

B

4 二 me

eB

4 me

- (M 2g 2 -皿⑼儿 L 称为洛伦兹单位,

L = B 46.7m ' T ' (5) (6) (7)

电子的轨道与自旋角动量耦合作用弱。

原子中电子的轨道磁矩和自旋磁矩合成为原子的总磁矩。 总磁矩在磁场中受到力矩的作 用而绕磁场方向旋进,可以证明旋进所引起的附加能量为 ^E = Mg?B B ( 1),其中M 为磁 量子数,卩B 为玻尔磁子,B 为磁感应强度,g 是朗德因子。朗德因子 g 表征原子的总磁矩和

J (J +1) —L (L +1)+S

(S+1) g =1 + 总角动量的关系,定义为 2J(J 1) (2),其中L 为总轨道角 动量量子数,S 为总自旋角动量量子数, J 为总角动量量子数。磁量子数 M 只能取J , J-1 , J-2,…,-J ,共(2J+1)个值,也即 E 有(2J+1 )个可能值。这就是说,无磁场时的一 个能级,在外磁场的作用下将分裂成( 2J+1)个能级。由式( 1)还可以看到,分裂的能级 是等间隔的,且能级间隔正比于外磁场 B 以及朗德因子g 。

能级E 1和E 2之间的跃迁产生频率为 V 的光,hv = E 2 _ E 1,在磁场中,若上、下能级 二 hv (M ?g 2 - M 1g 1”B B

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

磁光效应

磁光效应综合实验 【实验目的】 1、了解法拉第效应,会用消光法检测磁光玻璃的费尔德常数。 2、能够熟练应用特斯拉计测量电磁铁磁头中心的磁感应强度,并能其分析线性范围。 3、熟悉磁光调制的原理,理解倍频法精确测定消光位置。 4、学会用磁光调制倍频法研究法拉第效应,精确测量不同样品的费尔德常数。 【实验仪器】 FD-MOC-A磁光效应综合实验仪,双踪示波器 【实验原理】 概述:1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而 与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光, 从而减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用于激 光多级放大和高分辨率的激光光谱,激光选模等技术中。在磁场测量方面,利 用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、 交变强磁场。在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应, 可以测量几千安培的大电流和几兆伏的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测量光束经 过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科 M.Faraday (1791-1876) 学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学 领域中也是重要的测量手段。如物质的纯度控制、糖分测定;不对称合成化合 物的纯度测定;制药业中的产物分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走过的路程d及介质中的磁感应强度在光的传播方向上的分量B成正比,即: θ(1) VBd = 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。 费尔德常数V与磁光材料的性质有关,对于顺磁、弱磁和抗磁性材料(如重火石玻璃等),V为常数,即θ与磁场强度B有线性关系;而对铁磁性或亚铁磁性材料(如YIG等立方晶体材料),θ与B不是简单的线性关系。

【实验报告】近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信, 了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。

二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四p液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。本实验中我们研究了液晶的基本物理性质 和电光效应等。发现液晶的双折射现象会对旋光角的大小产生的影响,在实验中通过测量液晶盒两面锚泊方向的差值,得到液晶盒扭曲角的大小为125度;测量了液晶的响应时间。观察液晶光栅的衍射现象,在“常黑模式”和“常白模式”下分别测量了液晶升压和降压过程的电光响应曲线,求得了阈值电压、饱

磁光晶体材料的研究现状及其发展趋势(doc 14页)

磁光晶体材料的研究现状及其发展趋势(doc 14页)

