红外传感器的特点

红外传感器的特点
红外传感器的特点

利用红外线的物理性质来进行测量的传感器。红外线又称红外光,它具有反射、折射、散射、干涉、吸收等性质。任何物质,只要它本身具有一定的温度(高于绝对零度),都能辐射红外线。红外线传感器测量时不与被测物体直接接触,因而不存在摩擦,并且有灵敏度高,响应快等优点。

红外辐射是由于物体(固体、液体、和气体)内部分子的转动及振动而产生的。这类振动过程是物体受热而引起的,只是在绝对零度(﹣273.16℃)时,一切物体的分子才会停止运动。所以在绝对零度时,没有一种物体会发射红外线。换言之,在一般常温下,所有的物体都是红外辐射的发射源。例如火焰、轴承、汽车、飞机、动植物甚至人体等都是红外辐射源。红外线和所有电磁波一样,具有反射、折射、散射、干涉及吸收等性质,但它的特点是热效应非常大,红外线在真空中传播的速度c=3×108m/s,而在介质中传播时,由于介质的吸收和散射作用使它产生衰减。

红外传感器利用红外辐射与物质相互作用所称呈现的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现的电学效应。

。1. 热释电人体传感器

热释电红外探头的工作原理及特性:

“铁电体”的极化强度(单位面积上的电荷)与温度有关。当红外辐射照射到已经极化的铁电体薄片表面上时引起薄片温度升高(参阅图2-6),使其极化强度降低,表面电荷减少,这相当于释放一部分电所以叫做热释电型传感负载电阻与铁电体薄片相连,则负载电阻上便产生一个电信号输出。输出信号的强弱取决于薄片温度变化的快慢,从而反映出入射红外辐射的强弱,热释电型红外传感器的电压响应率正比于入射光辐射率变化的速率。

一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM 左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号(参阅图2-7)

图2-7

1)这种探头是以探测人体辐射为目标的。所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。

2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用

)被动红外探头,其传感器包含两个互相串联或并联的热释电元。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。

3)4一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。

5)菲尼尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。

热释电红外传感器件有多种,但大都是有高热系数的钴钛铅系陶瓷,以及钽酸锂,硫酸三甘钛等配合滤光镜片窗口所组成的。利用这种传感器件,就可以非接触方式对物体辐射出的红外线进行检测,察觉红外线能量的变化,将其转换成相应的电信号,并以该信号作为控制信号,对电器设备或保安防盗进行控制。

一般来说热释电传感器的封装有两种,即TO-5型金属封装和塑料封装。

为了使热释电红外传感器件辐射到的红外线与大气的红外透射率相结合,同时考虑到对人体红外辐射(特别是近红外辐射)干扰进行抑制,在热释电传感元件前加上一个8~14微米的

干涉滤光片,波长小于8微米的红外线被吸收,只留下对人体敏感的热释红外线光谱。

热释电陶瓷元件也称热电探测元它是由高热电系数的钴太酸率陶瓷等材料构成的。这种强电解质的热电元件能够遥感人体发出的微量红外线,并明显地觉察到其相对温度的变化过程,是探测元的自发极化值发生变化,即产生热——电效应。有的热释电器件内装有两个陶瓷元件,有的器件内装有一个陶瓷元件。前者将两个特性一致的探测元件进行串联,已组成差动平衡电路,其目的在于抑制因探测元自身温度变化产生的干扰。

在热释电传感器的壳内,还装有一个场效应管和栅极电阻,栅极电阻与探测元并接,它能将探测元表面的极化值或电荷的变化以电信号的形式加至场效应的栅极。场效应管的作用与驻极体话筒相似,起阻抗变换作用,他的输入阻抗极高,而输出阻抗极低。通过场效应管的匹配和放大,在它的源极输出反映外来红外线能量变化的相应幅度的电脉冲。其脉冲频率一般为0.3~5Hz。场效应的输出阻抗为10~47kΩ.

热释电红外传感技术在红外探测,夜视装置,防入侵,安全防范,自动门控制,自动灯控制,交通管制,温度监测以及观点玩具等方面有着广泛应用,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎:

⑴“有电危险”安全警示电路:用于有电场合时,通过发出声音和声光提醒人们注意安全

⑵自动门:主要用于银行、宾馆,当有人来到时,大门自动打开,人离开后又自动关闭。

⑶红外防盗报警器:用于银行、办公楼、家庭等场合的防盗报警器。

⑷高速公路车辆、车流计数器。

⑸自动开、关的照明灯,人体自动开关等。

红外传感器制作

2.3设计框图 本次设计是基于STC89C52单片机的电动机保护装置,包括稳压模块、按键控制、红外发射接收模块、模数转换、电机部分。 图2.1 电机保护装置的总体框图 稳压模块[2]是经变压器、滤波、稳压后输出电压5V ,为整个电路提供电源。按键控制根据设计需要设置工作模式和调节安全距离所用,主要用于控制整个装置的操作。模数转换是整个电路的桥梁,主要把模拟量转换为数字量。本设计的电机部分是由LED 模拟电动机的工作和停止的。 模数转换 MCU 信号处理 稳压模块 按键控制 电 机 红外发射 接收模块

