三角函数解题技巧和公式_已整理_

三角函数解题技巧和公式_已整理_
三角函数解题技巧和公式_已整理_

浅论关于三角函数的几种解题技巧

本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解 题方面的处理技巧以及心得、体会。下面尝试进行探讨一下: 一、关于 ) 2 sin ( cos sin cos sin a a a a a 或 与 ± 的关系的推广应用:

1 、 由于 a a a a a a a a cos sin

2 1 cos sin 2 cos sin ) cos (sin 2 2 2 ± = ± + = ± 故知道 ) cos (sin a a ± ,必可推出 ) 2 sin ( cos sin a a a 或 ,例如:

例1

已知 q q q q 3 3 cos sin , 3

3

cos sin - =

- 求 。 分析:由于 )

cos cos sin )(sin cos (sin cos sin 2 2 3 3 q q q q q q q q + + - = - ]

cos sin 3 ) cos )[(sin cos (sin 2 q q q q q q + - - = 其中, q q cos sin - 已知,只要求出 q q cos sin 即可,此题是典型的知 sin q -cos q ,求 sin q cos q 的题型。

解:∵ q

q q q cos sin 2 1 ) cos (sin 2 - = - 故: 3

1

cos sin 3 1 ) 3 3 (

cos sin 2 1 2 = T = = - q q q q ]

cos sin 3 ) cos )[(sin cos (sin cos sin 2 3 3 q q q q q q q q + - - = - 3 9

4 3 1 3 3 ] 3 1 3 ) 3 3 [( 3 3 2 = ′ = ′ + =

2、关于tg q +ctg q 与sin q ±cos q ,sin q cos q 的关系应用: 由于tg q +ctg q = q

q q q q q q q q q cos sin 1

cos sin cos sin sin cos cos sin 2 2 =

+ = + 故:tg q +ctg q , q q cos sin ± ,sin q cos q 三者中知其一可推出其余式子的值。

例2 若sin q +cos q =m 2,且tg q +ctg q =n,则m 2 n 的关系为( )。

A.m 2 =n B.m 2 = 1

2

+ n

C. n

m 2 2 =

D. 2

2 m n =

分析:观察sin q +cos q 与sin q cos q 的关系:

sin q cos q = 2

1

2 1 ) cos (sin 2 2 - =

- + m q q

而: n

ctg tg = =

+ q

q q q cos sin 1

故: 1 2

1 2 1 2 2 + = T = - n

m n m ,选B。

例3 已知:tg a +ctg a =4,则sin2a 的值为( )。

A. 2 1 B. 2 1 - C. 4 1 D. 4

1 -

分析:tg a +ctg a = 4

1

cos sin 4 cos sin 1 =

T = a a a a 故: 2 1

2 sin cos sin 2 2 sin = T = a a a a 。 答案选A。

例4

已知:tg a +ctg a =2,求 a

a 4 4 cos sin + 分析: 由上面例子已知, 只要 a a 4 4 cos sin + 能化出含sin a ±cos a 或sin a cos a 的式子,

则即可根据已知tg a +ctg a 进行计算。由于tg a +ctg a = T

= 2 cos sin 1 a

a 2

1

cos sin = a a ,此题只要将 a a 4 4 cos sin + 化成含sin a cos a 的式子即可:

解: a a 4 4 cos sin + = a a 4 4 cos sin + +2 sin 2 a cos 2 a -2 sin 2 a cos 2

a

=(sin 2 a +cos 2 a )- 2 sin 2 a cos 2

a

=1-2 (sin a cos a )

2

=1- 2

)2 1

( 2′ = 2 1 1-

= 2

1 通过以上例子,可以得出以下结论:由于 a a cos sin ± ,sin a cos a 及tg a +ctg a 三者之 间可以互化,知其一则必可知其余二。这种性质适合于隐含此三项式子的三角式的计算。但 有一点要注意的;如果通过已知sin a cos a ,求含 a a cos sin ± 的式子,必须讨论其象限才能

得出其结果的正、负号。这是由于( a a cos sin ± ) 2

=1±2sin a cos a ,要进行开方运算才能 求出 a

a cos sin ± 二、关于“托底”方法的应用:

在三角函数的化简计算或证明题中, 往往需要把式子添加分母, 这常用在需把含tg a (或 ctg a )与含 sin a (或 cos a )的式子的互化中,本文把这种添配分母的方法叫做“托底” 法。方法如下:

例5 已知:tg a =3,求 a

a a

a cos sin 2 cos 3 sin + - 的值。

分析:由于 a

a

a cos sin = tg ,带有分母cos a ,因此,可把原式分子、分母各项除以cos a ,

“造出”tg a ,即托出底:cos a ;

解:由于tg a =3 0

cos 2

1 T + 1 T a p

p a k 故,原式= 0

1 3

2

3 3 1 2 3 cos cos cos sin 2 cos cos 3 cos sin = + ′ - = + - = + × ×

- a a a

a a a a a

a a tg tg 例6

已知:ctg a = -3,求sin a cos a -cos 2

a =?

分析:由于 a a a sin cos = ctg ,故必将式子化成含有 a

a

sin cos 的形式,而此题与例 4 有所不同,

式子本身没有分母,为了使原式先出现分母,利用公式: 1 cos sin 2 2 = + a a 及托底法托出其 分母,然后再分子、分母分别除以sin a ,造出 ctg a :

解: a

a a

a a a a a a a 2 2 2 2

2

2

cos sin cos cos sin cos cos sin 1 cos sin + - =

- T = + a 2 sin ,分母同除以 分子 a a a a

a a a a a 2 2 2 2

1 )

sin cos ( 1 )

sin cos ( sin cos ctg ctg ctg + - = + - 5

6

) 3 ( 1 ) 3 ( 3 2

2 -

= - + - + - =

例7 (95年全国成人高考理、工科数学试卷)

设 2 0 ,2 0 p p < < < < y x , )

6 sin( ) 3 sin( sin sin y x y x - - = p

p 且 求: ) 3 )( 3

3

( - -

ctgy ctgx 的值 分析:此题是典型已知含正弦函数的等式求含正切、余切的式子,故要用“托底法” ,由

于 2

0 ,2 0 p

p < < < < y x , 故 0 sin , 0 sin 1 1 y x , 在等式两边同除以 y x sin sin , 托出分母 y

x sin sin 为底,得:

解:由已知等式两边同除以 y x sin sin 得:

1 sin sin 6 cos cos 6 sin sin sin 3 cos cos 3 sin 1 sin sin ) 6 sin( ) 3 sin( = - × - T = - - y

y

y x x y x y x p

p p p p p

3

3

4

) 3 )( 3 3 ( 1

) 3 )( 3

3 (

4 3 1 ) 3 )( 1 3 (4 1 1 sin sin 3 cos sin sin cos 3 4 1 = - - T = - - T = - - T = - × - × T ctgy ctgx ctgy ctgx ctgy ctgx y y y x x x “托底”适用于通过同角的含正弦及余弦的式子与含正切、余切的式子的互化的计算。

由于 a a a cos sin = tg , a

a

a sin cos = ctg ,即正切、余切与正弦、余弦间是比值关系,故它们间的互

化需“托底” ,通过保持式子数值不变的情况下添加分母的方法,使它们之间可以互相转化, 达到根据已知求值的目的。而添加分母的方法主要有两种:一种利用 1 cos sin 2 2 = + a a ,把 a a 2 2 cos sin + 作为分母,并不改变原式的值,另一种是通过等式两边同时除以正弦或余弦又 或者它们的积,产生分母。

三、关于形如: x b x a sin cos ± 的式子,在解决三角函数的极值问题时的应用:

可以从公式 ) sin( sin cos cos sin x A x A x A ± = ± 中得到启示: 式子 x b x a sin cos ± 与上述公式 有点相似,如果把a,b 部分变成含sinA,cosA 的式子,则形如 x b x a sin cos ± 的式子都可以 变成含 ) sin( x A ± 的式子,由于-1≤ ) sin( x A ± ≤1,

所以,可考虑用其进行求极值问题的处理,但要注意一点:不能直接把 a 当成 sinA,b 当成 cosA,如式子: x x sin 4 cos 3 + 中,不能设 sinA=3,cosA=4,考虑:-1≤sinA≤1,-1≤cosA ≤1,可以如下处理式子:

÷ ÷ ?

