水化硅酸钙晶种的制备及对水泥强度的影响

水化硅酸钙晶种的制备及对水泥强度的影响
水化硅酸钙晶种的制备及对水泥强度的影响

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

【CN109650398A】一种水化硅酸钙早强剂及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910123304.X (22)申请日 2019.02.19 (71)申请人 科之杰新材料集团有限公司 地址 361101 福建省厦门市火炬高新区(翔 安)产业区内垵中路169号 (72)发明人 朱少宏 方云辉 柯余良 张小芳  钟丽娜 吴传灯 郭元强 林添兴  (74)专利代理机构 厦门加减专利代理事务所 (普通合伙) 35234 代理人 王春霞 (51)Int.Cl. C01B 33/24(2006.01) C04B 22/08(2006.01) C04B 103/12(2006.01) (54)发明名称一种水化硅酸钙早强剂及其制备方法(57)摘要本发明涉及建筑材料技术领域,特别涉及一种水化硅酸钙早强剂及其制备方法。水化硅酸钙早强剂的制备方法,包括以下制备步骤:1)配制钙液;2)以硅酸酯作为硅源配制硅液;3)水化硅酸钙的合成:将聚氧代乙烯(5)壬基苯基醚与环己烷复配后的分散剂溶液置于剪切搅拌混合装置中,于室温下维持搅拌,并加入配置好的钙液和硅液,再用碱性溶液调节混合溶液pH值,维持恒温搅拌,得到白色水化硅酸钙凝胶;将得到的白色水化硅酸钙凝胶通过离心洗涤,再于真空干燥箱中干燥,即得到水化硅酸钙早强剂。通过上述制备方法制备的水化硅酸钙早强剂掺入水泥后,能够促进水泥水化,显著缩短水泥凝结时间,同时改善其早期强度,在建筑领域具有重要的实 际应用价值。权利要求书1页 说明书5页CN 109650398 A 2019.04.19 C N 109650398 A

水泥水化机理

4.1水泥的水化机理 从化学角度来看,水泥的水化反应是一个复杂的溶解沉淀过程,在这一过程中,与单一成分的水化反应不同,各组分以不同的反应速度同时进行水化反应,而且不同的矿物组分彼此之间存在着互相影响。水泥中最多的熟料矿物是硅酸盐化合物,是制约水泥水化性质及相关性能的关键组分。水泥中的硅酸盐熟料矿物的主要成分为硅酸三钙和硅酸二钙。 (1)硅酸三钙(C3S)的水化 硅酸三钙是水泥熟料中的含量最多的组分,通常占材料总量的50%左右,有时高达60 %。硅酸钙的水化产物的化学组成成分不稳定,常随着水相中钙离子的浓度、温度、使用的添加剂、养护程度而发生变化,而且形态不固定,通常称为“C-S-H”凝胶。 C3S在常温下发生水化反应,可大致用下列方程式表述: 硅酸三钙的水化速率很快,其水化过程根据水化放热速率随时间的变化,可以将C3S的水化过程划分为五个阶段,各阶段的化学过程和动力学行为如表1.1所示。 表1.1 C3S水化各阶段的化学过程和动力学行为时期早期中期后期 反应阶段诱导前期诱导期加速期减速期稳定期 化学过程初始水解, 离子进入溶 液 继续溶解, 早期C-S-H 稳定水化产 物开始生长 水化产物继 续生长,微 结构发展 微结构组件 密实 动力学行为反应很快反应慢反应快反应变慢反应很慢(2)硅酸二钙的水化 C2S也是水泥主要熟料矿物组分之一,水化过程与C3S相似,也有诱导期、加速期,但是水化速率特别慢。C2S的水化反应可大致用下列方程表述:

