计算方法最小二乘法

计算方法最小二乘法
计算方法最小二乘法

---------------------------------------------------------------最新资料推荐------------------------------------------------------

计算方法最小二乘法

最小二乘法二多项式拟合 ),(ix(i=0, 1, , m) ,为所有次数不超过假设给定数据点iy)(mnn的多项式构成的函数类,现求一=k=nkknxaxp0)(,使得[]min)(00202===i =i==mmnkikikiinyxayxpI (1) )(xpn当拟合函数为多项式时,称为多项式拟合,满足式(1)的拟合多项式。

特别地,当 n=1 时,称为线性拟合或直线拟合。

显然称为最小二乘 =i0==mnkikikyxaI20)( =为由多元函数求极值的必要条件,得 I20 =n aaa,,10的多元函数,因此上述问题即为求),,(10n aaaII的极值问题。

njxyxaamijinkikikj,, 1 , 0, 0)(0==== (2) 即njyxaxnk=miijikmikji,, 1 , 0,)(000====+ (3) (3)是关于n aaa ,,10的线性方程组,用矩阵表示为mniixx00=

+=i =i=m=i=i=i=i=i=i=m=m++miniiimiinmnimnimniniimiimiyxyxyaaaxx xxxxm0001002010010201 (4) 式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出k a(k=0, 1, , n) ,从而可得多项式

1/ 2

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

用最小二乘法求一个形如

1. 2 y a bx =+. 解:1010654542.80a b a ε?=+-=?,1065414748998738643.00a b b ε?=+-=?,解方程得 4.00955,0.0471846a b ==,均方误差13.0346ε=。 2.下述矩阵能否分解为LU (其中L 为单位下三角阵,U 为上三角阵)?若能分解,那么分解是否唯一? .461561552621,133122111,764142321??????????=??????????=??????????=C B A 解: 按高斯消去法,A 无法进行第二次消去,换行后可以分解,B 第二次消去可乘任意系数,分解不唯一,C 可唯一分解。 3.设方程组 ?????=+-=++--=++3103220241225321321321x x x x x x x x x (a) 考察用雅可比迭代法,高斯-塞德尔迭代法解此方程组的收敛性; (b) 用雅可比迭代法,高斯-塞德尔迭代法解此方程组,要求当4)()1(10||||-∞+<-k k x x 时迭代终止. 解: (a) Jacobi 迭代矩阵 ????? ??--=+=-03.02.05.0025.02.04.00)(1U L D B 特征方程为 0055.021.0||3=-+=-λλλB I 特征根均小于1,Jacobi 迭代法收敛。 Gauss-Seidel 迭代矩阵 ????? ??=-=-17.004.007.04.002.04.00)(1U L D G 特征方程为 0096.057.0||23=+-=-λλλλG I 特征根均小于1,Gauss-Seidel 迭代法收敛。 (b) Jacobi 迭代格式为 1)()1(f BX X k k +=+ 其中B 如上,T b D f )3.052.1(11-==-, 迭代18次得

最小二乘法求线性回归方程

数学必修3测试题 说明:全卷满分100分,考试时间120分钟,交卷时只需交答题卷,考试时不能使用计算器. 参考:用最小二乘法求线性回归方程系数公式x b y a x n x y x n y x b n i i n i i i -=-?-= ∑∑==, 1 2 21 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四处备选项中,只有一项是符合 题目要求的. 1 ”可用于( ) A 、输出a=10 a=10 C 、判断a=10 D 、输入a=10 2、已知甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95; 乙:95,80,98,82,95。则甲、乙两名同学数学学习成绩( ) A 、甲比乙稳定 B 、甲、乙稳定程度相同 C 、乙比甲稳定 D 、无法确定 3、下列程序语句不正确... 的是( ) A 、INPUT “MA TH=”;a+b+c B 、PRINT “MA TH=”;a+b+c C 、c b a += D 、1a =c b - 4、 在调查分析某班级数学成绩与 物理成绩的相关关系时,对数据进行 统计分析得到散点图(如右图所示), 用回归直线?y bx a =+近似刻画 其关系,根据图形,b 的数值最有 可能是( ) A 、 0 B 、 1.55 C 、 0.85 D 、 —0.24 5、用秦九韶算法求n 次多项式011 1)(a x a x a x a x f n n n n ++++=-- ,当0x x =时,求)(0x f 需要算 乘方、乘法、加法的次数分别为( ) A 、 n n n n ,,2 ) 1(+ B 、n,2n,n C 、 0,2n,n D 、 0,n,n 6、为了在运行下面的程序之后得到输出16,键盘输入x 应该是( ) INPUT x IF x<0 THEN y=(x+1)*(x+1) ELSE y=(x-1)*(x-1) END IF 第4题

