-初中数学竞赛辅导讲座19讲(全套)

-初中数学竞赛辅导讲座19讲(全套)
-初中数学竞赛辅导讲座19讲(全套)

初中数学竞赛辅导讲座19讲(全套)

第一讲 有 理 数

一、有理数的概念及分类。

二、有理数的计算:

1、善于观察数字特征;

2、灵活运用运算法则;

3、掌握常用运算技巧(凑整法、分拆

法等)。

三、例题示范

1、数轴与大小

例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,

那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少个?

例2、 将99

98,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序;

提示2:先考虑其相反数的大小顺序;

提示3:考虑其倒数的大小顺序。

例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个数c

a b ab 1,1,1-的大小关系。

分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c

a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。

提示:P=n

a b a -+(n 为大于是 的自然数) 注:P 的表示方法不是唯一的。

2、符号和括号

在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。

例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非

负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0

注:造零的基本技巧:两个相反数的代数和为零。

3、算对与算巧

例6、 计算 -1-2-3-…-2000-2001-2002

提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。

例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002

提示:仿例5,造零。结论:2003。

例8、 计算

9

999991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。

例9、 计算

-+++?----)200213121()2001131211( )2001

13121()2002131211(+++?---- 提示:字母代数,整体化:令2001

13121,2001131211+++=----= B A ,则 例10、计算

(1)100991321211?++?+? ;(2)100

981421311?++?+? 提示:裂项相消。

常用裂项关系式:

(1)n m mn n m 11+=+; (2)1

11)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+; (4)])

2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n 。 例11 计算 n

+++++++++++

321132112111 (n 为自然数) 例12、计算 1+2+22+23+…+22000

提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+22000,则S=2S -S=22001-1。

例13、比较20002

2000164834221+++++= S 与2的大小。 提示:错项相减:计算S 2

1。

第二讲 绝 对 值

一、知识要点

1、绝对值的代数意义;

2、绝对值的几何意义: (1)|a|、(2)|a-b|;

3、绝对值的性质:

(1)|-a|=|a|, |a|≥0 , |a|≥a ; (2)|a|2=|a 2|=a 2;

(3)|ab|=|a||b|; (4)|

|||||

b a b a =(b ≠0); 4、绝对值方程:

(1) 最简单的绝对值方程|x|=a 的解:

??

???=±=0000 a a a a x 无解

(2)解题方法:换元法,分类讨论法。

二、绝对值问题解题关键:

(1)去掉绝对值符号; (2)运用性质; (3)分类讨论。

三、例题示范

例1 已知a <0,化简|2a-|a||。

提示:多重绝对值符号的处理,从内向外逐步化简。

例2 已知|a|=5,|b|=3,且|a-b|=b-a ,则a+b= ,满足条件的a 有几个?

例3 已知a 、b 、c 在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。

例4 已知a 、b 、c 是有理数,且a+b+c=0,abc >0,求

||||||c b a b a c a c b +++++的值。 注:对于轮换对称式,可通过假设使问题简化。

例5 已知:

例6 已知3π

-=x ,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。

例7 已知|x+5|+|x-2|=7,求x 的取值范围。

提示:1、根轴法;2、几何法。

例8 是否存在数x,使|x+3|-|x-2|>7。

提示:1、根轴法;2、几何法。

例9 m 为有理数,求|m-2|+|m-4|+|m-6|+|m-8|的最小值。

提示:结合几何图形,就m 所处的四种位置讨论。

结论:最小值为8。

例10(北京市1989年高一数学竞赛题)设x 是实数,

且f (x )=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|.则f (x )的最小值等于___6_______.

例11 (1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p <15.对于满足p≤x≤15的x 的来说,T 的最小值是多少?

解 由已知条件可得:T=(x-p )+(15-x )+(p+15-x )=30-x.

∵当p≤x≤15时,上式中在x 取最大值时T 最小;当x=15时,T=30-15=15,故T 的最小值是15.

例12 若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.

证 设两数为a 、b ,则|a|+|b|=|a||b|.

∴|b|=|a||b|-|a|=|a|(|b|-1).

∵ab≠0,∴|a|>0,|b|>0. ∴|b|-1=||a

b >0,∴|b|>1. 同理可证|a|>1. ∴a、b 都不在-1与1之间.

例13 某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15、7、11、3、14台,现在为使各校电脑数相等,各调几台给邻校:一小给二小、二小给三小、三小给四小、四小给五小、五小给一小。若甲小给乙小 3台,即为乙小给甲小三台,要使电脑移动的总台数最少,应怎样安排?

例14 解方程

(1)|3x-1|=8 (2) ||x-2|-1|=2

1 (3)|3x-2|=x+4 (4)|x-1|+|x-2|+|x+3|=6.

例15(1973年加拿大中学生竞赛题)求满足|x+3|-|x-1|=x+1的一切实数解.

分析 解绝对值方程的关键是去绝对值符号,令x+3=0,x-1=0,分别得x=-3,x=1,-3,1将全部实数分成3段:x <-3或-3≤x<1或x ≥1,然后在每一段上去绝对值符号解方程,例如,当x <-3时,|x+3|=-x-3,|x-1|=1-x,故方程化为-x-3+x-1=x+1,∴x=-5,x=-5满足x <-3,故是原方程的一个解,求出每一段上的解,将它们合并,便得到原方程的全部解,这种方法叫做“零点”分段法,x=-3,x=1叫做零点.

第三讲 一次方程(组)

一、基础知识

1、方程的定义:含有未知数的等式。

2、一元一次方程:含有一个未知数并且未知数的最高次数为一次的整式方程。

3、方程的解(根):使方程左右两边的值相等的未知数的值。

4、字母系数的一元一次方程:ax=b 。

其解的情况:???