磁光晶体材料的研究现状与发展趋势 摘要:简要介绍了磁光晶体材料的一些基本理论,通过对磁光晶体材料应用的器件进行了解磁光晶体材料的优势、缺点以及发展的历程。通过不同的磁光晶体材料的介绍,了解他们的结构特性,生长过程以及生产技术。通过各种方面的了解,理解其发展的方向及其困难之处,并从中思考解决的方法。 关键词:晶体材料,旋磁光晶体,研究现状,发展趋势 Magneto-optical crystal materials' Research and Development Wu zhuofu Departement of Optoelectronic Information Engineering, Jinan University,Guangzhou,China 510632 Abstract:It introduces something about magneto-optical crystal by material and device. We use it to know history of magneto-optical crystal. We can see the strong point and the weakness about it. Understand the structure of them and solve the problem. Key Words:crystalline material , magneto-optical crystal, SituationofStudy , development

晶体电光效应

1.晶体的电光效应 2.KDP 晶体线性电光效应 3.KDP 晶体的应用 1 晶体的电光效应 因为晶体折射率的各向异性与组成晶体的原子或分子的排列方式及相互作用的特点有关,因此,外界作用可以改变他们的排列方式(例如压力下的形变)或相互作用的状况(例如电场使原子极化),导致晶体光学性质产生相应的变化。 人工双折射就是指光学介质受到人为施加的外力或外场作用而产生的偏振和双折射现象。 人工双折射可以根据人们的意愿加以控制。例如将一块受到电场作用的晶体放在两块偏振器之间,人们就可以通过改变电场的大小或方向而有效的控制出射光束的强度、方向和偏振态等,达到电光调制、偏转、调Q 等目的。 1.1 电光效应基本原理 在各向异性晶体中,介电常数是随作用在介质上的电场强度而变化的,尤其在强场作用下这种变化就更加明显,光波在其中的传播规律也要改变。 对于无对称中心的晶体,外加电场沿一个主轴方向作用于晶体上,感生电位移矢量D 和外加电场E 的方向一致,大小关系可表示为: ?+++=320E E E D βαε 以D(E)曲线的切线斜率定义介电常数,上式可写为: ?+++== 2032d d E E E D βαεε 显然,折射率随外加电场而变化(如下图)。我们把介质由于外加电场作用而引起的折射率变化的现象称为电光效应。

为了定量的描述电场引起的折射率变化,上式写为: 2 /122020022 0232132n ??? ? ??++=? +++=E n E n n n E E n βαβα 利用公式,上式可简化为: ?++ + =2 023n n n E n E βα 令:,2/3,/00n b n a βα== 则有电场引起折射率变化为: ?++=20n -n bE aE 此外,不仅电场能够引起介质折射率变化,而且外力也能引起介质的折射率变化。沿晶体主轴方向作用单向压力,参照上述分析方法,折射率因应力而产生的变化,可表示为: ?++=2''0n -n σσb a 其中σ表示应力。由于应力产生的折射率变化成为弹光效应。 当介质上作用一外电场时,除了由于介电常数的变化引起折射率的变化外,电场还通过反压电效应作用,使介质产生应变,这种应变通过弹光效应引起折射率变化。为了区别这两种折射率变化, 我们把由外加电场通过介电常数引起的折 ())0x (11→+≈+当mx x m

5实验五 晶体磁光调制实验

实验五 晶体的磁光调制实验 一、实验目的: 1、了解磁光效应的原理。 2、掌握磁光调制的调试方法并测量和计算磁光效应的旋光特性和调制特性参数。 二、实验仪器: CGT —1磁光调制实验仪,铽玻璃,重火石玻璃,半导体激光器,双踪示波器等。 三、实验原理: 1、磁光效应 当平面偏振光穿透某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表明其旋转角θ正比于外加的磁场强度B ,这种现象称为法拉第(Faraday )效应,也称磁致旋光效应,简称磁光效应,即: vlB =θ (1) 式中l 为光波在介质中的路径,ν为表征磁致旋光效应特征的比例系数,称为维尔德(Verdet )常数。由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏转等功能性磁光器件,其中磁光调制为其最典型的一种。 图1 磁光效应示意图 如图1所示,在磁光介质的外围加一个励磁线圈就构成基本的磁光调制器件。 2 直流磁光调制 当线偏振光平行于外磁场入射磁光介质的表面时,偏振光的光强I 可以分解成如图2所示的左旋圆偏振光I L 和右旋圆偏振光I R (两者旋转方向相反)。由于介质对两者具有不同的折射率n L 和n R ,当它们穿过厚度为l 的介质后分别产生不同的相位差,体现在角位移上有: l n L L λπ θ2=