3 主要器件介绍及工作原理 3.1红外传感器的简介 红外技术是最近几十年中发展起来的一门新兴技术。它已在科技、国防和工 农业生产等领域获得广泛的应用。红外传感器的应用主要体现在以下几个方面: 1、红外辐射计:用于辐射和光谱辐射测量。 2、搜索和跟踪系统:用于搜索和跟踪红外目标,确定其空间位置并对其运动进行跟踪。 3、热成像系统:能形成整个目标的红外辐射分布图像。 4、红外测距系统:实现物体间距离的测量。 5、通讯系统:红外线通信作为无线通信的一种方式。 6、混合系统:是指以上各类系统中的两个或多个的组合。 3.1.1 红外对管测距原理 红外线测距是利用红外光来传送光波信号,因此,作为红外测距中的红外光发射器件的红外发光二极管和红外光接收器件的红外光敏管,是构成红外测距系统的基本器件。如图3.1所示是红外对管的实物图。 图3.1 红外对管实物图 传感器的探测距离较短,一般在几十厘米之内,而这个测距范围是能够满足设计方

案要求的。红外传感器的测距基本原理为红外发射电路的红外发光管发出红外光,经障碍物反射后,由红外接收电路的光敏接收管接收前方物体反射光,据此判断前方是否有障碍物。根据发射光的强弱可以判断物体的距离,由于接收管接收的光强随是随反射物体的距离变化而变化的,因而,距离近则反射光强,距离远则反射光弱。

传感器与检测技术复习客观题

一、判断题 1.传感器的传感元件通常情况下直接感受被测量;√ 2.对于所有的二阶传感器,总是希望其固有频率越高越好;× 3.一般情况下,设计弹性敏感元件时,若提高灵敏度,则会使其线性变差、固有频率提高; × 4.应变片的基长越长,则应变片的动态特性越好;× 5.变磁阻式电感传感器属于互感型的电感传感器;× 6.压电式传感器不能测量恒定不变的信号;√ 7.惯性式振幅计,在设计时尽量使其固有频率低。√ 8.传感器的重复性误差是属于系统误差;× 9.传感器的敏感元件通常情况下不直接感受被测量;× 10.传感器实现波形测试不失真的条件是:传感器的幅频特性和相频特性均是常数;× 11.传感器弹性敏感元件的固有频率越高,则传感器的灵敏度越低,线性度越差;× 12.应变式传感器采用半桥连接时,若供桥电源波动的误差为2%,则由此引起的电桥信号 输出波动的误差为1% 。× 13.压电片采用并联连接后,更适合于测量快速变化的信号;× 14.圆柱形弹性元件受力产生的应变大小与圆柱的长度无关;√ 15.驱动电缆法实际上是一种等电位屏蔽法;√ 16.差动变压器采用差动整流电路后,次级电压的相位和零点残余电压都不必考虑;√ 17.希望压电传感器的电阻率高,介电常数小;× 18.半导体光吸收型光纤温度传感器是属于传光型光纤传感器;√ 19.传感器的动态灵敏度就是传感器静态特性曲线的斜率;× 20.按照能量关系分类传感器可分为结构型传感器和物性型传感器;× 21.激波管产生激波压力的恒定时间越长,则可标定的下限频率越低;√ 22.压阻效应中由于几何形状改变引起的电阻变化很小;√ 23.光导摄像管是一种固态图像传感器;× 24.热释电型红外传感器必须进行调制。√ 25.传感器的幅频特性为常数,则传感器进行信号的波形测量时就不会失真。× 26.等截面梁的不同部位所产生的应变是不相等的。√ 27.一般来说,螺管型差动变压器的线性范围约为线圈骨架长度的二分之一。× 28.压电常数d32所表示的含义是:沿着z轴方向受力,在垂直于y轴的表面产生电荷;× 29.涡流式电感传感器属于互感型的电感传感器;× 30.金属丝的电阻应变效应中,引起电阻改变的主要原因是电阻率的改变;× 31.压电常数d ij中的下标i表示晶体的极化方向,j表示晶体受力的性质;√

红外感应器(总结)

1 红外辐射,红外探测器原理,菲涅尔透镜(介绍红外很全面) 以及应用。 2 应用 红外线技术在测速系统中已经得到了广泛应用,许多产品已运用红外线技术能够实现车辆测速、探测等研究。红外线应用速度测量领域时,最难克服的是受强太阳光等多种含有红外线的光源干扰。外界光源的干扰成为红外线应用于野外的瓶颈。针对此问题,这里提出一种红外线测速传感器设计方案,该设计方案能够为多点测量即时速度和阶段加速度提供技术支持,可应用于公路测速和生产线下料的速度称量等工业生产中需要测量速度的环节[1] 。 红外线对射管的驱动分为电平型和脉冲型两种驱动方式。由红外线对射管阵列组成分离型光电传感器。该传感器的创新点在于能够抵抗外界的强光干扰。太阳光中含有对红外线接收管产生干扰的红外线,该光线能够将红外线接收二极管导通,使系统产生误判,甚至导致整个系统瘫痪。本传感器的优点在于能够设置多点采集,对射管阵列的间距和阵列数量可根据需求选取。 红外技术已经众所周知,这项技术在现代科技、国防科技和工农业科技等领域得到了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;(5)混合系统,是指以上各类系统中的两个或者多个的组合。 红外传感器发展前景 咨询公司INTECHNOCONSULTING的传感器市场报告显示,2008年全球传感器市场容量为506亿美元,预计2010年全球传感器市场可达600亿美元以上。调查显示,东欧、亚太区和加拿大成为传感器市场增长最快的地区,而美国、德国、日本依旧是传感器市场分布最大的地区。就世界范围而言,传感器市场上增长最快的依旧是汽车市场,占第二位的是过程控制市场,看好通讯市场前景。 一些传感器市场比如压力传感器、温度传感器、流量传感器、水平传感器已表现出成熟市场的特征。流量传感器、压力传感器、温度传感器的市场规模最大,分别占到整个传感器市场的21%、19%和14%。传感器市场的主要增长来自于无线传感器、MEMS(MICRO-ELECTRO-MECHANICALSYSTEMS,微机电系统)传感器、生物传感器等新兴传