????≠====≠。,b a ;,b a a b x ,a 无解时当解这任意数时当有唯一解时当0,00;0

5、一次方程组:由两个或两个以上的一次方程联立在一起的联产方程。常见的是二元

一次方程组,三元一次方程组。

6、方程式组的解:适合方程组中每一个方程的未知数的值。

7、解方程组的基本思想:消元(加减消元法、代入消元法)。

二、例题示范

例1、 解方程1}8]6)43

2(51[71{91=++++x 例2、 关于x 的方程6

232bk x a kx -+=+中,a,b 为定值,无论k 为何值时,方程的解总是1,求a 、b 的值。

提示:用赋值法,对k 赋以某一值后求之。

例3、(第36届美国中学数学竞赛题)设a ,a 'b ,b '是实数,且a 和a '不为零,如果

方程ax+b=0的解小于a /x+b '=0的解,求a ,a 'b ,b '应满足的条件。

例4 解关于x 的方程1)1(2+=-ax x a .

提示:整理成字母系数方程的一般形式,再就a 进行讨论

例5 k 为何值时,方程9x-3=kx+14有正整数解?并求出正整数解。

提示:整理成字母系数方程的一般形式,再就k 进行讨论。

例6(1982年天津初中数学竞赛题)已知关于x ,y 的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a 每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何a 值它都能使方程成立吗?

分析 依题意,即要证明存在一组与a 无关的x ,y 的值,使等式(a-1)x+(a+2)y+5-2a=0恒成立,令a 取两个特殊值(如a=1或a=-2),可得两个方程,解由这两个方程构成的方程组得到一组解,再代入原方程验证,如满足方程则命题获证,

本例的另一典型解法

例7(1989年上海初一试题),方程

并且abc≠0,那么x____ 提示:1、去分母求解;2、将3改写为

b

b a a

c c ++。 例8(第4届美国数学邀请赛试题)若x 1,x 2,x 3,x 4和x 5满足下列方程组:

?????????=++++=++++=++++=++++=++++96

248224212262543214321

543215432154321x x x x x x x x x x x x x x x x x x x x x x x x x x

确定3x 4+2x 5的值.

说明:整体代换方法是一种重要的解题策略.

例9 解方程组??

???+=+++=+++=++)

3(3)2(2

)1(1m m z y x m z m y x m z y m x 提示:仿例8,注意就m 讨论。 例10 如果方程组???=--+=-+0

253032m y x m y x (1)的解是方程2x-y=4(2)的解,求m 的值。

提示:1、从(1)中解出x,y 用m 表示,再代入(2)求m ;

2、在(1)中用消元法消去m 再与(2)联立求出x,y ,再代入(1)求m 。 例11 如果方程ax+by+cz=d 对一切x,y,z 都成立,求a,b,c,d 的值。

提示:赋值法。

例12 解方程组?????=-+=+=3

32x z x z z y x 。

提示:引进新未知数

第四讲 列方程(组)解应用题

一、知识要点

1、 列方程解应用题的一般步骤:审题、设未知元、列解方程、检验、作结论等.

2、 列方程解应用题要领:

(1) 善于将生活语言代数化;

(2) 掌握一定的设元技巧(直接设元,间接设元,辅助设元);

(3) 善于寻找数量间的等量关系。

二、例题示范

1、合理设立未知元

例1一群男女学生若干人,如果女生走了15人,则余下的男女生比例为2:1,在此之后,男生又走了45 人,于是男女生的比例为1:5,求原来男生有多少人?

提示:(1)直接设元

(2)列方程组:

例2 在三点和四点之间,时钟上的分针和时针在什么时候重合?

例3甲、乙、丙、丁四个孩子共有45本书,如果甲减2本,乙加2本,丙增加一倍,丁减少一半,则四个孩子的书就一样多,问每个孩子原来各有多少本书?

提示:(1)设四个孩子的书一样多时每人有x 本书,列方程;

(2)设甲、乙、丙、丁四个孩子原来各有x,y,z,t 本书,列方程组:

例4 (1986年扬州市初一数学竞赛题)A 、B 、C 三人各有豆若干粒,要求互相赠送,先由A 给B 、C ,所给的豆数等于B 、C 原来各有的豆数,依同法再由B 给A 、C 现有豆数,后由C 给A 、B 现有豆数,互送后每人恰好各有64粒,问原来三人各有豆多少粒? 提示:用列表法分析数量关系。

例5 如果某一年的5月份中,有五个星期五,它们的日期之和为80,求这一年的5月4日是星期几?

提示:间接设元.设第一个星期五的日期为x ,

例6 甲、乙两人分别从A 、B 两地相向匀速前进,第一次相遇在距A 点700米处,然后继续前进,甲到B 地,乙到A 地后都立即返回,第二次相遇在距B 点400米处,求

A 、

B 两地间的距离是多少米?

提示:直接设元。

例7 某商场经销一种商品,由于进货时价格比原来降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率。

提示:商品进价、商品售价、商品利润率之间的关系为:

商品利润率=[(商品售价—商品进价)÷商品进价]?100%。

例8 (1983年青岛市初中数学竞赛题)某人骑自行车从A 地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B 地,共用55分钟.回来时,他以每小时8

千米的速度通过平路后,以每小时4千米的速度上坡,从B 地到A 地共用2

11小时,求A 、B 两地相距多少千米?