1 l n R R λπθ2= 式中λ为光波波长 因θθθθ+=-R L ()()l n n R L R L ?-=-=λ πθθθ221 ( 2 ) 如折射率差()R L n n -正比于磁场强度B ,即可得(1)式,并由θ值与测得的B 与l 求出维尔德常数υ。 图2 入射光偏振面的旋转运动 3 交流磁光调制 用一交流电信号对励磁线圈进行激励,使其对介质产生一交变磁场,就组成了交流(信号)磁光调制器(此时的励磁线圈称为调制线圈),在线圈未通电流并且不计光损耗的情况下,设起偏器P 的线偏振光振幅为A 0,则A 0可分解为A 0 cos α及A 0 sin α两垂直分量,其中只有平行于P 平面的A 0 cos α分量才能通过检偏器,故有输出光强 αα2020cos )cos (I A I == (马吕斯定律) 其中200A I =为其振幅。 式中α为起偏器P 与检偏器A 主截面之间的夹角,I 0为光强的幅值,当线圈通以交流电信号i=i 0 sin ωt 时,设调制线圈产生的磁场为B=B 0 sin ωt ,则介质相应地会产生旋转角θ=θ0 sin ωt ,则从检偏器输出的光强为: [][])s i n (2c o s 12 )(2c o s 12)(c o s 00020t I I I I ωθαθαθα++=++= += (3) 由此可知光输出可以是调制波的倍频信号。 以上就是电信号致使入射光旋光角变化从而完成对输出光强调制的基本原理。

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光 于激光多级放大和高分辨率的纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用Array激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第 效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲 强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和 光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏 的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是 通过测量光束经过某种物质时偏振面的旋转角度来测量物质 的活性,这种测量旋光的技术在科学研究、工业和医疗中有广 泛的用途,在生物和化学领域以及新兴的生命科学领域中也是 重要的测量手段。如物质的纯度控制、糖分测定;不对称合成 M.Faraday(1791-1876) 化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品 的费尔德常数。 二、实验原理 1、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走 d B成正比,即: 过的路程及介质中的磁感应强度在光的传播方向上的分量 θ (1) = VBd 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。附录中,表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都

法拉第旋光效应实验报告

法拉第旋光效应实验报告 法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2?了解和掌握法拉第效应的实验装置结构及实验原理; 3?测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。 二.实验仪器: LED发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。 三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。

图3.1石英的旋光现象 如图3.1所示,1P和2P分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P后面的视场是暗的。当在1P和2P之间加入旋光物质后2P后的视场将变亮,将2P旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度d成正比,即

d a ?(3.1)式中,a是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1中,若在1P前加一 个白色光源,由于不同波长的光旋转角度不同,因此到达2P时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P后的视场是彩色 的,旋转2P其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2.旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE的振动方向比起原来(进入 旋光物质前)的振动方向0 PE来,顺时针方向转过角度9 ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3.磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫 磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L及磁感应强度B成正比,即有VLB = ? (3.2)式中V是一个与物质的性质、光的 频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4.磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振 光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子 在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速 度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏 振光。由于在媒质 中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上 可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图3.5所示,若将出射光再反射回晶体,则通过 天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继