传感器课程复习要点

传感器:感受规定的被测量按转换成可用信号的器件或装置,通常由敏感元件组成(敏感和变换)传感技术:是以研究传感器的材料、传感器的设计、传感器的制作、传感器的应用为主要内容的一门应用技术。传感器由敏感元件、转换元件组成,有时也将测量电路及辅助电源作为传感器的组成部分。按物理现象分类:结构型传感器:电容式、电感式、电阻式。物性型传感器:压电式、光电式等。按能量关系分类:能量转换型传感器:如基于压电效应、热电效应、光电动势效应等的传感器。能量控制型传感器:如电阻、电感、电容等电路参量传感器。基于应变电阻效应、磁阻效应、热阻效应、光电效应、霍尔效应等的传感器。按输出信号:模拟式传感器。数字式传感器:光栅数字传感器、脉冲盘式角度数字传感器等。灵敏度高,噪声小,滞后、漂移误差小,动态特性良好,功耗小,长期使用结构简单低成本、通用性强。静态特性:传感器在被测量处于稳定状态时(静态的输入信号)的输出—输入关系。(迟滞、蠕变、摩擦、间隙和松动)静态校准条件:指没有加速度,没有冲击,振动,环境温度为20±5℃,相对湿度不大于85%,大气压力为0.1±0.08MPa的情况。静态特性的主要技术指标是:线性度、灵敏度、精确度、迟滞、重复性和分辨率等。 动态特性:输出对随时间变化的输入量的相应特性(反映输出值真实再现变化着的输入量的能力,时域和频域分析)。标定:通过试验建立传感器输入与输出之间的关系并确定不同使用条件下的误差的过程。静态标定:确定传感器的静态特性指标,主要有线性度、灵敏度、迟滞和重复性等。动态标定:确定传感器的动态特性指标,主要有时间常数、固有频率和阻尼比等。标定的主要作用:①确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度值;②确定仪器或测量系统的静态特性指标;③消除系统误差,改善仪器或测量系统的正确度。标定传感器时,所用的测量仪器的精度至少要比被标定的传感器的精度高一个等级。无线传感器网络是利用大量的微型传感器(结点),通过无线通信形成网络,用来感知现场的信息。 光电式传感器的工作原理是:首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号。因光照而引起物体电学特性的改变统称为光电效应;当光照物体时,光电子不逸出体外的光电效应称为内光电效应(1,光电导(某些半导体材料受到光照射时,其电导率发生变化的现象。):光敏电阻、光导管。2,光生伏特(光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应):光电池、光电二极管。)光热效应:把吸收的光能转变为晶格热运动,引起探测元件温度上升;温升使探测元件的电学性质发生变化。(测辐射热:热敏电阻、测辐射热计。温差电:热电,热电堆。热释电:热释电探测器。)光敏二极管:光的照度越大,光电流越大。在不受光照射时截止状态,受光照射导通状态。电路中处于反向工作状态。基本特性:光谱特性、伏安特性、光照特性、温度特性好响应特性。对不同波长的光的灵敏度不同。可见光或探测赤热用硅管。红外光用锗管较。光谱特性:在一定照度时,输出的光电流(或用相对灵敏度表示)与入射光波长的关系。伏安特性:指在一定照度下的电流电压特性。光照特性:外加电压恒定时,光敏二极管的光电流与照度之间的关系。光敏二极管适合作检测元件,其光照特性线性好。频率特性:光敏管的频率特性是指在同样的电压和同样幅值的光强度下,当入射光强度以不同的正弦交变频率调制时,光敏管输出的光电流(或相对灵敏度)随调制频率变化的关系。光敏二极管的频率特性是半导体光电器件中最好的一种,普通光敏二极管频率响应时间达10μs。因此特别适合快速变化的光信号探测。温度特性:光敏管的温度特性是指光敏管的暗电流及光电流与温度的关系。暗电流变化较大,光电流变化较小。电子线路中应该对暗电流进行温度补偿,否则将会导致输出误差。 光敏三级管:较二极管的灵敏度高(放大特性),响应速度差,既频率特性较差。(光谱特性:和二极管相同。伏安特性:光敏三极管在不同的照度下的伏安特性,就像一般晶体管在不同的基极电流时的输出特性一样。光照特性:近似线性关系。当光照足够大(几klx)时,会出现饱和现象。温度特性:同二极管。频率特性:光敏三极管的频率特性受负载电阻的影响,减小负载电阻可以提高频率响应,光敏三极管的频率响应比光敏二极管差。硅管的频率响应要比锗管好。应用:脉冲编码器、转速传感器、烟雾散射式火灾报警器) 光敏电阻:暗电阻越大越好,亮电阻越小越好,此时光敏电阻的灵敏度高(用作开关器件)。(主要参数:暗电流光敏电阻在不受光照射时的阻值称为暗电阻。亮电流光敏电阻在受光照射时的电阻称为亮电阻。光电流亮电流与暗电流之差称为光电流。基本特性:1、伏安特性:任何光敏电阻都受额定功率、最高工作电压和额定电流的限制。超过最高工作电压和最大额定电流,可能导致光敏电阻永久性损坏。2、光照特性:光敏电阻的光照特性是描述光电流I和光照强度(光通量)之间的关系,非线性,不做检测只做开关。3、光谱特性:光敏电阻对入射光的光谱具有选择作用,即光敏电阻对不同波长的入射光有不同的灵敏度。硫化镉光敏电阻的光谱响应的峰值在可见光区域,用作光度测量的探头。硫化铅光敏电阻响应于近红外和中红外区,做火焰探测器的探头。4、频率特性:光敏电阻时间常数都较大。5、温度特性:温度变化时,影响光敏电阻的光谱响应,同时光敏电阻的灵敏度和暗电阻也随之改变。6、稳定性。具有光谱特性好、允许的光电流大、灵敏度高、使用寿命长、体积小等优点。) 光电池:直接将光能转换为电能的光电器件。(1、光谱特性:硅光电池可以在很宽的波长范围内得到应用。 2光照特性:用光电池作为测量元件时,应把它当作电流源的形式来使用,不宜用作电压源。3、频率特性:硅光电池有较好的频率响应。4、温度特性:温升、开压升、短流降。(线性)测量元件需要温度补偿。太阳电池电源、(因其不需加电源)光电读出、光电耦合、光栅测距、激光准直、电影还音、紫外光监视器和燃气轮机的熄火保护装置等) 光电管:光电器件的性能主要由伏安特性、光照特性、光谱特性、响应时间、峰值探测率和温度特性来描述。1、伏安特性:光通量与光电流之间线性关系。当入射光比较微弱时,光电管能产生的光电流就很小,信噪比也很小,因此往往采用倍增管。2、光照特性:通常指当光电管的阳极和阴极之间所加电压一定时,光通量与光电流之间的关系为光电管的光照特性。 光电倍增管:光阴极、次阴极(倍增电极)以及阳极三部分组成。(倍增系数M:等于n个倍增电极的二次电子发射系数δ的乘积。如果n个倍增电极的δ都相同,则M=δ^n,阳极电流 I 为 I = i ·δ^n。一个光子在阴极上能够打出的平均电子数叫做光电倍增管的阴极灵敏度。而一个光子在阳极上产生的平均电子数叫做光电倍增管的总灵敏度。光电倍增管与闪烁体放在一处,在完全蔽光情况下,出现的电流称为本底电流,其值大于暗电流。具有脉冲形式。光照特性:线性-非线性(光通量)。极高灵敏度和超快时间响应。 色敏光电传感器:直接测量从可见光到近红外波段内单色辐射的波长。(光谱特性、短路电流比—波长特性、温度特性) 红外光传感器:光热效应,热释电效应(热敏探测器)某些物质吸收光辐射后将其转换成热能,温度变化将引起居里温度以下的自发极化强度的变化,在晶体的特定方向上引起表面电荷的变化。通过目标与背景的温差来探测目标,入侵报警器,自动开关、非接触测温、火焰报警器等. 热释电传感器:敏感元、场效应管、高阻电阻、滤光窗,只在温度变化时作用。加菲涅尔透镜才能增加探测距离。自动干手机,饮水机自控电路。