6最小二乘法推导公式

最小二乘法公式推导 首先,列出一元线性回归模型的回归方程: ε β+=X Y (1)(1)式中Y 为被解释变量,X 为解释变量,β待估参数,ε为税基误差项;其次,写处(1)式的相应的误差方程: Y X V -=β (2)(2)式中V 为改正数,β 为最佳估计值;最后,根据最小二乘原理求解V 的值, min V V T =(3)由(2)式可知:Y X V -=β ? )Y X ()Y X ()Y X ()Y X (V V T T T T --=--=ββββ T Y Y T T T +-=ββββ X Y -Y X X X T T T 要使(3)式成立当且仅当 0=??β V V T 又 ββββββ ?+-?=??)X Y -Y X X X (T T T Y Y V V T T T T 0X Y Y X X X T T T +??-??-??=β ββββββ T T 【注:使用的矩阵的求导公式: I X X =??T 、X Y Y Y Y T T T T T T *X Y *X X X )X (X X X X ??+??=??+??=??】ββ βββββββ X X *X X *X X T T T ??+??=??T T T β X X 2T =Y X *X Y Y X *Y X T T T T =??+??=??T T T ββ ββββ

Y X Y X **X Y X Y T T T T =??+??=??ββββββ T T ∴)Y X (2X Y X 2X X 2T T T -=-=??βββ V V T 又 0 =??β V V T ∴0)Y X (2X T =-β 将(3)式带入上式可知: 0V X T =

应用EXCEL实现最小二乘法计算的方法

应用EXCEL实现最小二乘法计算的方法有:利用EXCEL函数、利用数据分析工具、添加趋势线等。 ⑴表格与公式编辑 将最小二乘法计算过程,应用电子表格逐步完成计算,得到结果。 ⑵应用EXCEL的统计函数 A、LINEST() 使用最小二乘法对已知数据进行最佳直线拟合,然后返回描述此直线的数组。也可以将LINEST 与其他函数结合以便计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。 B、SLOPE() 返回根据known_y's和known_x's中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。 C、INTERCEPT() 利用现有的x值与y值计算直线与y轴的截距。截距为穿过已知的known_x's和known_y's数据点的线性回归线与y轴的交点。当自变量为0(零)时,使用INTERCEPT函数可以决定因变量的值。 D、CORREL() 返回单元格区域array1和array2之间的相关系数。使用相关系数可以确定两种属性之间的关系。 ⑶添加趋势线 添加趋势线的应用较其他方法直观,可以用来完成直线回归,也可以用来完成非线性回归。具体方法不再赘述。 ⑷数据分析工具 “回归”分析工具通过对一组观察值使用“最小二乘法”直线拟合来执行线性回归分析。本工具可用来分析单个因变量是如何受一个或几个自变量的值影响的。 “回归分析”对话框 Y值输入区域在此输入对因变量数据区域的引用。该区域必须由单列数据组成。 X值输入区域在此输入对自变量数据区域的引用。Microsoft Office Excel 将对此区域中的自变量从左到右进行升序排列。自变量的个数最多为16。 标志如果数据源区域的第一行或第一列中包含标志项,请选中此复选框。如果数据源区域中没有标志项,请清除此复选框,Excel将在输出表中生成适当的数据标志。 置信度如果需要在汇总输出表中包含附加的置信度,请选中此选项。在框中,输入所要使用的置信度。默认值为95%。 常数为零如果要强制回归线经过原点,请选中此复选框。 输出区域在此输入对输出表左上角单元格的引用。汇总输出表至少需要有七列,其中包括方差分析表、系数、y 估计值的标准误差、r2值、观察值个数以及系数的标准误差。 新工作表单击此选项可在当前工作簿中插入新工作表,并从新工作表的A1 单元格开始粘贴计算结果。若要为新工作表命名,请在框中键入名称。 新工作簿单击此选项可创建新工作簿并将结果添加到其中的新工作表中。 残差如果需要在残差输出表中包含残差,请选中此复选框。 标准残差如果需要在残差输出表中包含标准残差,请选中此复选框。 残差图如果需要为每个自变量及其残差生成一张图表,请选中此复选框。 线性拟合图如果需要为预测值和观察值生成一张图表,请选中此复选框。 正态概率图如果需要生成一张图表来绘制正态概率,请选中此复选框。