(3)铝酸三钙的水化 C3A是水泥熟料矿物的重要组分之一,其水化产物的组成与结构受溶液中的氧化铝、氧化钙浓度的影响很大,它对水泥的早期水化和浆体的流变性能起着重要的作用。纯水中C3A的水化:大量的研究结果表明,C3A遇水后能够立即在表面形成一种具有六边形特征的初始胶凝物质粒子,开始时其结晶度很差也很薄,呈不规则卷层物,随着水化时间的推移,这些卷层物生长成结晶度较好的,成分为C4AH19和C2AH8济的六边形板状物。这种六边形水化物是亚稳的,并能转化成立方形稳定的晶体颗粒。常温下C3A在纯水中的水化反应可用下式表示: 有石膏存在时C3A的水化:在水泥浆体中,熟料中的C3A实际上是在和有石膏存在的环境中水化的,C3A在Ca(OH)2饱和溶液中的水化反应可以表述为C3A+CH+12H=C3AH13。当处于水泥浆体的碱性介质中时,C3AH13在室温下能稳定存在,其数量增长也很快,这是水泥浆体产生瞬时凝结的主要原因之一。(4)铁铝酸四钙的水化 铁铝酸四钙的水化与铝酸三钙的水化过程相似,只是反应速率很慢,而且产物是含铁和铝的共同产物。

水泥水化反应

就是水泥水化反应公式。 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。 C3S——硅酸三钙 C3A——铝酸三钙 水泥混凝土水化过程的化学反应式: 3(CaO·SiO2)+ 6 H2O = 3CaO·2SiO2·3H2O (胶体) +3 Ca(OH)2(晶体) 2(2CaO·SiO2)+4 H2O = 3CaO·2SiO2·3H2O + Ca(OH)2(晶体) 3CaO·Al2O3 + 6 H2O = 3 CaO·Al2O3 ·6 H2O(晶体) 4CaO·Al2O3·Fe2O3+7H2O = 3CaO·Al2O3·6H2O+CaO·Fe2O3·H2O(胶体)

超高性能混凝土的水化、微观结构 和力学性能研究进展

Hans Journal of Civil Engineering 土木工程, 2018, 7(2), 194-204 Published Online March 2018 in Hans. https://www.360docs.net/doc/c314317510.html,/journal/hjce https://https://www.360docs.net/doc/c314317510.html,/10.12677/hjce.2018.72024 Hydration, Microstructure and Mechanical Properties of the Research Progress of Ultra-High-Performance Concrete Pu Zhang*, Erli Wang, Yang Xia, Danying Gao, Pinwu Guan Zhengzhou University, Zhengzhou Henan Received: Feb. 26th, 2018; accepted: Mar. 14th, 2018; published: Mar. 21st, 2018 Abstract Ultra-High Performance Concrete (UHPC) is an ultra-high strength cement-based material with ultrahigh strength, high toughness and low porosity. It has the features of impermeability, fatigue resistance and high durability. Although UHPC has many significant advantages, there are some examples of defects, such as the amount of cementitious materials up to 1000 kg/m3, which in-creases the heat of hydration, results in shrinkage and improves the project cost. The production of ultra-high performance concrete often adopts steam or autoclave curing, and the complicated production technology limits the application of UHPC in practical engineering. In order to better study the UHPC material, this paper introduces the development history and research status of UHPC based on the existing research results at home and abroad, summarizes the current re-search status of UHPC condensation hardening process hydration process, microstructure, me-chanical properties and durability, analyzes meso-mechanics of fiber reinforced toughening me-chanism. The results show that UHPC has made gratifying progress in both theoretical research and engineering applications. With the increasing emphasis on environmental protection in China, UHPC has broad application prospects. Keywords Ultra-High Performance Concrete, Hardening, The Hydration Heat, Microstructure, Durability 超高性能混凝土的水化、微观结构 和力学性能研究进展 张普*,王二丽,夏洋,高丹盈,管品武 郑州大学,河南郑州 *通讯作者。