基于红外传感器的人数统计系统的设计

基于红外传感器的楼宇人数统计系统的设计摘要:系统以热释电红外传感器为基础,通过对外围电路的设计和相应的控制电路,实现了对楼宇人数的实时统计。给出了系统的总体结构设计,重点阐述了楼宇人数监控系统主要的硬件设计以及系统软件设计。实践证明:该楼宇人数监控系统工作稳定,具有较高的响应速度和精度,并且价格低廉,具有广泛的应用前景。 关键词:热释电红外线传感器;MCS-51单片机;VC6.0 0 引言 随着现代社会和科学技术的迅速发展,红外技术已经为大家所熟知。由于红外线是不可见光,有很强的隐蔽性和保密性,已经在现代科技、国防和工农业等领域获得了广泛的应用,给人们日常生活和公共安全带来了极大的便利。本文介绍的,就是以红外传感器为基础的一套楼宇房间人数统计系统。鉴于现有的各种人数统计系统的种种不足或限制,本文设计了一套实时、可行的计数设备。它以热释电红外传感器为基础,通过对外围电路的设计,能识别人进来(向左运动)或者出去(向右运动)的方向,进而产生不同的通道信号去触发相应的控制电路,通过单片机编程,连接计算机,就可以对楼宇人数进行实时准确的监控。 1 系统总体设计原理 该系统的总体结构框图如图1所示:通过RE200B热释电红外传感器对周围环境的红外线进行实时数据采集。当有人进入传感器的探测范围时,传感器将感应到的信号传输给下一级的放大滤波电路,经过放大并滤除干扰的电信号再通过电压比较电路,能将人的进出两个方向很好地识别出来。接着通过单片机编程将代表不同方向的信号转换为人数变化的信号,同时通过串口编程将人数的变化信息通过无线模块发送到计算机,通过计算机监控软件将人数统计信息以图形界面的方式实时显示出来。 2 系统各功能单元介绍 2.1 热释电红外传感器的工作原理 本系统采用RE200B热释电红外线传感器作为接收人体红外辐射的核心元件,是整个电路的信号接收部分。它具有方向识别的功能,能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将这个电压信号加以放大,便可驱动各种控制电路。 如图2(a)所示:RE200B有两个敏感单元P1、P2。这两个特征一致的热电元反向串联或接成差动平衡电路方式,较之单热电元的结构(图2(b)),不仅可以使输出的信号具有方向性,还可以抑制因自身温度变化而产生的干扰。工作时,当人体从图中箭头所指的两个不同方向经过探测视场时,由于两个热敏元件接收到的红外热辐射的先后次序恰好相反,使得热敏元件表面的正负电荷由平衡到不平衡,再到平衡的交变过程在整体上也相反,这时就会有两种相位相反的交变信号电压输出。它们反映人体的进、出行走方向。