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

最小二乘法公式

最小二乘法公式 ∑(X--X平)(Y--Y平) =∑(XY--X平Y--XY平+X平Y平) =∑XY--X平∑Y--Y平∑X+nX平Y平 =∑XY--nX平Y平--nX平Y平+nX平Y平 =∑XY--nX平Y平 ∑(X --X平)^2 =∑(X^2--2XX平+X平^2) =∑X^2--2nX平^2+nX平^2 =∑X^2--nX平^2 最小二乘公式(针对y=ax+b形式) a=(NΣxy-ΣxΣy)/(NΣx^2-(Σx)^2) b=y(平均)-ax(平均) 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)² (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)²最小时,可用函数φ 对a0、a1求偏导数,令这两个偏导数等于零。

(式1-4) (式1-5) 亦即 m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式 1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数据, , …, , 则在平面上, 可以得到个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为与之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中和是待定常数. 如果在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线来描述 , 时, 计算值与实际值产生的偏差. 当然要求偏差越小越好, 但由于可正可负, 因此不能认为总偏差时, 函数就很好地反

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方 法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值 i i x y ,(i=1,2,…,n )的情况下 (见图2.2.1中的散点),假如模型(2.2.1)的参数估计量 已经求得到,为^0β和^ 1β,并且是最合理的参数估计量,那 么直线方程(见图2.2.1中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中 ^ i y 为被解释变量的估计值,它是由参数估计量和解释 变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(102 2101ββββQ u x y Q i i n i i ==--=∑∑= ()() ),(min ????1 02 1 102 12?,?1 1 ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^ 1^01 2 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是 ^ 0β、^ 1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^ 0β、 ^ 1β的一阶偏导数为0时,Q 达到最小。即

用最小二乘法计算拟合曲线系数

用最小二乘法计算拟合曲线系数的MATLAB 程序 (1) 输入数据点m k y x k k ,,2,1),,( = 选择逼近函数类:)}(,),(),({10x x x span D n ??? = (2)求解法方程y A Ac A T T =* (3)得出拟合函数)()(0* *x c x n j j j ∑==?? clear all %% 清除了所有的变量,包括全局变量global load('F:\XX\XXX\datafile.mat') %%加载数据(mat 数据格式是matlab 的数据存储的标准格式) [r,c]=size(data); %%data 数据第一列为点序号,第二列为x 坐标,第三列为y 坐标 m=20; %%假设其运行次数 for n=1:m; for i=1:r/2 %%用数据的前半部分计算系数 x1=data(i,2); %%把数据的第i 行第2列赋值给x1 y1=data(i,3); %%把数据的第i 行第3列赋值给y1 for j=1:n; B1(i,j)=x1^(j-1); %%B1矩阵计算 end l(i,1)=y1; %%l 矩阵 end X=inv(B1'*B1)*B1'*l; %%系数矩阵 V=B1*X-l; [r1,c1]=size(B1); m0(n,1)=sqrt((V'*V)/(r1-c1)); %%单位权中误差 if n>2&&m0(n,1)>=m0(n-1,1); %%判断单位权中误差 disp(n) xsgs=n-1; %%单位权中误差最小时其系数的个数 zgcs=n-2; %%单位权中误差最小时其x 的最高次数 break %%如果找到了最优值时跳出循环 end end for i=1:r x2=data(i,2); y2=data(i,3); for k=1:xsgs; B2(i,k)=x2^(k-1); end