似动现象实验报告

似动现象实验报告

似动现象 李璐2010210781 (华中师范大学心理学院)武汉,430079 摘要:本实验采用心理实验系统(PES)测定了3名被试在12种时距和3种空距条件下产生似动现象的情况。实验结果表明:先后呈现两个红色亮点产生似动现象的最优空距为2cm,最优时距为5ms。关键词:似动现象;时距;空距 1 引言 运动知觉是对空间中的物体运动特性的知觉。似动现象就是运动知觉现象的一种,属于运动错觉。两个间隔一定距离的静止刺激物,以适当的时间间隔先后呈现。观察者会产生刺激物由一点移动到另一点的感觉,这种现象称为似动现象。似动是由于先后呈现的刺激作用于感受野使机体产生了与真实运动相似的生理刺激。第一个刺激停止后,它所引起的神经兴奋还会持续一个短暂的时间,在这个短暂的时间内如果出现第二个刺激,它所引起的神经兴奋就会与第一个刺激所引起的暂时持续的兴奋相连,所以感觉上第一个刺激就移动到第二个刺激的地方。似动是生活中的一种普遍现象,电

视和电影就是利用这种现象使观众产生连续运动的知觉的。 德国心理学家M.韦特海默,于1912年最早用实验方法研究了似动现象。从此以后,似动现象的实验室研究,多半是是关于其产生的客观条件及影响因素的,对它的解释尚处于假设的阶段,目前能确定的是,似动现象发生在较高的信息加工水平,它是动觉信息同刺激位置信息整合在一起的结果。 影响似动现象的产生的原因有很多,客观条件方面有刺激呈现的空距、时距,刺激物的强度、形状、数目等,主观条件方面包括个人经验、暗示、个体差异等,其中,刺激的数目越多越容易产生似动现象。由于产生似动的最适宜的时距和空距依赖刺激的形状、强度而变化,所以在不同的实验条件下,产生似动的最优时距、空距不同。如K.Marbe所得的最优时距为200ms,最优空距为4.5°;M.Wertheimer 得到的最优时距为60ms;叶绚等得到的最优空距为2cm;北大杨傅民等得到的产生似动的最优空距为2cm,最优时距为200ms。 本实验将通过测定3名被试对黑色屏幕上

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

法拉第效应实验

法拉第效应初探 (顾从真 复旦大学物理系06级) 摘要 本文简要概括了法拉第效应的历史、原理、步骤以及不同条件下的现象的记录分析和数据处理。 关键词 法拉第效应,磁光效应,旋光介质,偏振 引言 1845年,法拉第(Michael Faraday )在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(V erdet )对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 实验部分 实验目的 了解法拉第效应经典理论,初步掌握进行磁光测量的基本方法,对法拉第效应的现象和成因进行分析。 实验原理 一束平面波穿过介质,如果介质中沿光的传播方向加一个磁场,会观察到光经过样品后偏振面转过一个角度,符合公式, VBL θ= θ为法拉第效应旋光角;L 为穿过介质的厚度;B 为平行与光传播方向的磁感强度分量;V 是比例系数,由工作物质和波长决定,表征物质磁光特性,称为费尔德(Verdet)常数。 几乎所有物质都有法拉第效应,但一般都不显著,规定V>0为正旋,方向与产生磁场的螺线管中的电流方向一致。V<0为负旋。 我们可以这样解释法拉第效应。 如图,我们把偏振光分成左旋和右旋部分,通过厚l 的介质会产生不同相位差, 1()()2R L R L n n l π θ??λ =-=-

由量子理论,在B 场作用下,介质轨道电子磁矩具有势能 2B eB B L m μψ=-= B L 是轨道角动量在B 方向上的分量。 用能量为ω 的左旋圆偏振光子激发电子,电子在磁场中能级结构与用能量为 ()L ωφ-? 的光子激发电子,电子在无磁场时能级结构相同。推出, ()()L L n n ωωφ=-? ,2L eB m φ?= 进一步可得, ()()2L dn eB n n d m ωωω=-? ()()2R dn eB n n d m ωωω=+? 带入θ的关系式,有 ()2e dn V mc d λλλ=-? 的关系,所以可以由V 和色散关系来验证荷质比的数值。