利用红外线传感器实现接近感应应用重点

利用红外线传感器实现接近感应应用 利用红外线传感器实现接近感应应用 类别:传感与控制 在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢?IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。 在高端汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相关。图 1:一维空间动作检测单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这仅仅是一维空间检测。假设一个系统,其布局如图1 所示,单一LED 系统仅使用LED1 与IR 传感器。图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。图 2:单一LED 系统性能分析二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1

基于单片机的红外传感器设计

摘要:本系统采用了热释电红外传感器,它的制作简单、成本低、安装比较 方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。这种防盗 器安装隐蔽,不易被盗贼发现,同时它的信号经过单片机系统处理后方便和PC 机通信,便于多用户统一管理。本设计包括硬件和软件设计两个部分。硬件部分 包括单片机控制电路、红外探头电路、驱动执行报警电路、LED控制电路等部分 组成。处理器采用51系列单片机89C51,整个系统是在系统软件控制下工作的。 关键词:单片机;红外传感器;报警电路;89C51 目录 1 引言 (1) 2.1 设计主要内容及要求 (1) 2.2 红外传感器简单介绍 (1) 2.3 89C51单片机的结构 (2) 2.4 89C51管脚说明 (2) 3 方案设计 (5) 3.1 总体设计思路 (5) 3.2 具体电路模块设计 (6) 3.2.1红外传感器原理 (6) 3.2.2 放大电路的设计 (6) 3.2.3 时钟电路的设计 (7) 3.2.4 复位电路的设计........................................... (7) 3.2.5 发光二极管报警电路的设计 (8) 3.3 红外报警器原理图 (8) 3.4软件的程序实现 (9) 3.5 设计编程程序 (10) 3.5.1 主程序清单 (10) 3.5.2 外部中断INTO (11) 总结 (13) 参考文献 (14)

1.引言 随着社会的不断进步和科学技术、经济的不断发展,人们生活水平得到很大的提高,对私有财产的保护意识在不断的增强,因而对防盗措施提出了新的要求。本设计就是为了满足现代住宅防盗的需要而设计的家庭式电子防盗系统。 就目前市面上装备主要有压力触发式防盗报警器、开关电子防盗报警器和压力遮光触发式防盗报警器等各种报警器,但这几种比较常见的报警器都存在一些缺点。而本设计中所使用的红外线是不可见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。这种热释电红外传感器能以非接触形式检测出人体辐射的红外线,并将其转变为电压信号,同时,热释电红外传感器既可用于防盗报警装置,也可用于制动控制、接近开关、遥测等领域。 2.1设计主要内容及要求: a .硬件电路设计 (1)完成89C51应用系统设计(晶振电路,上电复位电路等) (2)红外收发模块与单片机的正确连接; b.程序设计 编写程序当红外接收管接到红外线时对应发光二极管点亮。 要求完成主程序的设计及对应的子程序设计。 c.选芯片, 元件按设计连线 d.完成子程序调试 e.完成总调试 2.2 红外传感器简单介绍 红外传感器是80年代发展起来的一种新型高灵敏度探测元件。是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。将这个电压信号加以放大,便可驱动各种控制电路。如图1示为热释电红外传感器的内部电路框图。

利用红外线传感器实现接近感应应用

利用红外线传感器实现接近感应应用 在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。 要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢? IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。 IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。在高端汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相关。 图 1:一维空间动作检测 单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这仅仅是一维空间检测。假设一个系统,其布局,单一LED 系统仅使用LED1 与IR 传感器。图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。 图 2:单一LED 系统性能分析二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1(左)或接近LED2(右),而另一维空间是接近或远离光电二极管。图3 是与图2 相同的三个手势,其中白线代表从LED1 中读出的数据,红线代表从LED2 读出的数据。从左到右滑动过程中,白线上升,然后是红线。当手从左到右滑动时,LED1 反射IR 光到传感器,然后是LED2。 图 3:二维空间中手势性能分析三维空间动作检测由三个LED 和单个光电二极管组成。LED3 与LED1、LED2 不在同一直线上,,可以把LED1 和LED2 之间的连线看作X 轴,LED1 和LED3 之间的连线看作Y 轴,从光电二极管和LED 到被测物体之间的连线看作Z 轴。图4 显示了与图2 和图3 相同的测量过程,其中蓝线代表LED3 的测量数据。当手从左向右滑动

基于红外传感器的温度检测电路

毕业设计说明书 毕业设计(论文)中文摘要 基于红外传感器的温度检测电路 摘要: 红外测温技术与传统接触式测温方法相比具有精准、便捷、安全等优点,在生产过程、产品质量监测控制、设备在线故障诊断、安全保护以及节约能源等方面也发挥着重要作用。在医疗卫生方面,由于所需测温时间短并且不需要与体肤接触,可以避免病菌交叉感染,非常适合临床及公共场合对体温进行及时快速检测。本课题采用非接触式温度传感器ANT-OTP-538U,以Silicon公司80C51F502单片机为采集控制芯片,使用OPA2277对信号进行放大,AD7324芯片进行A/D 采集,将温度数据转换为数字量,采用分段插值的方法将电压转换为摄氏温度,并最后通过串口通讯方式将数据发送到LJD-eWin430触摸屏上显示,实现了对体温数据的即时读取。 关键词:红外测温技术ANT-OTP-538U 80C51F502单片机OPA2277 AD7324 LJD-eWin4300触摸屏