提示:1 (选间接元)设坡路长x 千米

2 选直接元辅以间接元)设坡路长为x 千米,A 、B 两地相距y 千米

3 (选间接元)设下坡需x 小时,上坡需y 小时,

2、设立辅助未知数

例9 (1972年美国中学数学竞赛题)若一商人进货价便谊8%,而售价保持不变,那么他的利润(按进货价而定)可由目前的x%增加到(x+10)%,x 等于多少?

提示:引入辅助元进货价M ,则0.92M 是打折扣的价格,x 是利润,以百分比表示,那么写出售货价(固定不变)的等式。

例10(1985年江苏东台初中数学竞赛题)从两个重为m 千克和n 千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者的含铜百分数相等,问切下的重量是多少千克?

提示: 采用直接元并辅以间接元,设切下的重量为x 千克,并设m 千克的铜合金中含铜百分数为q 1,n 千克的铜合金中含铜百分数为q 2。

例 11 有一片牧场,草每天都在匀速生长 (草每天增长量相等).如果放牧24头牛,则6 天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧 16头牛,几天可以吃完牧草.

提示 设每头牛每天吃草量是x ,草每天增长量是y ,16头牛z 天吃完牧草,再设牧场原有草量是a.布列含参方程组。

例 12 甲、乙二人在一圆形跑道上跑步,甲用 40秒钟就能跑完一圈,乙反向跑,每15秒钟和甲相遇一次,求乙跑完一圈需要多少时间?

提示:要求乙跑完一圈需要多少时间,就必须知道他的速度V 米/秒,因此可以选择V 作参数.

3、方程与不等式结合

例13 数学测验中共有20道选择题。评分方法是:每答对一题给6分,答错一题扣2分,不答不给分。有一个学生只有一道题没答,并且他的成绩在60分以上,那么他至少答对多少题?

提示:利用方程、不等式组成的混合组求解。

第五讲 整数指数

一、知识要点

1、定义:

a

n n a aa a 个= (n ≥2,n 为自然数) 2、整数指数幂的运算法则:

(1)n m n m a a a +=?

(2)???????≠≠=≠==÷=--0,10,1

0,a n m a

a n m a n m a a a a m n n

m n m n m (3)mn n m a a =)(,n n n b a ab ?=)(,)0()(≠=b b a b a n n

n

3、规定:a 0=1(a ≠0) a -p =p a

1(a ≠0,p 是自然数)。 4、当a ,m 为正整数时,a m 的末位数字的规律:

记m=4p+q ,q=1,2,3之一,则q p a +4的末位数字与q a 的末位数字相同。

二、例题示范

例1、计算 (1) 55?23 (2) (3a 2b 3c)(-5a 3bc 2)

(3) (3a 2b 3c)3 (4) (15a 2b 3c)÷(-5a 3bc 2)

例2、求1003100210011373??的末位数字。

提示:先考虑各因子的末位数字,再考虑积的末位数字。

例3、123021377-是目前世界上找到的最大的素数,试求其末位数字。 提示:运用规律2。

例4、 求证:)5432(|52000199919981997+++。

提示:考虑能被5整除的数的特征,并结合规律2。

例5、已知n 是正整数,且x 2n =2,求(3x 3n )2-4(x 2)2n 的值。 提示:将所求表达式用x 2n 表示出来。

例6、求方程(y+x)1949+(z+x)1999+(x+y)2002=2的整数解。 提示:|y+z|,|z+x|,|x+y|都不超过1,分情况讨论。

例7、若n 为自然数,求证:10|(n 1985-n 1949)。

提示:n 的末位数字对乘方的次数呈现以4为周期的循环。

初中数学竞赛专题:几何不等式与极值问题

初中数学竞赛专题:几何不等式与极值问题 17.1.1★ 一个凸行边形的内角中,恰好有4个钝角,求n 的最大值. 解析 考虑这个凸行边形的n 个外角,有4n -个角90?≥,故有()490360n -??,P 为BC 边的高AD 上的一点,求证:AB AC PB PC -<-. P C D B A 解析 易知AB AC PB PC +>+, 又2222AB AC BD CD -=- 22PB PC =-, 故有AB AC PB PC -<-. 评注 读者不妨考虑AD 是角平分线与中线的情况. 17.1.3 已知四边形ABCD ,AC 、BD 交于O ,ADO △和BCO △的面积分别为3、12,求四边形ABCD 面积的最小值. C B O D A 解析 易知 ABO BCO ADO DCO S S BO S DO S == △△△△,故36ABO CDO ADO BCO S S S S ?=?=△△△△. 从而12ABO CDO S S +△△≥, 且当ABO CDO S S =△△(此时四边形ABCD 为一梯形)时等号成立,所以此时四边形ABCD 面积达到最小值27. 17.1.4★ 已知:直角三角形ABC 中,斜边BC 上的高6h =. (1)求证:BC h AB AC +>+;

(2)求()()2 2BC h AB AC ++-. 解析 () ()2 2 BC h AB AC +-+ 222222BC h BC h AB AC AB AC =++?---?, 由条件,知242ABC BC h S AB AC ?==?△,且222AB AC BC +=, 于是()()2 2 236BC h AB AC h +-+==. 注意:这同时解决了(1)和(2). 17.1.5★ 设矩形ABCD ,10BC =,7CD =,动点F 、E 分别在BC 、CD 上,且4BF ED +=,求AFE △面 积的最小值. B F C E D A 解析设 BF x =,()4DE y x ==-,则()()()1 1 7101077022ABF ADE ECF S S S x y x y xy ++=++--=+????△△△。 由()2 144 xy x y +=≤。故 ()1 70704332 AEF S -?+=△≥. 当2BF ED ==时达到最小值. 17.1.6★ 设P 是定角A ∠内一定点,过P 作动直线交两边于M 、N ,求证:AMN △面积最小时,P 为MN 的中点. 解析 如图,连结AP ,设MAP α∠=,NAP β∠=,θαβ=+,由 AMP ANP MAN S S S +=△△△,得 sin sin sin AM AP AN AP AM AN αβθ??+??=?。 又 左式2AP ≥,