水泥水化热对混凝土早期开裂影响资料

水泥水化热对混凝土早期开裂影响 【来源:水泥工艺网】【2011年09月13日】 0 引言 对于预拌混凝土应用过程出现的早期开裂现象,有些混凝土专家归因于水泥比表面积太大和早期强度太高;而水泥界则认为,我国目前水泥的比表面积和早期强度并不比国外的高,混凝土的早期开裂主要是混凝土施工和养护不当所致。笔者认为,必须通过混凝土生产者和水泥生产商沟通,对早期裂缝的成因达成共识,在水泥生产、混凝土配制及施工养护等环节共同采取措施加以解决。“高强早强、高比表面积”及“水泥磨得太细”,这些都是表面现象,其本质是早期水化热太高及混凝土温度应力大的缘故。 1 水化热高是混凝土早期开裂的重要原因 混凝土早期开裂主要是由于初凝前后干燥失水引起的收缩应变和水化热产生的热应变所引起。关于混凝土的开裂,大家都已接受如下认识:抗拉强度越高,则混凝土开裂的危险性越小;弹性模量大、收缩大则开裂的危险性大;徐变大则开裂的危险性小。弹性模量越低,一定收缩量(或应变)产生的拉应力越小。混凝土处于塑性状态时弹性模量几乎为零,任何收缩或应变都不会产生拉应力,只有凝结固化具有一定强度后才有弹性模量,混凝土弹性模量随强度增加而增大。因此,混凝土强度的发展既有利于减少混凝土的开裂又因弹性模量增大而增加混凝土的开裂性。根据美国ACI建筑法规,混凝土弹性模量与标准圆柱体28d抗压强度的平方根成正比。混凝土徐变越大,应力松弛量越大,纯拉应力越小。因此,弹性模量低、徐变大及收缩小的混凝土开裂的危险小。高强混凝土因收缩

较大和徐变较小而较易开裂,而低强混凝土可能因收缩小和徐变大,而往往裂缝较少。关于干燥收缩及其避免或减少收缩的措施,大家都已达成共识,本文不拟赘述,但对于温度应变引起的应力往往认识不足。 温度应力是目前预拌混凝土早期开裂的一个很重要的因素。R.Springenschmid认为,混凝土的2/3应力来自于温度变化,1/3来自干缩和湿胀。水泥水化热是混凝土早期温度应力的主要来源。按照瑞典学者J.Byfors的观点,“混凝土拌和物成型的最初几个小时,还没有形成凝聚结构,此时主要表现为黏塑性。随着水化进行,塑性减少,弹性模量增大,成型后4~8h,弹性模量从10~102MPa迅速增长至104~105MPa,增加了3个数量级,而此期间抗压和抗拉强度以正常速度增长,因此极限抗拉应变由2h的4.0×10-3急剧下降至6~8h的0.04×10-3左右,即极限应变减小到原来的1/100,因此成型后6~8h极限抗拉应变达到最低值”。在混凝土终凝时,抗压强度只有0.7MPa,抗拉强度只有0.07MPa,混凝土弹性模量按1.0×104MPa计,只要产生大于0.07/(1.0×104)=7×10-6的应变即可使混凝土开裂。混凝土的热膨胀系数为10×10-6/℃,只要混凝土内外温差为1℃就足可使此时混凝土开裂。国外为使混凝土的早期不开裂,要求12h抗压强度不大于6MPa,相应的抗拉强度约0.6MPa,即使弹性模量仍按1.0×104MPa计,此时应变不应大于6×10-5,相当于内外温度梯度不大于6℃。而国内学者要求24h抗压强度不大于12MPa,相应的抗拉强度约1.2MPa,此时应变不应大于12×10-5,相当于内外温差不大于12℃。不幸的是,水泥的水化热释放主要集中在早期,水泥加水拌和后,立即出现放热(称为第一个放热峰),持续几分钟,这可能是铝酸盐和硫酸盐的溶解热。下一阶段是形成钙矾石所放出的热量,对于大部分