? ? ? è ? + ± + + = ± x b a b

x b a a b a x b x a sin cos sin cos 2

2 2 2 2 2 由于 1 ) (

) (

2 2

2 2 2

2 = + + + b a b b a a 。

故可设: 2

2 sin b a a A + = ,则 A A sin 1 cos - ± = ,即: 2

2 cos b a b A + ±

= ∴ ) sin( ) sin cos cos (sin sin cos 2 2 2 2 x A b a x A x A b a x b x a ± + = ± + = ± 无论 x A ± 取何值,-1≤sin(A±x)≤1,

2 2 b a + - ≤ ) sin( 2 2 x A b a ± + ≤ 2

2 b a + 即: 2 2 b a + - ≤ x b x a sin cos ± ≤ 2 2 b a + 下面观察此式在解决实际极值问题时的应用:

例1(98年全国成人高考数学考试卷)

求:函数 x x x y cos sin cos 3 2 - = 的最大值为(AAAA

A. 2

3

1+

B. 1

3- C. 2

3

1-

D. 1

3+ 分析: x x x x 2 sin 2

1

cos sin 2 2 1 cos sin = × = ,再想办法把 x 2 cos 变成含 x cso 2 的式子:

2

1

2 cos cos 1 cos 2 2 cos 2 2 + =

T - = x x x x 于是: x

x y 2 sin 2

1

2 1 2 cos

3 - + × = x x 2 sin 2 1 2 3 2 cos 2 3 - + =

2

3 ) 2 sin 2 1 2 cos 2 3 (

+ - = x x 由于这里: 1 )2

1

( ) 2 3 ( ,2 1 , 2 3 2 2 2 2 = + = + = =

b a b a 则 ∴ 2

3 ) 2 sin 2 1 2 cos 2 3 (

1 + - ′ = x x y 设:

2 1

cos , 2 3 1 2 3

sin 2 2 =

= = + = A b a a A 则 ∴ 2

3

2 sin cos 2 cos sin +

- = x A x A y 2

3 ) 2 sin( +

- = x A 无论A-2x 取何值,都有-1≤sin(A-2x)≤1,故 2 3 1+

- ≤y ≤ 2

3 1+ ∴y 的最大值为 2

3

1+

,即答案选A。 例2 (96年全国成人高考理工科数学试卷)

在△ABC 中,已知:AB=2,BC=1,CA= 3,分别在边 AB、BC、CA 上任取点 D、E、F,使 △DEF 为正三角形,记∠FEC=∠α,问:sinα取何值时,△EFD 的边长最短?并求此最短边 长。

分析:首先,由于 2 2 2 2 2 4 ) 3 ( 1 AB CA BC = = + = + ,可知△ABC 为 Rt△,其中 AB 为斜

边,所对角∠C 为直角,又由于 ° = = =

30 ,2

1

sin A AB BC A 故 ,则∠B= 90°—∠A=60°,由于本题要计算△DEF 的最短边长,故必要设正△DEF 的边长为l ,且要列 出有关l 为未知数的方程,对l 进行求解。观察△BDE,已知:∠B=60°,DE=l ,再想办法找 出另两个量,即可根据正弦定理列出等式,从而产生关于l 的方程。在图中,由于EC=l ·cos α,则BE=BC-EC=1-l ·cosα。

而∠B+∠BDE+∠1=180° ∠α+∠DEF+∠1=180° T∠BDE=∠α ∠B=60°,∠DEF=60°

∴在△BDE 中,根据正弦定理:

°

=

× - T D = D 60 sin sin cos 1 sin sin l

l B DE BDE BF a a a a a a sin cos 2

3

2 3 sin ) cos 1 ( 2 3 × = × - T × = × - T

l l l l a a sin cos 2

3 2 3

+ =

Tl 在这里 , 要使 l 有最小值 , 必须分母 :

a a sin cos 2

3 + 有最大值 , 观察 : 2

7 1 ) 2 3 ( 1 , 2 3 , sin cos 2 3 2

2 2 2 = + = + T = = + b a b a a a ∴

) sin 7

7

2 cos 7 21 ( 2 7 sin cos 2

3 a a a a + = + 设: 7 21 sin =

A ,则 7

7

2 cos = A 故:

) sin cos cos (sin 2

7 sin cos 2 3 a a a a A A + = + ) sin( 2

7

a + =

A ∴

a a sin cos 2 3 + 的最大值为 2

7 。

即:l 的最小值为: 7 21

2

7 2 3

=

而 ) sin( a + A 取最大值为1时, A

k k A - + = T + = + 2

2 2 2 p

p a p p a ∴ 7

7

2 cos ) 2 2 sin( sin =

= - + = A A k p p a 即: 7 7 2 sin =

a 时,△DEF 的边长最短,最短边长为 7

21 。 从以上例子可知,形如 x b x a sin cos ± 适合于计算三角形函数的极值问题。计算极值时与 式子的加、 减是无关, 与 2 2 b a + 的最值有关; 其中最大值为 2 2 b a + , 最小值为 2 2 b a + - 。 在计算三角函数的极值应用题时,只要找出形如 x b x a sin cos ± 的关系式,即能根据题意,求

出相关的极值。

三角函数知识点解题方法总结

一、见“给角求值”问题,运用“新兴”诱导公式

一步到位转换到区间(-90o,90o)的公式.

1.sin(kπ+α)=(-1) k sinα(k∈Z);

2. cos(kπ+α)=(-1) k

cosα(k∈Z);

3. tan(kπ+α)=(-1) k tanα(k∈Z);

4. cot(kπ+α)=(-1) k cotα(k∈Z).

二、见“sinα±cosα”问题,运用三角“八卦图”

1.sinα+cosα>0(或<0)óα的终边在直线y+x=0的上方(或下方);

2. sinα-cosα>0(或<0)óα的终边在直线y-x=0的上方(或下方);

3.|sinα|>|cosα|óα的终边在Ⅱ、Ⅲ的区域内;

4.|sinα|<|cosα|óα的终边在Ⅰ、Ⅳ区域内.

三、见“知1求5”问题,造Rt△,用勾股定理,熟记常用勾股数(3,4,5),(5, 12,13),(7,24,25),仍然注意“符号看象限”。

四、见“切割”问题,转换成“弦”的问题。

五、“见齐思弦”=>“化弦为一”:已知 tanα,求sinα与cosα的齐次式,有些整式

情形还可以视其分母为1,转化为sin 2 α+cos 2

α.

六、见“正弦值或角的平方差”形式,启用“平方差”公式:

1.sin(α+β)sin(α-β)= sin 2 α-sin 2 β;

2. cos(α+β)cos(α-β)= cos 2 α-sin 2 β.

七、见“sinα±cosα与sinαcosα”问题,起用平方法则:

(sinα±cosα) 2 =1±2sinαcosα=1±sin2α,故

1.若sinα+cosα=t,(且t 2 ≤2),则2sinαcosα=t 2 -1=sin2α;

2.若sinα-cosα=t,(且t 2 ≤2),则2sinαcosα=1-t 2 =sin2α.

八、见“tanα+tanβ与tanαtanβ”问题,启用变形公式:

tanα+tanβ=tan(α+β)(1-tanαtanβ).思考:tanα-tanβ=???

九、见三角函数“对称”问题,启用图象特征代数关系:(A≠0)

1.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象, 关于过最值点且平行于y轴的直线 分别成轴对称;

2.函数y=Asin(wx+φ)和函数y=Acos(wx+φ)的图象,关于其中间零点分别成中心对称;

3.同样,利用图象也可以得到函数y=Atan(wx+φ)和函数y=Acot(wx+φ)的对称性质。

十、见“求最值、值域”问题,启用有界性,或者辅助角公式:

1.|sinx|≤1,|cosx|≤1;

2.(asinx+bcosx) 2 =(a 2 +b 2 )sin2(x+φ)≤(a 2 +b 2 );

3.asinx+bcosx=c有解的充要条件是a 2 +b 2 ≥c 2 .

十一、见“高次”,用降幂,见“复角”,用转化.

1.cos2x=1-2sin 2 x=2cos 2 x-1.