电光磁光效应实验 讲

晶体的电光效应 贺艺华 2013.3 【实验目的】 1. 掌握晶体的电光效应和实验方法。 2. 掌握晶体电光调制器的工作原理。 3. 掌握LiNbO 3电光晶体半波电压和晶体透过率的测量方法。 【实验仪器】 电光效应实验仪 【实验原理】 1、一次电光效应和晶体的折射率椭球 我们知道光波在介质中的传播规律受到介质折射率分布的制约。理论和实验均表明晶体介质的介电系数与晶体中电荷的分布有关。对于一些晶体材料,当上施加电场之后,将引起束缚电荷的重新分布,并可能导致离子晶格的微小形变,其结果将引起介电系数的变化,最终导致晶体折射率的变化,所以折射率成为外加电场E 的函数,即 ++=-=2 210ΔE c E c n n n (1) 式中第一项称为线性电光效应或泡克耳(Pockels )效应;第二项,称为二次电光效应或克尔(Kerr )效应。对于大多数电光晶体材料,一次效应要比二次效应显著,故在此只讨论线性电光效应。 当光线穿过某些晶体(如方解石、铌酸锂、钽酸锂等)时,会折射成两束光。其中一束符合一般折射定律称之为寻常光(简称o光),折射率以0n 表示;而另一束的折射率随入射角不同而改变,称为非常光(简称e光),折射率以e n 表示。一般讲晶体中总有一个或二个方向,当光在晶体中沿此方向传播时,不发生双折射现象,把这个方向叫做晶体的光轴方向。只有一个光轴的称为单轴晶体,有两个光轴方向的称为双轴晶体。 对电光效应的分析和描述有两种方法:一种是电磁理论方法,但数学推导相当繁复;另一种是用几何图形——折射率椭球的方法,这种方法直观简洁,故通常采用这种方法。 光在各向异性晶体中传播时,因光的传播方向不同或矢量的振动方向不同,光的折射率就不同。根据光的电磁理论知道,光波是一种电磁波。在各向异性介质中,光波中的电场强度矢量E 与电位移矢量D 的方向是不同的。对于任意一种晶体,我们总可以找到一个直角坐标系(z y x ,,),在此坐标系中有 i o ri i D E εε= (z y x i ,,=)。这样的坐标系(z y x ,,)叫做主轴坐标系。

磁光效应实验报告讲解

磁光效应实验报告 班级:光信息31 姓名:张圳 学号:21210905023 同组:白燕,陈媛,高睿孺

近年来,磁光效应的用途愈来愈广,如磁光调制器,磁光开关,光隔离器,激光陀螺中的偏频元件,可擦写式的磁光盘。所以掌握磁光效应的原理和实验方法非常重要。 一.实验目的 1.掌握磁光效应的物理意义,掌握磁光调制度的概念。 2.掌握一种法拉第旋转角的测量方法(磁光调制倍频法)。 3.测出铅玻璃的法拉第旋转角度θ和磁感应强度B之间的关系。二.实验原理 1. 磁光效应 当平面偏振光穿过某种介质时,若在沿平行于光的传播方向施加一磁场,光波的偏振面会发生旋转,实验表面其旋转角θ正比于外加的磁场强度B,这种现象称为法拉第(Faraday)效应,也称磁致旋光效应,简称磁光效应,即: θ(9-1) = vlB 式中l为光波在介质中的路径,v为表征磁致旋光效应特征的比例系数,称为维尔德常数,它是表征物质的磁致旋光特性的重要参数。根据旋光方向的不同(以顺着磁场方向观察),通常分为右旋(顺时针旋转)和左旋(逆时针旋转),右旋时维尔德常数v>O,左旋时维尔德常数v<0。实验还指出,磁致旋光的方向与磁场的方向有关,由于磁致旋光的偏振方向会使反射光引起的旋角加倍,而与光的传播方向无关,利用这一特性在激光技术中可制成具有光调制、光开关、光隔离、光偏振等功能性磁光器件,在激光技术发展后,其应用价值倍增。如