28水化硅酸钙的分子动力学模拟

水化硅酸钙的分子动力学模拟 王渊,张文生,叶家元 (中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024) 摘要:以Hamid模型和Bonaccorsi模型为基础建立了初始结构,并采用分子动力学方法,模拟了不同钙硅比(Ca/Si=0.67、0.83、1.0、1.5)的水化硅酸钙的结构。根据模拟结果,得到了原子间的距离、径向分布函数、配位数、均方位移等参数。模拟结果表明:无定形态水化硅酸钙存在近程有序远程无序的结构特点;无定形水化硅酸钙的基本结构单元为硅氧四面体,且以Q2形式连接;钙硅比的变化影响了各原子的扩散系数;模拟得到的原子间距离、配位数等结构参数基本与实验值相符合。 关键词:水化硅酸钙;结构;分子动力学 1 引言 水化硅酸钙(CSH)是硅酸盐水泥的主要水化产物,是决定水泥石性能的关键组分,因此其组成、结构及性质自上世纪50年代Grudemo[1]和Taylor[2]的开创性工作以来一直是水泥科学研究中的重要内容。各国学者都进行了深入研究,提出了一系列结构模型,如类托贝莫来石和类羟基硅钙石模型[3]、富钙和富硅模型[4]、固溶体模型[5]和纳米结构、中介结构假说[6]。其中,类托贝莫来石和类羟基硅钙石模型认为,托贝莫来石和羟基硅钙石是无定形水花硅酸钙(CSH)的结构原型,在常温下由化学试剂合成的低钙硅比的C-S-H(I)结构类似于1.4nm托贝莫来石结构,而由纯C3S或纯β-C2S水化得到的高钙硅比的C-S-H (Ⅱ)结构类似于羟基硅钙石结构,只是由于桥[SiO4]4-四面体的缺失,而使得无限长的硅氧四面体链断裂及扭曲,形成了由3n-1个[SiO4]4-四面体构成的短链化合物[3,7,8]。若n大于1,则[SiO4]4-四面体连接成链状,链中的[SiO4]4-四面体除两端的外其他的都以Q2形式链接。因此,对托贝莫来石和羟基硅钙石结构的研究,有助于理解水化硅酸钙的物理化学性能、吸附交换机制等性能。 研究材料结构的实验方法通常有X-射线衍射、核磁共振、X-射线光电子能谱等,而对非晶材料而言,这些方法实施起来有一定的困难。分子动力学(molecular dynamics,MD)模拟作为计算机模拟的一种基本方法,在研究液态和非晶结构方面起着重要的作用。它根据粒子之间相互作用势,通过对系统运动方程组进行数值积分,得到体系的相轨道,并由此分析系统的各种性质,是联系物质微观信息和宏观性质的一种计算方法。它可以不受实验条件限制,在任意温度下对无定形体系进行模拟,可分析原子运动轨迹得到径向分布函数(radial distribution function,RDF)、配位数(coordination number,CN)和均方位移等信息。上

水泥水化与水化硅酸钙的结构和化学组成之间的相互作用

第43卷第10期2015年10月 硅酸盐学报Vol. 43,No. 10 October,2015 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.360docs.net/doc/c314317510.html, DOI:10.14062/j.issn.0454-5648.2015.10.03 水泥水化与水化硅酸钙的结构和化学组成之间的相互作用 Denis DAMIDOT, Christine LORS (Civil and Environmental Engineering Department, Ecole des Mines de Douai, Douai 59508, France) 摘要:研究了硅酸盐水泥水化动力学与水化过程中水化硅酸钙(C-S-H)形成之间的相互作用。结果表明:水泥水化反应过程中的液相组成对C-S-H的成核与生长速率有很大的影响。因此,对于不同的水泥,C3S、C2S和方解石表面的无序纳米C-S-H 颗粒团聚体的结构变化很大;掺加矿物掺合料和温度变化对此也有很大影响。C-S-H的化学组成直接取决于液相组成。硅酸盐水泥水化诱导期由C-S-H的成核速率决定。同时,水泥1 d的水化程度主要与C-S-H生长模式和速率有关;影响水泥1 d 水化程度的因素主要是C-S-H生长的速率和模式,以及水分子和离子透过水泥颗粒表面已形成的C-S-H层的渗透性。因此,如果调控C-S-H成核和生长的速率的参数已知,则可以有效地控制硅酸盐水泥的早期水化,特别是可有效提高水泥水化程度,在可持续发展理念的基础上达到水泥的高效利用。 关键词:硅酸盐水泥;动力学;水化;水化硅酸钙;成核与生长;水化诱导期 中图分类号:TQ172.11 文献标志码:A 文章编号:0454–5648(2015)10–1324–07 网络出版时间:2015–09–24 19:38:00 网络出版地址:https://www.360docs.net/doc/c314317510.html,/kcms/detail/11.2310.TQ.20150924.1938.003.html Mutual Interaction Between Hydration of Portland Cement and Structure and Stoichiometry of Hydrated Calsium Silicate Denis DAMIDOT, Christine LORS (Civil and Environmental Engineering Department, Ecole des Mines de Douai, Douai 59508, France) Abstract: A mutual interaction occurs between the kinetics of the hydration of Portland cement and hydrated calcium silicate(C-S-H) formed as a result of the chemical reactions involved. The results show that the liquid phase composition that also depends on the occurring chemical reactions has a major impact on the nucleation and growth rates of C-S-H. As a consequence, the structure of the agglomerates of unordered C-S-H nanometric particles on C3S, C2S or calcite surfaces will vary from a Portland cement to another one but also in the presence of admixtures or with temperature variations. The stoichiometry of C-S-H also directly depends on the liquid phase composition. On the other hand, the induction period found during Portland cement hydration is governed by the rate of nucleation of C-S-H. Also, the percentage of hydration reached at 1 d is principally correlated to the rate and mode of growth of C-S-H and then to the permeability of water molecules and ions through the layer of C-S-H formed on cement grains. Once the parameters that enable us to tune C-S-H nucleation and growth are known, it is thus possible to master more efficiently the early hydration of Portland cement and especially reach higher percentages of reaction leading to a more efficient use of cement in the logic of sustainable development. Key words: Portland cement; kinetics, hydration; hydrated calcium silicate; nucleation and growth; induction period Originality: The explanation of the kinetics of Portland cement hydration at early age thanks to a better understanding of the impact of the aqueous phase composition on C-S-H nucleation and growth rates. The adaptation of the data of several authors in order to have a general overview of the mechanisms involved, effect of admixtures, temperature, etc. The possible use of the paper to master more efficiently the early hydration of Portland cement in relation to sustainable development. 收稿日期:2015–04–06。修订日期:2015–07–10。第一作者:Denis DAMIDOT, 教授。Received date:2015–04–06. Revised date: 2015–07–10. First author: Denis DAMIDOT, Professor. E-mail: denis.damidot@mines-douai.fr