2.2x=(x+y)+(x-y);2y=(x+y)-(x-y);x-w=(x+y)-(y+w)等

角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA 

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) 

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

倍角公式

tan2A=2tanA/[1-(tanA)^2]

cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

和差化积

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B) )

2cosAcosB=cos(A+B)+cos(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

积化和差公式

sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

万能公式

sin(a)= (2tan(a/2))/(1+tan^2(a/2))

cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))

tan(a)= (2tan(a/2))/(1-tan^2(a/2))

倒数关系: 商的关系: 平方关系:

tanα ?cotα=1

sinα ?cscα=1

cosα ?secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α

1+cot2α=csc2α

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中常用三角函数公式大全

高中常用三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa

cos( 2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc= a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα cot (2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα cot (π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系:

三角函数常用公式

数学必修4三角函数常用公式及结论 、三角函数与三角恒等变换 2 2 2 5、 升幕公式 1 ± Sin2 a = (sin a± COS a ) 1 + COS2 a =2 COS a 1- COS2 a = 2 sin a 6、 两角和差的三角函数公式 sin ( a±3 ) = sin a COS 3 土 COS a sin 3 COS ( a±3 ) = COS a COS 3 干 sin a sin 3 tan tan tan 1 tan tan 7、两角和差正切公式的变形: tan a± tan 3 = tan ( a±3 ) (1 干 tan a tan 3 ) 2、同角三角函数公式 sin 2 2 . g a + COS a = 1 tan Sin cos 3、二倍角的三角函数公式 sin2 a = 2sin a cos a cos2 2 2 a =2cos a -1 = 1-2 Sin a : 2 2 =COS a - Sin a tan 2 2ta n 1 tan 2 4、 2 CO S 1 cos 2 2 2 1 cos2 sin ------------------ 2 1 tan =tan45 tan = tan ( 1 tan 1 tan 45 tan --- a ) 1 tan 1 tan tan 45 tan 1 tan 45 tan =tan ( — - a ) 4

在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式 . 3.三角形中三内角的三角函数关系 (ABC ) O sin A sin (B C ), cos A cos (B C ), ta nA tan (B C ).(注:二倍角的关系) ― A B C A O sin cos( ),cos — 2 2 2 5.几个重要的结论 O A B si nA si nB,cosA cosB ; O 三内角成等差数列 B 600, A C 1200 si n ( n — a ) = sin a, cos ( n — a )= —cos a, tan ( n — a )= —tan a; si n ( n + a ) = — Sin a cos ( n + a ): = —cos a ta n ( n + a )= :tan a sin (2 n — a ) = — sin a cos (2 n — a )= cos a tan (2 n — a )= —tan a si n ( —a ) = — sin a cos ( — a )= cos a ta n ( — a )= -tan a si n ( —a )= cos a cos ( — a )= sin a 2 2 si n ( _+ a ) = cos a cos ( _+ a ) = —sin a 2 2 11.三角函数的周期公式 函数y sin( x ) , x € R 及函数y cos( x ),x € R(A, w , 为常数, 且 2 A M 0,w> 0)的周期T ;函数 10、三角函数的诱导公式 “奇变偶不变,符号看象限。 y tan( x ) , x k ,k Z (A, w , 为常数,且 A M 0,3> 0)的周期T —. 2 解三角形知识小结和题型讲解 解三角形公式。 1. 正弦定理 a b c si nA si nB si nC 2. 余弦定理 a 2 b 2 c 2 2bccosA b 2 a 2 c 2 2ac cos B c 2 a 2 b 2 2ab cosC 2R (R 是 ABC 的外接圆半径) cos A b 2 2 c 2 a 2bc cosB 2 a 2 c b 2 2ac cosC 2 a b 2 2 c 2ab sin (B C), 2

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

常用的三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A =2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+

tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin 2b a +cos 2 b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = - 2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)] 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2 (tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 其它公式 a?sina+b?cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a?sin(a)-b?cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2 a )2 1-sin(a) = (sin 2a -cos 2 a )2

三角函数公式大全关系

三角函数公式大全关系: 倒数 tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式 sin^2(α)+cos^2(α)=1 tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 锐角三角函数公式 正弦: sin α=∠α的对边/∠α的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