用于光纤通讯系统中的磁光隔离器等。 2.在磁场作用下介质的旋光作用 从光波在介质中传播的图象看,法拉第效应可以做如下理解:一束平行于磁场方向传播的线偏振光,可以看作是两束等幅左旋和右旋圆偏振光的迭加。这里左旋和右旋是相对于磁场方向而言的。 图3 法拉第效应的唯象解释 如果磁场的作用是使右旋圆偏振光的传播速度c / n R 和左旋圆偏振光的传播速度c / n L 不等,于是通过厚度为d 的介质后,便产生不同的相位滞后: d n R R λπ ?2= , d n L L λ π?2= (2) 式中λ 为真空中的波长。这里应注意,圆偏振光的相位即旋转电矢量的角位移;相位滞后即角位移倒转。在磁致旋光介质的入射截面上,入射线偏振光的电矢量E 可以分解为图3(a)所示两个旋转方向不同的圆偏振光E R 和E L ,通过介质后,它们的相位滞后不同,旋转方向也不同,在出射界面上,两个圆偏振光的旋转电矢量如图5.16.3(b)所示。当光束射出介质后,左、右旋圆偏振光的速度又恢复一致,我们又可以将它们合成起来考虑,即仍为线偏振光。从图上容易看出,由介质

晶体磁光效应

中国石油大学 近代物理实验 实验报告 成 绩: 班级: 姓名: 同组者: 教师: 晶体磁光效应 【实验目的】 1. 理解磁光效应的物理意义; 2. 掌握法拉第旋转角的测量方法; 3. 计算物样品的费尔德常数。 【实验原理】 1、法拉第效应实验规律 当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感 应强度B 及介质厚度L 成正比,即: VBL θ= (1—1) 式中比例常数V 叫做费尔德常数,由物质和工作波长决定,它表征物质的磁光特件,随波长λ的 增加而减小。实验表明,法拉第旋光方向仅由磁场方向决定,而与光的传播方向无关。 2、法拉第效应的旋光角 一束线偏振光可以视为两个频率相等,振幅相等的左旋和右旋圆偏振光的叠加,它们在加有磁 场的介质中传播的速度不同,也就是两偏振光在介质中的折射率不同,在介质中通过相同的距离, 产生的相位延迟不同。设线偏振光的电矢量为R L E E E =+。角频率为ω,真空中的波长为λ。L E 的传播速度为L v ,折射率为L n 。 R E 的传播速度为R v ,折射率为R n 。正入射到磁场中的介质时, 两光振动的相位差为零。通过长度D 的介质后,出射的线偏振光相对于入射介质前的线偏振光振动 方向转过的角度F α即为法拉第效应的旋转角: [][]D n -n -21R L R L F λ π ??α== (1—2) 3、法拉第旋转角的计算 在磁场作用下,具有能量为()ω的左旋光子所遇到的轨道电子能级机构等于不加磁场时能量为( )L V ω?-的左旋光子所遇到的轨道电子能级结构(其中L eB V 2m ?= ),因此有 ()()L L n n V ωω?=- (1—3) d d ()()()()d d L L L V V n eB n n n n 2m ??ωωωωωω =- ≈- =- (1—4) 同理,右旋光量子,有: ()()R R n n V ωω?=- (1—5) d d ()()()()d d R R R V V n eB n n n n 2m ??ωωωωωω =- ≈- =+ (1—6)

法拉第磁光效应实验

5.16 法拉第磁光效应实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用于激光多级放大和高分辨率的激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是通过测量光束经过某种物质时偏振面的旋转角度来测量物质的活性,这种测量旋光的技术在科学研究、工业和医疗中有广泛的用途,在生物和化学领域以及新兴的生命科学领域中也是重要的测量手段。如物质的纯度控制、糖分测定;不对称合成化合物的纯度测定;制药业中的产物