水热法制备C-S-H开题报告正文

毕业论文开题报告 1.结合毕业论文情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1.1 本课题研究的目的和意义 硅酸盐材料、金属材料、高分子材料是现代三大类人造材料。传统的水热合成水化硅酸盐材料主要追求结晶良好的矿物组分,如硬硅钙石、托贝莫来石、水石榴石等,不仅能耗高,而且产品的功能有限。本文将着眼点放在结晶度很低、比表面积极大、粒径尺寸数十纳米的水化硅酸盐材料上,研究其制备工艺和应用,能耗低、可利用工业废渣、污染小,符合节约能源和资源及可持续发展的战略方向。对于拓宽合成水化硅酸盐的应用领域,很有理论意义,同时,对于改造传统的硅酸盐工业生产工艺,调整产品结构,具有实用价值。 一般来说,纳米材料的合成与制备包括纳米粉体、块体及纳米薄膜的制备。纳米粉体的制备方法按研究的学科大体可分物理法、化学法(综合法)。按照物质的原始状态分类,可分为固相法、液相法和气相法:按制备技术分类,又可分为机械粉碎法、气体蒸发法、溶液法、激光合成法、等离子体合成法、溶胶—凝胶法,水热法等。水热法,又称高温水解法,主要利用水热反应来制备纳米材料。所谓水热反应是高温高压下在水(水溶液)或蒸气等流体中进行有关化学反应的总称[1]。 目前在水热合成硅酸盐材料的工业生产中,人们关注的重点是在较高的压力和温度下生成结晶程度较高的水化硅酸钙,认为其力学性能较好,而对于在水热合成中生成的结晶度很低的水化产物,如C—S—H凝胶、CSH(B)等,很少有人去关注其性能及应用。但是混凝土中水泥石的强度并不是来自于结晶良好的水化硅(铝)酸钙,而是来自于比表面积巨大的结晶不良的水化硅(铝)酸钙,这就启发我们去研究较弱的蒸压制度(较低的压力,较短的恒压时间)下所形成的结晶不良的凝胶状的水化硅酸钙。开发利用这一类水化硅酸钙材料所采用的原材料广泛易得,可利用固体废渣,符合环保要求,而且安全无毒,所需能耗低,因此具有积极的社会意义和重要的应用价值。 现如今人们对各种纳米材料的研究层出不穷。纳米粉体粒子具有传统材料不具备的许多特殊性质,从而使得纳米材料具有广阔的应用前景[2-3],但水化硅酸盐纳米材料的