毕业设计(论文)外文摘要 Title The temperature detection circuit based on infrared sensor Abstract Compared with traditional contact-type temperature measurement method, infrared temperature measurement technology has the advantages of accurate, convenient and safe. It’s also play an important role in the production process、 product quality monitoring and control、device on-line fault diagnosis、safety protection、energy saving and many other aspect. On health care, it can avoid the germs cross infection due to the short temperature measurement time is and does not require contact with body and skin, so it is very suitable for clinical and public for rapid testing in a timely manner. This topic adopts non-contact temperature sensor ANT-OTP- 538u, using Silicon company’s single-chip microcomputer 80C51F502 as the acquisition control chip, using OPA2277 for signal amplification, AD7324 for A/D sampling chip, the temperature data are converted to digital quantity by AD7324. Adopting the method of piecewise interpolation converts voltage to Celsius, and finally sends the data via serial port communication way to LJD - eWin4300, then the temperature value shown on the touch screen. Reading the temperature data at real-time finally realized. Keywords:Infrared temperature measurement technology ANT-OTP-538U 80C51F502 microcontroller OPA2277 AD7324 LJD-eWin4300 touch screen

红外传感器

传感器原理及检测技术课程论文 题目:红外传感器及应用 班级:电子信息工程1111 学号:2011128021 姓名:胡年胜

目录 1.前言 1 2.什么是红外线 2 3.什么是红外传感器 2 4.红外传感器的工作原理 2 5.红外传感器的分类 4 6.红外传感器的应用 4 7.红外传感器的发展前景 6 8.参考文献7

前言 在科技高度发达的今天,自动控制和自动检测在人们的日常生活和工业控制所占的比例也越来越重,使人们的生活越来越舒适,工业生产的效率越来越高。而传感器是自动控制中的重要组成部件,是信息采集系统的重要部件,通过传感器将感受或响应的被测量转换成适合输送或检测的信号(一般为电信号),再利用计算机或者电路设备对传感器输出的信号进行处理从而达到自动控制的功能,由于传感器的响应时间一般都比较短,所以可以通过计算机系统对工业生产进行实时控制。红外传感器是传感器中常见的一类,由于红外传感器是检测红外辐射的一类传感器,而自然界中任何物体只要其稳定高于绝对零度都将对外辐射红外能量,所以红外传感器称为非常实用的一类传感器,利用红外传感器可以设计出很多实用的传感器模块,如红外测温仪,红外成像仪,红外人体探测报警器,自动门控制系统等。在我们日常的生活中红外线传感器也是非常的常见,比如我们生活中的各种遥控器,以及电脑使用的鼠标等等,都用到了红外线传感器,所以红外线传感器在先到生活中是不可或缺的一种产品。

一、红外线简介 我们都知道,光有红、橙、黄、绿、青、蓝、紫,这些都是我们用肉眼可以看得见的光,红外光是居这些可见光之外的一种光。红外线就是这种不可见光,实质上是一种电磁波,也称红外热辐射。太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm 之间;远红外线,波长为6.0~l000μm 之间。所有的物体都会发出红外线,都会产生红外辐射,甚至有些动物就是靠红外线来识别物体。 现在提到红外线,我们首先想到就是他的应用。利用它肉眼看不到而戴上特殊的镜片就能看到的特点被广泛应用与军事中,如红外夜视仪、狙击步枪的瞄准镜等,当然生活中到处也都用到红外线,我们常用的遥控器、甚至有些防盗门等等。 二、什么是红外传器 红外线传感器就是利用所有物体都会产生红外辐射的特性,以及红外光的反射、折射、散射、干涉、吸收等性质,实现自动检测的传感器。 红外传感器是将红外辐射能转换成电能的一种光电器件,通常称为红外探测器。常见的红外传感器有两类:热探测器和光子探测器。 三、红外传感器的工作原理 因为红外辐射的物理本质是热辐射。物体的温度越高,辐射出来的红外线越多,红外辐射的能量就越强。研究发现,太阳光谱各种单色光的热效应从紫色光到红色光是逐渐增大的,而且最大的热效应出现在红外辐射的频率范围内,因此人们又将红外辐射称为热辐射或热射线。 因此红外传感器的工作原理并不复杂,一个典型的传感器系统各部分的实体分别是:

红外传感器及其应用

红外传感器及其应用 红外传感器及其应用 题目: 红外传感器及其应用学院名称: 指导老师: 职称: 班级: 学号: 学生姓名: 2010年5月25日 前言: 在科技高度发达的今天,自动控制和自动检测在人们的日常生活和工业控制所占的比例也越来越重,使人们的生活越来越舒适,工业生产的效率越来越高。而传感器是自动控制中的重要组成部件,是信息采集系统的重要部件,通过传感器将感受或响应的被测量转换成适合输送或检测的信号(一般为电信号),再利用计算机或者电路设备对传感器输出的信号进行处理从而达到自动控制的功能,由于传感器的响应时间一般都比较短,所以可以通过计算机系统对工业生产进行实时控制。红外传感器是传感器中常见的一类,由于红外传感器是检测红外辐射的一类传感器,而自然界中任何物体只要其稳定高于绝对零度都将对外辐射红外能量,所以红外传感器称为非常实用的一类传感器,利用红外传感器可以设计出很多实用的传感器模块,如红外测温仪,红外成像仪,红外人体探测报警器,自动门控制系统等。 关键词:红外传感器,自动控制,信号,器件设备,系统 红外辐射俗称红外线,是一种人眼看不见的光线。自然界中任何物体只要其温度高于绝对零度(-273.15?),都将以电磁波形式向外辐射能量——热辐射,物体温度越高,辐射出的能量越多,波长越短。从紫外线到红外线辐射的热效应逐渐增大,而热效应最大的为红外线。红外传感器主要应用波长0.8~40um的红外线。红