2019年全国初中数学竞赛试题及答案

1 全国初中数学竞赛试题及答案 考试时间:2018年4月1日上午9:30—11:30 一、选择题:(共5小题,每小题6分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后括号里.不填、多填或错填都得0分) 1.方程组?????=+=+6 12y x y x 的实数解的个数为( ) (A )1 (B )2 (C )3 (D )4 解:选(A )。当x ≥0时,则有y -|y|=6,无解;当x<0时,则y +|y|=18,解得:y=9,此时x=-3. 2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) (A )14 (B )16 (C )18 (D )20 解:选(B )。只用考虑红球与黑球各有4种选择:红球(2,3,4,5),黑球(0,1,2,3)共4×4=16种 3.已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程02 =++c bx ax , 02 =++a cx bx ,02 =++b ax cx 恰有一个公共实数根,则ab c ca b bc a 2 22++的值为( ) (A )0 (B )1 (C )2 (D )3 解:选(D )。设这三条方程唯一公共实数根为t ,则20at bt c ++=,20bt ct a ++=,2 0ct at b ++= 三式相加得:2 ()(1)0a b c t t ++++=,因为210t t ++≠,所以有a+b+c=0,从而有3333a b c abc ++=, 所以 ab c ca b bc a 222++=333 a b c abc ++=33abc abc = 4.已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且与边AB ,AC 分别相 交于点D ,E .若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经 过△ABC 的( ) (A )内心 (B )外心 (C )重心 (D )垂心 解:选(B )。如图△ADE 外接圆的圆心为点F ,由题意知:⊙O 与⊙F 且弧DmE =弧DnE ,所以∠EAB =∠ABE ,∠DAC =∠ACD , 即△ABE 与△ACD 都是等腰三角形。分别过点E ,F 作AB ,AC 相交于点H ,则点H 是△ABC 的外心。又因为∠KHD =∠ACD , 所以∠DHE+∠ACD =∠DHE+∠KHD =180°,即点H ,D ,C ,E 在同一个圆上, 也即点H 在⊙O 上,因而⊙O 经过△ABC 的外心。 5.方程2563 2 3 +-=++y y x x x 的整数解x (,)y 的个数是( ) (A )0 (B )1 (C )3 (D )无穷多 解:选(A )。原方程可变形为:x(x+1)(x+2)+3x(x+1)=y(y-1)(y+1)+2,左边是6的倍数,而右边不是6的倍数。

人教版九年级数学上下册培优讲义机构辅导资料(共30讲)

九年级讲义目录

专题01 二次根式的化简与求值 阅读与思考 二次根式的化简与求值问题常涉及最简根式、同类根式,分母有理化等概念,常用到分解、分拆、换元等技巧. 有条件的二次根式的化简与求值问题是代数变形的重点,也是难点,这类问题包含了整式、分式、二次根式等众多知识,又联系着分解变形、整体代换、一般化等重要的思想方法,解题的基本思路是: 1、直接代入 直接将已知条件代入待化简求值的式子. 2、变形代入 适当地变条件、适当地变结论,同时变条件与结论,再代入求值. 数学思想: 数学中充满了矛盾,如正与负,加与减,乘与除,数与形,有理数与无理数,常量与变量、有理式与无理式,相等与不等,正面与反面、有限与无限,分解与合并,特殊与一般,存在与不存在等,数学就是在矛盾中产生,又在矛盾中发展. =x , y , n 都是正整数) 例题与求解 【例1】 当x = 时,代数式32003 (420052001)x x --的值是( ) A 、0 B 、-1 C 、1 D 、2003 2- (绍兴市竞赛试题) 【例2】 化简 (1(b a b ab b -÷-- (黄冈市中考试题) (2 (五城市联赛试题)

(3 (北京市竞赛试题) (4 (陕西省竞赛试题) 解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解. 思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度. 【例3】比6大的最小整数是多少? (西安交大少年班入学试题) 解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y == 想一想:设x=求 432 32 621823 7515 x x x x x x x --++ -++ 的值. (“祖冲之杯”邀请赛试题) 的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.

初中数学竞赛专题选讲-配方法(含答案)

初中数学竞赛专题[配方法] 一、内容提要 1. 配方:这里指的是在代数式恒等变形中,把二次三项式a 2 ±2ab+b 2 写成完全平方式 (a ±b )2. 有时需要在代数式中添项、折项、分组才能写成完全平方式. 常用的有以下三种: ①由a 2 +b 2 配上2ab , ②由 2 ab 配上a 2 +b 2 , ③由a 2 ±2ab 配上b 2 . 2. 运用配方法解题,初中阶段主要有: ① 用完全平方式来因式分解 例如:把x 4 +4 因式分解. 原式=x 4 +4+4x 2 -4x 2 =(x 2 +2)2 -4x 2 =…… 这是由a 2 +b 2配上2ab. ② 二次根式化简常用公式:a a =2,这就需要把被开方数 写成完全平方式. 例如:化简6 25-. 我们把5-2 6写成 2-232+3 =2)2(-232+2)3( =( 2-3) 2 . 这是由2 ab 配上a 2 +b 2 .