水泥水化

水泥水化 目录 强度 水泥水化热会产生什么影响? 水泥水化反应公式 水泥水化过程,分为化学反应和物理化学反应. 编辑本段强度 初期强度取决于3CaO.SIO2后期强度为2CaO.SIO2,含量在75--82% 编辑本段水泥水化热会产生什么影响? 对于一般建筑、小体积工程来说,可以不考虑水泥的水化热,甚至可以加快水泥的水化硬化! 但是对于大体积工程来说,比如大坝,桥梁等,水化热来不及释放越积越多会造成膨胀开裂等毁灭性后果!所以有专用的大坝水泥、低水化热水泥!有的还要使用其他冷却方法!编辑本段水泥水化反应公式 硅酸盐水泥拌合水后,四种主要熟料矿物与水反应。分述如下: ①硅酸三钙水化 硅酸三钙在常温下的水化反应生成水化硅酸钙(C-S-H凝胶)和氢氧化钙。 3CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(3-x)Ca(OH)2 ②硅酸二钙的水化 β-C2S的水化与C3S相似,只不过水化速度慢而已。 2CaO·SiO2+nH2O=xCaO·SiO2·yH2O+(2-x)Ca(OH)2 所形成的水化硅酸钙在C/S和形貌方面与C3S水化生成的都无大区别,故也称为C-S-H 凝胶。但CH生成量比C3S的少,结晶却粗大些。 ③铝酸三钙的水化 铝酸三钙的水化迅速,放热快,其水化产物组成和结构受液相CaO浓度和温度的影响很大,先生成介稳状态的水化铝酸钙,最终转化为水石榴石(C3AH6)。 在有石膏的情况下,C3A水化的最终产物与起石膏掺入量有关。最初形成的三硫型水化硫铝酸钙,简称钙矾石,常用AFt表示。若石膏在C3A完全水化前耗尽,则钙矾石与C3A作用转化为单硫型水化硫铝酸钙(AFm)。 ④铁相固溶体的水化 水泥熟料中铁相固溶体可用C4AF作为代表。它的水化速率比C3A略慢,水化热较低,即使单独水化也不会引起快凝。其水化反应及其产物与C3A很相似。 水泥水化深度 熟料矿物或水泥的水化速率常以单位时间内的水化程度或水化深度来表示。水化程度是指在一定时间内发生水化作用的量和完全水化量的比值;而水化深度是指已水化层的厚度。水化速率必须在颗粒粗细、水灰比以及水化温度等条件基本一致的情况下才能加以比较。右图为一球形颗粒(平均直径dm)的水化深度示意图。其中阴影表示已经水化部分。根据上述水化程度的定义,并假定在水化过程中能始终保持球形.且密度不变,即可导出水化深度h和水化程度a之间的关系: ?? ??

2015土材问答题.

问答题 第一章 1、简述孔隙率和孔隙特征对材料性能的影响。 答:孔隙率的大小反映了材料的致密程度。材料的力学性质、热工性质、声学性质、吸水性、吸湿性、抗渗性、抗冻性等都与孔隙有关。孔隙率相同的情况下,材料的开口孔越多,材料的抗渗性、抗冻性越差。在材料的内部引入适量的闭口孔可增强其抗冻性。一般情况下,孔越细小、分布越均匀对材料越有利。 3、材料在不同受力方式下的强度有几种?各有何功用? (1)根据外力作用方式不同,材料强度有抗压强度、抗拉强度、抗弯强度以及抗剪强度等。(2)抗压强度是岩体、土体在单向受压力作用破坏时,单向面积上所承受的荷载,可用于混凝土强度的评定;抗拉强度指材料在拉断前承受最大应力值,可用于钢筋强度的评定;抗弯强度是指材料抵抗弯曲不断裂的能力,可用于脆性材料强度的评定;抗剪强度,指外力与材料轴线垂直,并对材料呈剪切作用时的强度极限,可用于土体强度的评定。 5、脆性材料、韧性材料有何特点?各适合承受哪种外力? (1)脆性材料是在外力作用下没有明显塑性变形而突然破坏的材料。韧性材料是在冲击或震动荷载作用下,能吸收较大的能量,同时也能产生一定变形而不破坏的材料。 (2)脆性材料适合承受压力;韧性材料适合承受冲击力。 7、什么是材料的耐久性?为什么对材料要有耐久性要求? (1)耐久性是指材料在长期使用过程中,能保持原有性能而不变质、不破坏的能力。(2)材料的耐久性是土木工程耐久性的基础,合理使用高耐久性材料,有效提高工程的寿命,降低工程的维修成本。从而降低工程项目的全寿命成本;合理使用高耐久性材料。会减少材料的消耗,对节约资源、能源,保护环境有重要意义。