外线具有和可见光一样的性质:沿直线传播;服从反射定律和折射定律;有干涉、衍射、偏振现象;具有散射、吸收特性。 红外传感器是将红外辐射能转换为电信号的器件,也称红外器件或红外探测器,是红外检测系统的关键部件。常用的红外传感器有热传感器和光子传感器。 热传感器是利用入射红外辐射引起传感器的温度变化,然后利用器件的某种温度敏感特性把温度变化转换成相应的电信号;或者利用器件的某种温度敏感特性来调节电路种的电流强度的大小,从而得到相应的电信号。由此达到探测红外辐射的目的。 热敏电阻型红外传感器是由锰,镍,钴的氧化物混合后烧结而成的,热敏电阻一般制成薄片状,当红外辐射照射在热敏电阻上时,其温度升高,电阻值减小。测量热敏电阻阻值变化的大小,即可得知入射红外辐射的强弱,从而可以判断产生红外辐射物体的温度。测量电路可以采用一般的桥式测量电路。 热释电型红外传感器是利用热释电效应做成的红外传感器,若使某些强电介质物质的表面温度发生变化,在这些物质的表面上就会产生电荷的变化,这种现象称为热释效应。适用制作热释电红外传感器的光敏元件的材料很多,以压电陶瓷和陶瓷氧化物最多。钽酸锂(LiTaO3)、硫酸三甘钛(LATGS)记锆钛酸铅(PZT)制成的热释电型 红外传感器目前用得极广。今年来开发的具有热释电性能的高分子薄膜聚偏二氟乙烯(PVF2),以称为用于红外成像器件、火灾报警传感器等。 热释电元件不能像其他光敏元件那样连续地接受光照,因为极化电荷在元件的表面不是永存的,只要一出现,很快就会与环境中的电话中和,或者漏泄。所以必须将入射光调制成脉冲光,是热释电元件连续地接受光照,使其表面电荷周期性的出现,根据取出的交变电信号的幅值检测光强。热释电红外敏感元件的内阻极高,

《传感器技术与应用》课程设计.

佛山职业技术学院 课程设计名称: 《传感器技术与应用》课程设计 题目:夜晚自动点亮的道路警示灯设计 专业:电气自动化技术 班级: 15级自动化1班 姓名:冯嘉俊 学号: 32

课程设计成绩评定表

目录 第1章:总体方案概要 (1) 1.1意义及研究现状 (1) 1.2设计思路 (2) 第2章:设计方案各部分介绍 (3) 2.1热电是传感器的构成及工作原理 (3) 2.2低通滤波器 (4) 2.3信号放大器 (6) 第3章:仿真电路的建立与分析 (8) 3.1仿真电路建立 (8) 3.2仿真结果的分析 (8) 第4章:设计体会 (10) 参考文献 (10)

摘要 本文介绍了红外线感应开关的原理,采用热释电红外探头(PT8A2621)将接收到的微弱信号加以放大,然后驱动继电器,制成红外热释电感应开关。本开关能探测来自移动人体的红外辐射,只要人体进入探测区域,开关会自动开启。该设计可作为企业、宾馆、商场及住宅的走廊、楼梯、电梯间、卫生间、库房等处的自动开关,起到“人来灯自亮,人走灯自灭”的作用,既新颖方便,又节约用电,在某些场所还能起到威慑盗窃活动的防范作用。本设计结构简单,本身不发任何类型的辐射,器件功耗很小,价格低廉,隐蔽性好,应用范围广,所以可以通过扩展而达到实际的应用。 关键词:红外线感应开关红外辐射探测区域

引言 电力作为一种洁净方便的能源广泛的应用于我们的生活与生产方面,因此电能的节能尤为重要,要节能首先就要做到节约能源,其次再通过科学研究发明更加人性化和节能的用电器。 热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。它目标正在被广泛的应用到各种自动化控制装置中。

被动红外与主动红外探测的原理及优缺点

被动红外与主动红外探测的原理及优缺点 红外探测器是防盗报警系统中最关键的组成部分,直接决定系统的灵敏性与稳定性,是整个系统品质的保障。中国安防厂商在这些年来,无论在技术的掌握与生产能力的提升上,均有明显的改善,这得归功于中国厂商不断吸收外商的产品设计和生产技术,并致力于降低成本,使中国安防产品开始得到工程商们的认同,加上低价对于甲方有着重要的吸引力,使得国产品在市场上成长迅速。虽然国产品的品质仍与进口产品有段差距,但在用户对安防产品不熟悉的情况下,中国安防产品仍极具竞争优势。 许多外国厂商也承认,以前外商大幅依靠技术优势来应对中国国产品的成本优势,但近年来差距已经缩小,优势渐减,可见中国厂商在技术上已经逐步赶上国外厂商,部分厂商更具有创新能力,推出具特色的产品,使得中国安防产品的水准大幅提高。这个现象主要来自许多厂商对于品牌意识与产品质量的重视,加大了投资与研发力度。 红外探测器的原理及特点 人体都有恒定的体温,一般在37度左右,会发出特定波长10μm左右的红外线,被动红外探测器就是靠探测人体发射的10μm左右的红外线而进行工作的。人体发射的10μm左右的红外线通过菲涅尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。 1.被动红外探测器是以探测人体辐射为目标的,所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。 2.为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。 3.其传感器包含两个互相串联或并联的热释电元件。而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。 4.一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。 被动红外深测器优缺点 优点:本身不发任何类型辐射,器件功耗很小,隐蔽性较好,价格低廉。 缺点:容易受各种热源、阳光源干扰;被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探测器接收;易受射频辐射的干扰;环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。