③ 求代数式的最大或最小值,方法之一是运用实数的平方是非负数,零就是最小值.即∵a 2 ≥0, ∴当a=0时, a 2 的值为0是最小值. 例如:求代数式a 2 +2a -2 的最值. ∵a 2 +2a -2= a 2 +2a+1-3=(a+1)2 -3 当a=-1时, a 2 +2a -2有最小值-3. 这是由a 2 ±2ab 配上b 2 ④ 有一类方程的解是运用几个非负数的和等于零,则每一个非负数都是零,有时就需要配方. 例如::求方程x 2 +y 2 +2x-4y+5=0 的解x, y. 解:方程x 2 +y 2 +2x-4y+1+4=0. 配方的可化为 (x+1)2 +(y -2)2 =0. 要使等式成立,必须且只需? ??=-=+0201y x . 解得 ???=-=2 1 y x 此外在解二次方程中应用根的判别式,或在证明等式、不等式时,也常要有配方的知识和技巧.

数学竞赛专题讲座---面积问题与面积方法-初中三年级数学试题练习、期中期末试卷-初中数学试卷

数学竞赛专题讲座---面积问题与面积方法-初中三年级数学试题练习、期中期末试卷、测验 题、复习资料-初中数学试卷-试卷下载 面积问题与面积方法 姓名: 例1 已知△ABC中三边长分别为a,b,c,对应边上的高分别为ha=4,hb=5,hc=3.求a△b△c. 例2 如图1-51,ABCD的面积为64平方厘米(cm2),E,F分别为AB,AD的中点,求△CEF的面积. 例4 用面积方法证明:三角形两边中点连线平行于第三边. 例5 如图1-54.在△ABC中,E是AB的中点,D是AC上的一点,且AD△DC=2△3,BD与CE交于F,S△ABC=40,求SAEFD. 例6 如图1-55所示.E,F分别是ABCD的边AD,AB上的点,且BE=DF,BE与DF交于O.求证:C点到BE的距离等于它到DF的距离.

练习: 1.如图1-56所示.在△ABC中,EF△BC,且AE△EB=m,求证:AF△FC=m. 2.如图1-57所示.在梯形ABCD中,AB△CD.若△DCE的面积是△DCB的面积的四分之一,问:△DCE的面积是△ABD的面积的几分之几? 3.如图1-58所示.已知P为△ABC内一点,AP,BP,CP分别与对边交于D,E,F,把△ABC 分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积. 4.如图1-59所示.P为△ABC内任意一点,三边a,b,c的高分别为ha,hb,hc,且P到a,b,c的距离分别为ta,tb,tc. 5.如图1-60所示.在梯形ABCD中,两腰BA,CD的延长线相交于O,OE△DB,OF△AC且分别交直线BC于E,F.求证:BE=CF.

2014年全国初中数学联赛试题及答案(修正版)

2014年全国初中数学联合竞赛试题参考答案 第一试 一、选择题: 1.已知x ,y 为整数,且满足(1x +1y ) (1x 2+1y 2)=-23(1x 4-1y 4),则x +y 的可能的值有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.已知非负实数x ,y ,z 满足x +y +z =1,则t =2xy +yz +2xz 的最大值为( ) A .47 B .59 C .916 D .1225 3.在△ABC 中,AB =AC ,D 为BC 的中点,BE ⊥AC 于E ,交AD 于P ,已知BP =3,PE =1,则AE =( ) A .62 B .2 C .3 D .6 4.6张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是( ) A .12 B .25 C .23 D .34 5.设[t ]表示不超过实数t 的最大整数,令{t }=t -[t ].已知实数x 满足x 3+1x 3=18,则 {x }+{1x }=( ) A .12 B .3-5 C .12 (3-5) D .1 6.在△ABC 中,∠C =90°,∠A =60°,AC =1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形, ∠ADE =90° ,则BE 的长为( ) A .4-23 B .2-3 C .12 (3-1) D .3-1 二、填空题: 1.已知实数a ,b ,c 满足a +b +c =1, 1 a +b -c + 1 a +c -b + 1 b +c -a =1,则abc =__ 2.使得不等式917<n n +k <815 对唯一的整数k 成立的最大正整数n 为________. 3.已知P 为等腰△ABC 内一点,AB =BC ,∠BPC =108°,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心,则∠P AC =________.

初中数学竞赛专题分类解析第四讲:平行四边形和梯形讲义

初中数学竞赛公益讲座:平行四边形和梯形 2018/4/7 一、基础知识: 1)平行四边形:平移、中点、中心对称(旋转180度)2)特殊的平行四边形:矩形、菱形、正方形 3)梯形:梯形问题转化、分割、拼接 三角形或者平行四边形问题 二、例题分析 例1、如下左图,在等腰△ABC中,延长边AB到点D,延长边CA到点E,连 接DE,恰有AD=BC=CE=DE,求∠BAC的度数。 例2、如上右图,在RT△ABC中,∠ACB是直角,CD⊥AB于D,AE平分∠ABC,交CD于K,F在BE上且BF=CE,求证:FK?AB。 例3、如下左图,△ABC内部一点P,满足∠PBA=∠PCA,作平行四边形PBQC,求证:∠QAB=∠PAC。

例4、如上右图,已知A、B是两个定点,C是位于直线AB某一侧的一个动点,分别以AC、BC为边,在△ABCDE外部作正方形CADI、CBEF,求证无论C点 在什么位置上,DE的中点M的位置不变。 例5、如下左图,梯形ABCD中,AB?CD,BC⊥CD,AB=2,CD=4,点E是BC上的一个动点,连接并延长EA到点F,使得EF:AE=2:1,连接并延长ED到点G,使得EG:ED=3:2,以EF和EG为临边作平行四边形EFHG,连接EH交AD于点P,1)求EH的最小长度;2)求证:P是定点。 例6、如上右图,四边形ABCD中,点E、F分别在边AB、CD上,连接BF、CE交于点P,连接AF、DE交于点Q,若四边形EQFP是平行四边形,求证: 四边形ABCD是梯形。 例7、如下图,等腰梯形ABCD,对角线AC与BD交于点O,M 、N分别为腰AB和CD上的点,且AM=CN,连接MN分别交BD、AC于点P、Q,求证: MP=QN。