第二章 1、什么是气硬性胶凝材料?什么是水硬性胶凝材料?两者在哪些性能上有显著的差异?(1)气硬性胶凝材料:是只能在空气中硬化,也只能在空气中保持和发展其强度的无机胶凝材料。 (2)水硬性胶凝材料:是既能在空气中硬化,还能更好地在水中硬化、保持并发展其强度的无机胶凝材料。 (3)差异:气硬性胶凝材料,只适用于干燥环境中,不适宜用于潮湿环境,更不可用于水中,强度较低,耐水性差,耐久性弱。水硬性胶凝材料,既适用于干燥环境,又适用于潮湿环境或水下工程。强度较高,耐水性好,耐久性强。 3.什么是生石灰的熟化(消解)?伴随熟化过程有何现象? (1)熟化是指生石灰(CaO)与水作用生成氢氧化钙的过程。 (2)现象:石灰的熟化过程会放出大量的热,熟化时体积增大1-2.5倍。 5.石灰在使用前为什么要进行陈伏?陈伏时间一般需要多长? (1)原因:石灰生产时局部煅烧温度过高,在表面有熔融物的石灰为过火石灰。熟化的石灰膏如果立即投入使用,会导致隆起和开裂。为消除过火石灰的危害,石灰膏在使用前要陈伏。(2)时间:14天以上。 7.既然石灰不耐水,为什么由它配置的灰土或三合土却可以用于基础的垫层、道路的基层等潮湿部位? 答:石灰可以改善粘土的和易性,在强力夯打之下,大大提高了粘土的紧密程度。而且,粘土颗粒表面的少量活性氧化硅和氧化铝可与氢氧化钙发生化学反应,生成不溶于水的水化硅酸钙和水化铝酸钙,将粘土颗粒粘结起来,从而提高了粘土的强度和耐水性。 9.建筑石膏为什么不耐水? 答:(1)建筑石膏孔隙率大,为吸湿、吸水创造了条件。(2)建筑石膏的硬化过程是一个连续的溶解、水化、胶化、结晶过程,遇水后,晶体间结合力减弱,强度显著降低。若长期浸泡在水中,二水石膏晶体逐渐溶解,从而导致破坏。

防止水化热的不利影响措施

防止水化热的不利影响措施 计划基础底板混凝土浇灌时间为一个日历天数。大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证基础底板大体积混凝土顺利施工。 1、材料选择 (1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,便混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。 (2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。(3)细骨料:采用中砂,平均粒径大于0.5mm,含泥量不大于5。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 (4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。 (5)外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,混凝土确定采用(减水剂),每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。2、混凝土配合比 (1)混凝土采用由搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。 (2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。 (3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。 3、现场准备工作 (1)基础底板钢筋及柱、墙插筋应分段尽快施工完毕,并进行隐蔽工程验收。 (2)基础底板上的地坑、积水坑采用组合钢模板支模,不合模数部位采用木模板支模。 (3)将基础底板上表面标高抄测在柱、墙钢筋上,并作明显标记,供浇筑混凝土时找平用。 (4)浇筑混凝土时预埋的测温管及保温随需的塑料薄膜、草席等应提前准备好。 (5)项目经理部应与建设单位联系好施工用电,以保证混凝土振捣及施工照明用。 (6)管理人员、施工人员、后勤人员、保卫人员等昼夜排班,坚守岗位,各负其责,保证混凝土连续浇灌的顺利进行。 三、大体积混凝土温度和温度应力计算 (计附后) 根据业主及设计要求,对基础底板混凝土进行温度检测;基础底板混凝土中部中心点的温升高峰值,该温升值一般略小于绝热温升值。一般在混凝土浇筑后3d左右产生,以后趋于稳定不在升温,并且开始逐步降温。规范规定,对大体积混凝土养护,应根据气候条件采取控温措施,并按需要测定浇筑后的混凝土表面和内部温度,将温差控制在设计要求的范围内;当设计无具体,要求时,温差不宜超过25度;本工程设计无具体要求,即按规范执行。表面温度的控制可采取调整保温层的厚度。