最小二乘法

浅谈加权最小二乘法及其残差图 ——兼答孙小素副教授 何晓群 刘文卿 ABSTRACT The paper introduces some problems in relation to weighted least square regression ,and answers a question about weighted residual plots. 关键词:异方差;加权最小二乘法;残差图;SPSS 一、引言 好几年没有翻《统计研究》了。最近,有一同行朋友打电话告诉我《统计研究》2005年第11期上刊登了一篇有关我与刘文卿合作编著的《应用回归分析》(2001.6.中国人民大学出版社)教材的文章。赶紧找到这期的《统计研究》,看到其中孙小素副教授的文章《加权最小二乘法残差图问题探讨——与何晓群教授商榷》一文,以下简称《孙文》。认真拜读后感触良多。首先衷心感谢孙小素副教授阅读了我们《应用回归分析》拙作的部分章节,同时感谢《统计研究》给我们提供这样一个好的机会,使我们能够借助贵刊对加权最小二乘法的有关问题谈谈更多的认识。 《孙文》谈到《应用回归分析》教材中有关加权最小二乘法残差图的问题。摆出了与加权最小二乘法相关的三类残差图,指出第三类残差图的局限性。直接的问题是三类残差图的作用,而更深层的原因应该是对加权最小二乘法统计思想的理解和认识上的差异。 二、对加权最小二乘法的认识 1. 加权最小二乘估计方法 拙作《应用回归分析》中对加权最小二乘法有详尽的讲述,这里仅做简要介绍。多元线性回归方程普通最小二乘法的离差平方和为: ∑=----=n i ip p i i p x x y Q 1 211010)(),,,(ββββββ (1) 普通最小二乘估计就是寻找参数p βββ,,,10 的估计值p βββ?,,?,?10 使式(1)的离差平方和Q 达极小。式(1)中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项i ε等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。 然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项i ε的方差2i σ大的项,在式(1)平方和中的取值就偏大,在平方和中的作用就大,因而普通最小二乘估计 的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。 由式(1)求出的p βββ?,,?,?10 仍然是p βββ,,,10 的无偏估计,但不再是最小方差线性无偏估计。 加权最小二乘估计的方法是在平方和中加入一个适当的权数i w ,以调整各项在平方和

最小二乘法--计算方法

生活中的计算方法应用实例——— 最小二乘法,用MATLAB实现1. 数值实例 下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度 天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1 下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 3、数值结果 不同次数多项式拟合误差平方和为: r1=67.6659

最小二乘法原理

最小二乘法 最小二乘法是一种在误差估计、不确定度、系统辨识及预测、预报等数据处理诸多学科领域得到广泛应用的数学工具。最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。最小二乘法公式: 设拟合直线的公式为 , 其中:拟合直线的斜率为: ;计算出斜率后,根据 和已经确定的斜率k,利用待定系数法求出截距b。

在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y 直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。 令: φ= ∑(Yi - Y计)² (式1-2) 把(式1-1)代入(式1-2)中得: φ= ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)²最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即 m a0 + (∑Xi ) a1 = ∑Yi (式1-6)

(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于1 越好;“F”的绝对值越大越好;“S”越趋近于0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

最小二乘法公式Mathtype编辑

222222222222222222()() () x x y y xy x y xy x y xy x y y x nx y xy nx y nx y nx y xy nx y --=--+=--+=--+=-∑∑∑∑∑∑∑ 22222222222222 () (2()())2()() ()x x x x x x x n x n x x n x -=-+=-+=-∑∑∑∑ 最小二乘公式(针对y ax b =+形式) 22()/(()) a N xy x y N x x b y ax =--=-∑∑∑∑∑ 最小二乘法 在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y 直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。 Y 计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数 为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi 与利用(式1-1)计算值(Y 计=a0+a1X)的离差(Yi-Y 计)的平方和〔∑(Yi - Y 计)²〕最小为“优化判据”。 令: φ = ∑(Yi - Y 计)² (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi -Y 计)²最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5)