初中数学竞赛专题辅导--函数图像

初中数学竞赛专题选讲 函数的图象 一、内容提要 1. 函数的图象定义:在直角坐标系中,以自变量x 为横坐标和以它的函数y 的对应值为纵 坐标的点的集合,叫做函数y=f(x)的图象. 例如 一次函数y=kx+b (k,b 是常数,k ≠0)的图象是一条直线 ① l 上的任一点p 0(x 0,y 0) 的坐标,适合等式y=kx+b, 即y 0=kx ② 若y 1=kx 1+b ,则点p 1(x 1,y 1) 在直线l 上. 2. 方程的图象:我们把y=kx+b 看作是关于x, y 的 二元 一次方程kx -y+b=0, 那么直线l 就是以这个方程的解为坐标 的点的集合,我们把这条直线叫做二元一次方程的图象. 二元一次方程ax+by+c=0 (a,b,c 是常数,a ≠0,b ≠0) 叫做 直线方程. 一般地,在直角坐标系中,如果某曲线是以某二元方程的解为坐标的 点的集合,那么这曲线就叫做这个方程的图象. 例如: 二元二次方程y=ax 2+bx+c(a ≠0) (即二次函数)的图象是抛物线; 二元分式方程y= x k (k ≠0) (即反比例函数)的图象是双曲线. 3. 函数的图象能直观地反映自变量x 与函数y 的对应规律. 例如: ① 由图象的最高,最低点可看函数的最大,最小值; ② 由图象的上升,下降反映函数 y 是随x 的增大而增大(或减小); ③ 函数y=f(x)的图象在横轴的上方,下方或轴上,分别表示y>0,y<0,y=0. 图象所对应 的横坐标就是不等式f(x)>0,f(x)<0 的解集和方程f(x)=0的解. ④ 两个函数图象的交点坐标,就是这两个图象所表示的两个方程(即函数解析式)的公 共解.等等 4. 画函数图象一般是: ①应先确定自变量的取值范围. 要使代数式有意义,并使代数式所表示的实际问题有意义,还要注意是否连续,是否有界. ②一般用描点法,但对一次函数(二元一次方程)的图象,因它是直线(包括射线、线段),所以可采用两点法.线段一定要画出端点(包括临界点). ③对含有绝对值符号(或其他特殊符号)的解析式 ,应按定义对自变量分区讨论,写成几个解析式. 二、例题 例1. 右图是二次函数y=ax 2+bx+c (a ≠0), 试决定a, b, c 及b 2-4ac 的符号. 解:∵抛物线开口向下, ∴a<0. ∵对称轴在原点右边,∴x=- a b 2>0且a<0, ∴b>0. ∵抛物线与纵轴的交点在正半轴上, ∴截距c>0. ∵抛物线与横轴有两个交点, ∴b 2-4ac>0. 例2. 已知:抛物线f :y=-(x -2)2+5. 试写出把f 向左平行移动2个单位后,所得的曲线f 1的方程;以及f 关于x 轴对称的曲线f 2 的方程. 画出f 1和f 2的略图,并求:

历年初中数学竞赛真题库(含答案)

1991年全国初中数学联合竞赛决赛试题 第一试 一、选择题 本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是 两两不同的实数,则2 22 23y xy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )3 5 . 答( ) 2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是 (A ) 10; (B )12; (C ) 16; (D )18. 答( ) 3. 方程012=--x x 的解是 (A ) 251±; (B )25 1±-; (C ) 251±或251±-; (D )2 5 1±-±. 答( ) 4. 已知:)19911991(2 11 1 n n x --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5. 若M n 1210099321=?????Λ,其中M为自然数,n 为使得等式成立的最大的自然数,则M (A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.

答( ) 6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S , 32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3. 答( ) 8. 在锐角ΔABC 中, 1= AC ,c AB =,ο60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤2 1 ; 答( ) (C )c > 2; (D )c = 2. 答( ) 二、填空题 1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a c b 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,q p n m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( . 4.四边形ABCD 中,∠ ABC ο135=,∠BCD ο120=,AB 6=,BC 35-=, CD = 6,则AD = . 第二试 1 1=S 3S =1 32=S

最新全国初中数学竞赛试题及答案

全国初中数学竞赛试题及参考答案 一.选择题(5×7'=35') 1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ). A .0 B .1 C .3 D .5 【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C . 2.已知关于x 的不等式组??????? <-+->-+x t x x x 2 353 52恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2 116.-≤≤-t D 【分析】20232 35352<<-????????<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x . 注意到15=x 时,只有4个整数解.所以 2116152314-≤<-?<-≤t t ,本题选C 3.已知关于x 的方程x x x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4 【分析】422222222+-=?--=-+-x x a x x x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍); ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍); 再考虑等根: ⅲ)对04222=-+-a x x ,270)4(84= →=--=?a a ,当21,272,1==x a . 故27, 8,4=a ,2 1,1,1-=x 共3个.本题选C .