水泥水化热研究与分析

水泥水化热研究与分析 摘要: 在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,本文首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据笔者经验讲述了几种降低水泥水化热的措施。 关键词:水泥水化热、措施、配合比、增加、热量 引言 随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,随着混凝土龄期增加,绝热升温将会在2至4天内达到最高状态,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。若养护不当,表面裂缝将会进一步发展成深层裂缝。在受地基约束的部位,将会产生较小的压应力。因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。 一、水化热的计算与分析 1、水泥水化热分析 水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。这些热值的代数和就是水泥在任何龄期下的水化热。国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。水化热越大,水泥浆体单位时间内放出热量也将会越多。工程实践中一般是通过增加三氧化二铁与氧化铁含量之比作为降低C3A的指标,为了达到更好的效果,可以在上述基础上,对C3S含量进一步降低。 2、我国水泥水化热情况分析 我国在很多水泥里面都会添加不同数量的材料,如何对水泥水化热过程中释

什么叫水泥的水化热

什么叫水泥的水化热?影响水化热的主要因素有哪些? 水泥与水作用放出的热,称为水化热,以焦/克(J/g)表示。 影响水泥水化热的因素很多,包括水泥熟料矿物组成、水灰比、养护温度、水泥细度、混合材掺量与质量等,但主要是决定于熟料矿物的组成与含量。水泥主要矿物中,完全水化放出的热量,最大的是C3A,其次是C3S,再次之是C4AF。因此,降低C3A含量对限制水泥的水化热是有利的。 水泥生产中"两磨一烧"是指什么? 因为水泥生产过程分为三个阶段,即石灰质原料、粘土质原料、以及少量的校正原料,(立窑生产还要加入一定量的煤)经破碎或烘干后,按一定比例配合、磨细,并制备为成分合适、质量均匀的生料,称之为第一阶段:生料粉磨;然后将生料加入水泥窑中煅烧至部分熔融,得到以硅酸钙为主要成分的水泥熟料,称之为第二阶段:熟料煅烧;熟料加入适量的石膏,有时还加入一些混合材料,共同磨细为水泥,成为第三阶段:水泥粉磨。所以大家把水泥生产过程简称为:"两磨一烧"。 什么是水泥混合材?加入混合材的作用是什么? 在水泥生产过程中,为改善水泥性能、调节水泥标号而加到水泥中的矿物质材料,称之为水泥混合材料。在水泥中掺加混合材料不仅可以调节水泥标号与品种,增加水泥产量,降低生产成本,而且在一定程度上改善水泥的某些性能,满足建筑工程中对水泥的特殊技术要求。此外,还可以综合利用大量工业废渣,具有环保和节能的重要意义。 水化热 指物质与水化合时所放出的热。此热效应往往不单纯由水化作用发生,所以有时也用其他名称。例如氧化钙水化的热效应一般称为消解热。水泥的水化热称为硬化热比较确切,因其中包括水化、水解和结晶等一系列作用。水化热可在量热器中直接测量,也可通过熔解热间接计算。 水化热高的水泥不得用在大体积混凝土工程中,否则会使混凝土的内部温度大大超过外部,从而引起较大的温度应力,使混凝土表面产生裂缝,严重影响混凝土的强度及其他性能。 水化热对冬季施工的混凝土工程较为有利,能提高其早期强度。 在使用水化热较高的水泥时,应采取措施来防止混凝土内部的水化热过高。 也称水合热、水和能...... 在大体积的混凝土工程当中,由于聚集在制品内部的水化热不容易散出,常使制品内部的水化热在50到60度,由于温度应力作用使水泥产生膨胀性的裂缝,为此可以采用工程措施减轻水化热 降低水泥水化热 混凝土配合比设计: 对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。经过与商品混凝土供应单位合作进行反复试验,通过几十组的混凝土试配,设计了较满意的配合比。 1)、充分利用混凝土的后期强度,减少每立方米混凝土中的水泥用量,选用京都P.0.425

相关文档
最新文档