三角函数公式及记忆方法

三角函数公式 诱导公式的本质 所谓三角函数诱导公式,就是将角απ ±?)2 (n 的三角函数转化为角α的三角函数。 常用的诱导公式Z k ∈ 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: ααπs i n )2s i n (=+k ααπcos )2cos(=+k ααπt a n )2t a n (=+k ααπcot )2cot(=+k ααπs e c )2s e c (=+k ααπcsc )2csc(=+k 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: ααπs i n )s i n (-=+ ααπcos )cos(-=+ ααπt a n )t a n (=+ ααπcot )cot(=+ ααπs e c )s e c (-=+ ααπcsc )csc(-=+ 公式三: 任意角α与 -α的三角函数值之间的关系: ααs i n )s i n (-=- ααcos )cos(=- ααt a n )t a n (-=- ααcot )cot(-=- ααs e c )s e c (=- ααcsc )csc(-=- 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: ααπs i n )s i n (=- ααπcos )cos(-=- ααπt a n )t a n (-=- ααπcot )cot(-=- ααπs e c )s e c (-=- ααπcsc )csc( =- 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: ααπs i n )2 s i n (-=- ααπcos )2cos(=- ααπt a n )2 t a n (-=- ααπcot )2cot(-=- ααπs e c )2s e c (=- ααπcsc )2csc(-=-

三角函数常用公式表

1 1、角 :(1)、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角; 2)、与 终边相同的角,连同角 在内,都可以表示为集合 { | k 360 ,k Z } ( 3)、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限, 就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限。 2、弧度制 :( 1)、定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。 2)、度数与弧度数的换算: 180 弧度, 1 弧度 (180) 57 18 3)、弧长公式: l | |r 是角的弧度数) x 2 P (x 0 y y ) 2 y sin cos y r x r tan cot y x x y sec csc r x r y + y + y + y + O x O x + O + x (3)、 特殊角的三角函数值 sin cos tan 的角度 0 30 45 60 90 120 135 150 180 270 360 的弧度 0 2 3 5 3 2 6 4 3 2 3 4 6 2 sin 1 2 3 1 3 2 1 0 10 2 2 2 2 2 2 cos 1 3 2 1 0 1 2 3 1 01 2 2 2 2 2 2 tan 3 1 3 3 1 3 0 —0 3 3 扇形面积: 0 x 各象限的符号: 3、三角函数 2)、 4式 1)平方关系: 2)商数关系: 倒数关 系: 3) S 1lr 2 (1)、定 义: 2| |r 2 如图) sin 2 cos 2 1 tan sin tan cot cos 1 tan 2 2 sec cot cos sin sin csc 1 cot 2 2 csc cos sec cot 4)同角三角函数的常见变 形: 活用 1” ) ①、 sin 2 2 cos sin 1 cos 2 2 cos 2 sin cos 1 sin 2 ; ② tan cot cos 2 sin 2 sin cos sin2 2 , cot tan cos 2 sin 2 sin cos 2cos2 2cot2 sin2

考研必备三角函数公式

三角函数诱导公式 常用的诱导公式有以下几组: 公式一: 设α为人意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα

tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

高考数学三角函数公式

高考数学三角函数公式 同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α (六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”) 诱导公式(口诀:奇变偶不变,符号看象限。) sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα

常用三角函数公式和口诀

常用三角函数公式及口诀 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 诱导公式记忆口诀 规律总结 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值,

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

三角函数公式大全

两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin( 2A )=2cos 1A -cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2 π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式:sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2 (tan 12tan 2a a -

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

数学三角函数公式大全

三角函数 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合): {} Z k k ∈+?=,360 |αββο ②终边在x 轴上的角的集合: {} Z k k ∈?=,180|ο ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180|οοββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90|οββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180|οοββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180|οοββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k ο360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+=οο180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k ο180 ⑩角α与角β的终边互相垂直,则角α与角β的关系:οο90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 =αsin r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. αcsc 5、三角函数在各象限的符号:正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

常用的函数公式大全--高中三角函数公式

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

相关文档
最新文档