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛专题选讲《完全平方数和完全平方式》

初中数学竞赛专题选讲 完全平方数和完全平方式 一、内容提要 一定义 1. 如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如0,1,0.36,25 4,121都是完全平方数. 在整数集合里,完全平方数,都是整数的平方. 2. 如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式. 如果没有特别说明,完全平方式是在实数范围内研究的. 例如: 在有理数范围 m 2, (a+b -2)2, 4x 2-12x+9, 144都是完全平方式. 在实数范围 (a+3)2, x 2+22x+2, 3也都是完全平方式. 二. 整数集合里,完全平方数的性质和判定 1. 整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8的整数必不是平方数. 2. 若n 是完全平方数,且能被质数p 整除, 则它也能被p 2整除.. 若整数m 能被q 整除,但不能被q 2整除, 则m 不是完全平方数. 例如:3402能被2整除,但不能被4整除,所以3402不是完全平方数. 又如:444能被3整除,但不能被9整除,所以444不是完全平方数. 三. 完全平方式的性质和判定 在实数范围内 如果 ax 2+bx+c (a ≠0)是完全平方式,则b 2-4ac=0且a>0; 如果 b 2-4ac=0且a>0;则ax 2+bx+c (a ≠0)是完全平方式. 在有理数范围内 当b 2-4ac=0且a 是有理数的平方时,ax 2+bx+c 是完全平方式. 四. 完全平方式和完全平方数的关系 1. 完全平方式(ax+b )2 中 当a, b 都是有理数时, x 取任何有理数,其值都是完全平方数; 当a, b 中有一个无理数时,则x 只有一些特殊值能使其值为完全平方数. 2. 某些代数式虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数. 例如: n 2+9, 当n=4时,其值是完全平方数. 所以,完全平方式和完全平方数,既有联系又有区别. 五. 完全平方数与一元二次方程的有理数根的关系 1. 在整系数方程ax 2+bx+c=0(a ≠0)中 ① 若b 2-4ac 是完全平方数,则方程有有理数根; ② 若方程有有理数根,则b 2-4ac 是完全平方数. 2. 在整系数方程x 2+px+q=0中 ① 若p 2-4q 是整数的平方,则方程有两个整数根; ② 若方程有两个整数根,则p 2-4q 是整数的平方.

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

2013年全国初中数学联赛试题及详解

2013年全国初中数学联合竞赛试题及详解 第一试 一、选择题(本题满分42分,每小题7分) 1.计算=( ) (A 1 (B )1 (C (D )2 【答案】(B ) 【解析】原式=1)3)1-=-=,故选(B ). 2.满足等式()2221m m m ---=的所有实数m 的和为( ) (A )3 (B )4 (C )5 (D )6 【答案】(A ) 【解析】分三种情况进行讨论: (1)若21m -=,即1m =时,满足已知等式; (2)若21m -=-,即3m =时,()2242(1)1m m m ---=-=满足已知等式; (3)若21m -≠±,即1m ≠且3m ≠时,由已知,得22020 m m m -≠??--=?解得,1m =- 故满足等式()2221m m m ---=的所有实数m 的和13(1=3++-),故选(A ). 3.已知AB 是圆O 的直径,C 为圆O 上一点,15CAB ∠= ,ABC ∠的平分线交圆O 于 点D ,若CD =,则AB =( ) (A )2 (B (C ) (D )3 【答案】(A ) 【解析】连接OC ,过点O 作ON CD ⊥于点N ,则 CN DN ==,OC OA =,从而15OCA CAB ∠=∠= ,由AB 是圆O 的直径,得90ACB ∠= ,因CD 平分ACB ∠,故45ACD ∠= ,30OCN ACD OCA ∠=∠-∠= , 在Rt ONC ?中,∵cos CN OCN OC ∠= =,1OC =∴,∴22AB OC ==,故选(A ). 4.不定方程23725170x xy x y +---=的全部正整数解(,)x y 的组数为( ) (A )1 (B )2 (C )3 (D )4 【答案】(B )

初中数学竞赛辅导讲义及习题解答 第1讲 走进追问求根公式

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。而公式法是解一元二次方程的最普遍、最具有一般性的方法。 求根公式a ac b b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个。 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。 【例3】 解关于x 的方程02)1(2=+--a ax x a 。 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。 【例4】 设方程04122=---x x ,求满足该方程的所有根之和。 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+1111, 试求x 的值。 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x 。 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==。

初中数学竞赛专题选讲 一元二次方程的根(含答案)

初中数学竞赛专题选讲(初三.1) 一元二次方程的根 一 、内容提要 1.一元二次方程 ax 2 +bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=a ac b b 242-±-. (b 2-4a c ≥0) 2.根的判别式 ①实系数方程 ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是: b 2-4a c ≥0. ②有理系数方程 ax 2+bx+c=0(a ≠0)有有理数根的判定是: b 2-4a c 是完全平方式?方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根?p 2-4q 是整数的平方数. 3.设 x 1, x 2 是ax 2+bx+c=0的两个实数根,那么 ①ax 12 +bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0); ②x 1=a ac b b 242-+-, x 2=a ac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b - , x 1x 2= a c (a ≠0, b 2-4ac ≥0). 4.方程整数根的其他条件 整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0?x 1=0 , a+b+c=0?x 1=1 , a -b+c=0?x 1=-1. 二、例题 例1.已知:a, b, c 是实数,且a=b+c+1.

求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等 的实数根. 证明 (用反证法) 设 两个方程都没有两个不相等的实数根, 那么△1≤0和△2≤0. 即?? ? ??++=≤-≤ ③ ② ①-1040412c b a c a b 由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥4 5 , 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0, 即(a -2)2+1≤0,这是不能成立的. 既然△1≤0和△2≤0不能成立的,那么必有一个是大于0. ∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根. 本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数. 例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数) 有一个公共根. 求a, b 的值. 解:用因式分解法求得: 方程①的两个根是 a 和 12-+a a ; 方程②两根是b 和1 2 -+b b . 由已知a>1, b>1且a ≠b. ∴公共根是a= 12-+b b 或b=1 2-+a a .