分析和纯度检测;医疗和生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。在工业上,光偏振的测量技术可以实现物质的在线测量;在磁光物质的研制方面,光偏振旋转角的测量技术也有很重要的应用。 5.1 6.1 实验要求 1.实验重点 ①用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 ②法拉第效应实验:正交消光法检测法拉第旋光玻璃的费尔德常数。 ③磁光调制实验:熟悉磁光调制的原理,理解倍频法精确测定消光位置。 ④磁光调制倍频法研究法拉第效应,精确测量不同样品的费尔德常数。 2.预习要点 ①什么是法拉第效应?法拉第效应有何重要应用? ②了解顺磁、弱磁、抗磁性、铁磁性或亚铁磁性材料的基本特性,以及费尔德常数V与磁光材料性质的关系。 ③比较法拉第磁光效应与固有旋光效应的异同。 ④磁光调制过程中,调制信号与输入信号之间的函数关系。

磁光效应实验

磁光效应 磁光效应的概念 在磁场的作用下,物质的电磁特性(如磁导率、磁化强度、磁畴结构等)会发生变化,使光波在其内部的传输特性(如偏振状态、光强、相位、传输方向等)也随之发生变化的现象称为磁光效应。磁光效应包括法拉第效应、克尔效应、塞曼效应、磁致双折射效应以及后来发现的磁圆振二向色性、磁线振二向色性、磁激发光散射、磁场光吸收、磁离子体效应和光磁效等,其中人们所熟悉的磁光效应是前四种。 (1)法拉第效应 法拉第效应示意图1 法拉第效应是指一束线偏振光沿外加磁场方向通过置于磁场中的介质时,透射光的偏振化方向相对于入射光的偏振化方向转过一定角度θF的现象,如图l 所示。通常,材料中的法拉第转角θF与样品长度L 和磁场强度H 有以下关系:

θF= HLV 其中,V 为Verdet 常数,是物质固有的比例系数,单位是min/(Oe ?cm)。 (2)克尔效应 克尔效应示意图2 线偏振光入射到磁光介质表面反射出去时,反射光偏振面相对于入射光偏振面转过一定角度θk,此现象称之为克尔效应,如图2 所示。克尔效应分极向、纵向和横向三种,分别对应物质的磁化强度与反射面垂直、与反射面和入射面平行、与反射面平行而与入射面垂直三种情形。极向和纵向克尔效应的磁致旋光都正比于磁化强度,一般极向的效应最强,纵向次之,横向则无明显的磁致旋光。克尔效应最重要的应用是观察铁磁体的磁畴。(3)塞曼效应 磁场作用下,发光体的光谱线发生分裂的现象称之为塞曼效应。其中谱线分裂为2 条(顺磁场方向观察)或3 条(垂直于磁

场方向观察)的为正常塞曼效应;3 条以上的为反常塞曼效应。塞曼效应是由于外磁场对电子的轨道磁矩和自旋磁矩的作用使能级分裂而产生的,分裂的条数随能级的类别而不同。 (4)磁致线双折射效应 当光以不同于磁场方向通过置于磁场中的介质时,会出现像单轴晶体那样的双折射现象,称为磁致线双折射效应。磁致线双折射效应包括科顿-穆顿效应和瓦格特效应。通常把铁磁和亚铁磁介质中的磁致线双折射称为科顿-穆顿效应,反铁磁介质中的磁致线双折射称为瓦格特效应。 法拉第磁光效应实验 一、实验目的 1、了解法拉第磁光效应基本原理。 2、熟悉法拉第磁光效应实验器材,掌握实验方法及步骤,并获得明显的实验想象。 二、实验器材 磁光调制实验仪(光电倍增管、高压直流电源、检流计)

相关文档
最新文档