亦即 m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式 1-9) 这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。 在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、 x2, y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。微积分应用课题一最小二乘法 从前面的学习中, 我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求与之间近似成线性关系时的经验公式. 假定实验测得变量之间的个数据, , …, , 则在平面上, 可以得到个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为与之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中和是待定常数. 如果在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线来描述 , 时, 计算值与实际值产生的偏差. 当然要求偏差越小越好, 但由于可正可负, 因此不能认为总偏差时, 函数就很好地反 映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定中的常数和 , 使为最小. 用这种方法确定系数 , 的方法称为最小二乘法. 由极值原理得 , 即 解此联立方程得 (*)

最小二乘法拟合

4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][211∑∑==---=??n i i n i i x b na y a D ][21 2 11∑∑∑===---=??n i i n i i n i i i x b x a y x b D

普通最小二乘法

普通最小二乘法(OLS) 普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值(i=1,2,…,n)的情况下(见图 2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为和,并且是最合理 的参数估计量,那么直线方程(见图2.2.1中的直线) i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 是、的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对、的一阶偏导数为0时,Q达到最小。即

(2.2.4) 容易推得特征方程: 解得: (2.2.5) 所以有: (2.2.6) 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 (2.2.6)的参数估计量可以写成

(2.2.7) 至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机 误差项方差的估计量。记为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为 (2.2.8) 在关于的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。 在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算 出来的,它是一个“估计值”,或者“点估计”,是参数估计量和的一个具体数值;但从另一个角度,仅仅把(2.2.6)看成和的一个表达式,那么,则是的函数,而是随机变量,所以和也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把和作为随机变量,有时又把和作为确定的数值,道理就在于此。

最小二乘法多项式拟合

最小二乘法多项式拟合 对于给定的数据点N i y x i i ≤≤1),,(,可用下面的n 阶多项式进行拟合,即 为了使拟合出的近似曲线能尽量反映所给数据的变化趋势,要求在所有数据点上的残差 都较小。为达到上述目标,可以令上述偏差的平方和最小,即 称这种方法为最小二乘原则,利用这一原则确定拟合多项式)(x f 的方法即为最小二乘法多项式拟合。 确定上述多项式的过程也就是确定)(x f 中的系数n k a k ≤≤0,的过程,根据最小二乘原则,则偏差平方和应该是这些系数的函数,即 为使上式取值最小,则其关于n k a k ≤≤0,的一阶导数应该为零,即有 将上面各等式写成方程组的形式可有 写成矩阵形式有 上述方程组可以通过克莱姆法则来计算,从而解出各系数n k a k ≤≤0,得到拟合方程。 考虑到一般情况提高拟合多项式的阶数并不能提高拟合精度,所以常用的多项拟合阶数为一阶和二阶,即线性拟合和二次拟合。两者的计算公式如下: 关于线性拟合,除上面按克莱姆法则来计算外,还可以有另一思路,下面对此进行说明。由于是线性拟合,最后得到的是一条直线,因此,直线可以由斜率和截距两个参数来确定,因此,求出这两个参数即可。首先对克莱姆法的求解结果进行展开可以得到 下面考虑先计算斜率再计算截距的方法,从下图可见,斜率计算与坐标系的位置无关,所以可以将坐标原点平移到样本的i x 和i y 坐标的均值所在点上 图中 则在新的坐标系),(y x ''下斜率的计算公式与前面1a 的计算公式相同,将其中的坐标),(y x 换成),(y x ''即可得到下面的计算公式 由样本在新坐标系下的坐标i x '和i y '的均值为零,或者由下面推导可知 x '

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

相关文档
最新文档