初中数学竞赛专题培训(22):面积问题与面积方法 (1)

初中数学竞赛专题培训第二十二讲面积问题与面积方法 几何学的产生,源于人们测量土地面积的需要.面积不仅是几何学研究的一个重要内容,而且也是用来研究几何学的一个有力工具. 下面,我们把常用的一些面积公式和定理列举如下. (1)三角形的面积 (i)三角形的面积公式 b+c)是半周长,r是△ABC的内切圆半径. (ii)等底等高的两个三角形面积相等. (iii)两个等底三角形的面积之比等于高之比;两个等高三角形的面积之比等于底边之比;两个三角形面积之比等于底、高乘积之比. (iv)相似三角形的面积之比等于相似比的平方. (2)梯形的面积 梯形的面积等于上、下底之和与高的乘积的一半. (3)扇形面积 其中r为半径,l为弧长,θ为弧l所对的圆心角的度数,α是弧度数. 1.有关图形面积的计算和证明 解因为CD⊥AB,AC=CB,且△ABD内接于半圆,由此可得 所以,阴影部分AEFBDA的面积是 例2已知凸四边形ABCD的对角线AC,BD相交于点O,且△ABC,△ACD,△ABD的面积分别为S1=5,S2=10,S3=6.求△ABO 的面积(图2-128). 解首先,我们证明△ABC与△ACD的面积比等于BO与DO的比.过B,D分别作AC的垂线,垂足为E,F.于是Rt△ BEO 由题设

设S△AOB=S,则 所以 例3 如图2-129,AD,BE,CF交于△ABC内的一点P,并将△ABC分成六个小三角形,其中四个小三角形的面积已在图中给出.求△ABC的面积. 分析如果能把未知的两个小三角形的面积求出,那么△ABC 的面积即可得知.根据例1,这两个面积是不难求出的. 解设未知的两个小三角形的面积为x和y,则 即 又 即 ①÷②得 再由②得x=56.因此 S△ABC=84+70+56+35+40+30=315. 例4 如图2-130,通过△ABC内部一点Q引平行于三角形三边的直线,这些直线分三角形为六个部分,已知三个平形四边形部分的面积为S1,S2,S3,求△ABC的面积. 解为方便起见,设 S△QDG=S′1,S△QIE=S′2,S△QFH=S′3,则 所以 同理可得 从①,②,③中可以解得 所以

全国初中数学竞赛试题及答案

2007年全国初中数学竞赛试题 班级 座号 姓名 成绩 一、选择题(共5题,每小题6分,共30分) 1、方程组12 6 x y x y ?+=??+=??的实数解的个数为( ) A .1 B .2 C .3 D .4 2、口袋中有20个球,其中白球9个,红球5个,黑球6个。现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ) A .14 B .16 C .18 D .20 3、已知a 、b 、c 是三个互不相等的实数,且三个关于x 的一元二次方程 2220,0,0ax bx c bx cx a cx ax b ++=++=++=恰有一个公共实数根,则 222 a b c bc ca ab ++的值为( ) A .0 B .1 C .2 D .3 4、已知△ABC 为锐角三角形,⊙O 经过点B ,C ,且AB 、AC 分别相交于点D 、E ,若⊙O 的半径与△ADE 的外接圆的半径相等,则⊙O 一定经过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心 5、方程323652x x x y y ++=-+的整数解(x ,y )的个数是( ) A .0 B .1 C .3 D .无穷多 二、填空题(共5小题,每小题6分,满分30分) 6、如图,点A 、C 都在函数(0)y x x = >的图象上,点B 、D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为 . 7、如图,在直角三角形ABC 中,∠ACB =90°,CA= 4,点P 是半圆弧AC 的中点,连接BP ,线段BP 把图形APCB (指半圆和三角形ABC 组成的图形)

初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合 基础知识: 1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。 2.排列数的计算:约定:0!=1 排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。 3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。 4.排列与组合的关系:。 5.组合数的计算: 6.排列数与组合数的一些性质: 例题: 例1.4名男生和3名女生站成一排: (1)一共有多少种不同的站法? (2)甲,乙二人必须站在两端的排法有多少种? (3)甲,乙二人不能站在两端的排法有多少种? (4)甲不排头,也不排尾,有多少种排法? (5)甲只能排头或排尾,有多少种排法? 【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略 【解答】

例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种? 【答案】4186种 【解答】至少有3件是次品,分两种情况 第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中, ,然后,从46件正常品中抽2件,总共种。其中, 所以,3件是次品的抽法共种。 第二种情况:4件是次品的抽法共:种。 任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起, 所以,总共是4×23×45+46=23×182=4186种。 总结:有序是排列,无序是组合。 例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种? 【答案】540种 【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为 =3×2×1=6。用乘法原理表示为3!=6。 六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。 所以,不同的分配方法共有种。 例4.有多少个五位数,满足其数位上的每个数字均至少出现两次? 【答案】819 【解答】 方法一: (1)出现一个数字的情况是9种; (2)出现两个数字,首位不能是0,共有9种情况, (i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=54种。 (ii)首位确定之后,如果首位数总共出现2次,则从后面的4个数位中,选出一位,总共种情况,剩下的三个数位,还需要选相同的数,因为可以是0,所以,有9种选择。所以,这种情况总共有×9=36种。 所以,出现两个数字的情况为(36+54)×9=810.

相关文档
最新文档