关于红外传感器的报告要点

关于红外传感器的报告 摘要:本文主要介绍一些关于红外传感器的一些基本知识和工作原理,从而让我们能够从一定程度上了解红外传感器这一传感器的种类。对于红外传感器的认识,能够帮助我们更好的利用红外传感器,让我们的生活或者工作更加方便和愉快。 关键字:红外辐射、传感器、原理、用途 红外传感器(也称为红外探测器)是能将红外辐射能转换成电能的光敏器件,它是红外探测系统的关键部件,其性能好坏,将直接影响系统性能的优劣。因此,选择合适的、性能良好的红外传感器,对于红外探测系统是十分重要的。而作为红外传感器的重要组成部分,红外辐射是不得忽略的重中之重。下面我们先介绍红外辐射的相关知识和原理。 一、红外辐射的工作原理简介: 红外辐射是一种人眼不可见的光线,俗称红外线,因为它是介于可见光中红色光和微波之间的光线。红外线的波长范围大致在0.76-1000μm之间,对应的频率大致在4×104至3×1011Hz之间,工程上通常把红外线所占据的波段分成近红外、中红外、远红外和极远红外4 个部分。 下图是红外线的电磁波谱图: 红外分区:在红外技术中,一般将红外辐射分为4个区域 (1)近红外区: 770 nm~ 1.5 μm (2)中红外区: 1.5 μm ~ 6μm (3)远红外区: 6μm ~ 40μm (4)极远红外区: 40μm ~ 1000μm 注意:这里所说的远近是指红外辐射在电磁波谱中与可见光的距离。

红外辐射本质上是一种热辐射。任何物体,只要它的温度高于绝对零度( -273 ℃),就会向外部空间以红外线的方式辐射能量,一个物体向外辐射的能量大部分是通过红外线辐射这种形式来实现的。物体的温度越高,辐射出来的红外线越多,辐射的能量就越强。另一方面,红外线被物体吸收后可以转化成热能。 红外线作为电磁波的一种形式,红外辐射和所有的电磁波一样,是以波的形式在空间直线传播的,具有电磁波的一般特性,如反射、折射、散射、干涉和吸收等。红外线在真空中传播的速度等于波的频率与波长的乘积,即 c =λ f 。红外辐射的强度及波长与物体的温度和辐射率有关,能在任何温度下全部吸收投射到其表面的红外辐射的物体称为黑体,能全部反射红外辐射的物体称为镜体,能全部透过红外辐射的物体称为透明体,能部分反射或吸收红外辐射的物体称为灰体。自然界并不存在理想的黑体、镜体和透明体,绝大部分物体都属于灰体。 二、红外线的物理特性: ①热效应 ②穿透云雾的能力强 ①热效应及应用: 一切物体都在不停的辐射红外线。物体的温度越高,辐射的红外线就越多。红外线照射到物体上最明显的效果就是产生热。冬天烤火,就是因为有大量的红外线从炉子里射到人身上,才能让我们感觉到热乎乎的。 人体生病的时候,虽然外面看起来没有什么变化,但是由于局部皮肤的温度不正常,如果在照相机里装上对红外感光的胶片,给皮肤拍照再与正常人的照片对比,可以对疾病作出诊断。这种相机拍出来的照片叫热谱图。 根据红外线的热效应,人们还研究出了红外线夜视仪。红外线夜视仪在漆黑的夜晚也可以发现人的存在。夜间人的体温比周围草木或建筑的温度高,人体辐射出来的红外线就比他们强。可以帮助人们在夜间进行观察、搜索、瞄准和驾驶车辆等。 物体在辐射红外线的同时,也在吸收红外线。各种物体吸收了红外线以后温度就会升高。我们就可以利用红外线的热效应来加热物品。家庭用的红外线烤箱,浴室用的暖灯,也就是浴霸等等。物体加热可以利用红外线烘干汽车表面的喷漆,烘干稻谷等作物。 在医学上,还可以利用红外线的热效应进行理疗。在红外线照射下,组织温度升高,血流加快,物质代谢增强,组织细胞活力及再生能力提高。伤口就容易痊愈。 ②穿透能力强的应用: 穿透云雾的能力强(波长较长,易于衍射) ,由于一切物体,都在不停地辐射红外线,并且不同物体辐射红外线的强度不同,利用灵敏的红外线探测器接收物体发出的红外线,然后用电子仪器对接到的信号进行处理,就可以察知被测物体的形状和特征,这种技术叫做红外线遥感技术,可以用在卫星上勘测地热、寻找水源、监测森林火情、估计农作物的长势和收成。还有我们每天都要关注的天气预报,也是红外线遥感技术。 红外辐射在大气中传播时,由于大气中的气体分子、水蒸汽以及固体微粒、尘埃等物质的吸收和散射作用,使辐射能在传输过程中逐渐衰减。空气中对称的双原于分子,如N2、H2、O2不吸收红外辐射,因而不会造成红外辐射在传输过

相关文档
最新文档