制动单元

制动单元
制动单元

个人主页给TA发消息加TA为好友发表于:2013-07-05

21:36:35 楼主

制动单元说明

IPC-DR 系列制动单元用户手册1 目录 序言3 开箱检查注意事项4 简单测试方法4 第一章安全信息5 1.1安全定义-----------------------------------------------------------------------------5 1.2安装和配线注意事项-----------------------------------------------------5 1.3使用注意事项-------------------------------------------------------------------6 1.4其它--------------------------------------------------------------------------------------6 第二章产品型号与规格7 2.1型号规格---------------------------------------------------------------------------7 2.2产品技术规格------------------------------------------------------------------8 2.3电流温度曲线------------------------------------------------------------------9 2.4产品安装尺寸----------------------------------------------------------------10 2.4.1IPC-DR-1L 的外形尺寸----------------------------------10 2.4.2IPC-DR-1SA/3SA/1G/2G 的外形及尺寸--11 2.4.3IPC-DR-3H/4H/5H 的外形及尺寸----------12 2.4.4IPC-DR-3HA/4HA/5HA 的外形及尺寸-----13 2.4.5机械参数表-------------------------------------14 第三章产品安装指南15 3.1制动单元的安装方式-------------------------------------------------15 3.2制动单元主回路端子排列---------------------------------------17 3.2.1IPC-DR-1L 端子排列-------------------------17 3.2.2IPC-DR-1SA/3SA/1G/2G 端子排列--------17 3.2.3IPC-DR-3H/4H/5H 端子排列----------------18 3.2.4IPC-DR-3HA/4HA/5HA 端子排列-----------18 3.3主回路接线方法-----------------------------------------------------------19 3.3.1电源输入端子----------------------------------19 3.3.2制动电阻、故障保护及接地端子----------19

变频器控制系统的制动单元及其应用

36 变频器控制系统的制动单元及其应用 方涌奎1 屈敏娟 2 张支钢2 上海机床厂有限公司1(200093) 上海长机自动化有限公司 2(200093) 摘 要阐述了在变频器控制系统中,电动机制动所带来的问题。介绍了在变频器控制系统中,电动机的能耗制动、直流制动和回馈(再生)制动等几种方法和及其制动单元的基本原理与应用,最后以二个实例来说明制动单元的实际应用。 关键词变频器 控制系统 制动 制动单元 在日常工作中需要电动机迅速而准确的停车, 为此对电动机采取一定的制动方法来实现。但在变频器控制系统中采用同样的制动方法,由于变频器的结构而带来了一些问题,这一点必须加以重视。 1 变频器控制系统电动机制动所存在的问题 在变频器控制系统中经常遇到需要电动机制动的场合,如大惯量负载的快速停车、势能负载的拖动、多级传动中的同步控制及负载突变等。 当变频器给定频率的下降速度过快时,由于所拖动的电动机带有负载(机械装置),有较大的机械惯量而不能很快地下降,使电动机绕组切割旋转磁场的速度加快,绕组的电动势和电流增大,造成电动机侧的反电势E大于端电压U,电动机处于制动状态或发电状态,且有较强的制动转矩。这一能量的回馈将通过变频器的逆变环节中与大功率管并联的二极管流向变频器的直流供电环节。 对于通用变频器来说,其基本结构多是“整流+滤波+逆变”的“交-直-交”系统,其整流部分大多采用不可逆的桥式整流电路,因此无法将这能量回馈给主电路,结果就造成变频器直流供电环节中的电容器二端电压(通常称之泵升电压)升高。当回馈能量较大时,还会引起直流回路的过电压而发生变频器的过电压故障。这就是在变频器控制系统中,电动机制动所带来的新问题,必须加以注意。 2 变频器控制系统电动机制动的方法 2.1 能耗制动 对于变频器,如果输出频率降低,电动机转速 将跟随频率同样降低,这时会产生制动过程。由制动产生的功率将返回到变频器侧,这些功率以电阻发热形式消耗,因此该制动方法被称作“能耗制动”。 由于用发热来消耗返回的功率,需要在变频器侧安装制动电阻。为了提高制动能力,不能期望增加变频器的容量来解决问题。由于不可能无限制减小制动电阻值来增大制动电流值,可选用“制动单元+制动电阻”选件来提高变频器的制动能力。 2.2 直流制动 直流制动是在变频器停止时刻输出一直流电流产生转矩迫使电动机停止以确保准确停车。 在一般的变频器中,大多都有直流制动的设置项目,用户只要对它作以下的设定即可。 选择是否启用直流制动功能; 根据实际需要设置直流制动的电流值; 设置直流制动的时间; 设置直流制动的开始频率,此值应根据负载对制动时间的要求来设定,一般应尽量设置得低一些。 2.3 回馈(再生)制动 在减速期间,产生的功率如果不通过热消耗的方法消耗掉而是把能量返回送到变频器电源侧的方法叫做回馈(再生)制动。同样当用于提升类负载在下降的过程中,能量(势能)也要返回到变频器(或电源)侧进行制动。这种操作方法被称作“再生制动”,该方法也可应用于变频器制动。在实际中这种应用需要“能量回馈单元”选件。 3 制动单元的基本原理与应用 制动单元是变频器的配套附件设备。当变频器 万方数据

制动单元正确选型和制动电阻计算公式

制动单元正确选型和制动电阻计算公式制动单元正确选型和制动电阻 在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速)在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C

制动电阻的选型计算

制动电阻的选型:动作电压710V 1) 电阻功率(千瓦)=电机千瓦数*(10%--50%), 1) 制动电阻值(欧姆) 粗略算法:R=U/2I~U/I 在我国,直流回路电压计算如下:U=380*1.414*1.1V=600V 其中, R:电阻阻值 U:直流母线放电电压, I:电机额定电流 2) 最小容许电阻(欧姆):max(驱动器technical data中要求,放电电压/额定电流), 制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电机转速) 在制动单元工作过程中,直流母线的电压的升降取决于常数RC,R即为制动电阻的阻值,C为变频器内部电解电容的容量。这里制动单元动作电压值一般为710V。 C、然后进行制动单元的选择 在进行制动单元的选择时,制动单元的工作最大电流是选择的唯一依据,其计算公式如下: 制动电流瞬间值=制动单元直流母线电压值/制动电阻值 D、最后计算制动电阻的标称功率 由于制动电阻为短时工作制,因此根据电阻的特性和技术指标,我们知道电阻的标称功率将小于通电时的消耗功率,一般可用下式求得:制动电阻标称功率 = 制动电阻降额系数 X 制动期间平均消耗功率 X 制动使用率% 制动特点能耗制动(电阻制动)的优点是构造简单,缺点是运行效率降低,特别是在频繁制动时将要消耗大量的能量,且制动电阻的容量将增大。

制动单元的工作原理及作用

制动单元的工作原理及作用 一、制动单元的工作原理 制动单元由大功率晶体管GTR及其驱动电路构成。其功能是为放电电流环节电容器在规定的电压范围内储存不了或者内接的制动电阻来不及消耗掉而使直流部分"过压"时,需要加外接制动组件,以加快消耗再生电能的速度。 在某些应用场合,需要快速降速,根据异步电动机原理可知,若滑差越大转矩也越大,同理制动转矩将随着降速速率的加大而增大,使系统降速时间大大缩短,能量回馈大大加快,直流母线电压快速上升,因此必须将该回馈能量迅速消耗掉,保持直流母线电压在某一安全范围以下。制动单元系统的主要功能就是能快速将该能量消耗掉(能量由制动电阻转换成热能散发)。它有效的弥补了普通变频器的制动速度慢、制动转矩小(≤20%额定转矩)的缺点,对于一些需快速制动但频度较低的场合非常适用。 由于制动单元的工况属于短时工作,即每次的通电时间很短,在通电时间内,其温升远远达不到稳定温升;而每次通电后的间歇时间则较长,在间歇时间内,其温度足以降到与环境温度相同,因此制动电阻的额定功率将大大降低,价格也随之下降;另外由于IGBT只有一个,制动时间为ms级,对功率管开通与关断的暂态性能指标要求低,甚至要求关断时间尽量短,以减少关断脉冲电压,保护功率管;控制机理也相对简单,实现较为容易。由于有以上优点,因此它广泛应用于起

重机等势能负载及需快速制动但为短时工作制的场合。 二、制动单元的作用 1、当电动机在外力的作用下减速时,电机以发电状态运行,产生再生能量。其产生的三相交流电动势被变频器逆变部分的六个变频器专用型能量回馈单元续流二极管组成的三相全控桥整流,使变频器内直流母线电压持续升高。 2、当直流电压达到某一电压(制动单元的开启电压)时,制动单元功率开关管开通,电流流过制动电阻。 3、制动电阻释放热量,吸收再生能量,电机转速下降,变频器直流母线电压降低。 4、当直流母线电压降到某一电压(制动单元停止电压)时,制动单元的功率管关断。此时没有制动电流流过电阻,制动电阻在自然散热,降低自身温度。 5、当直流母线的电压重新升高使制动单元动作时,制动单元将重复以上过程,平衡母线电压,使系统正常运行。

正确选型制动单元和制动电阻

正确选型制动单元和制动电阻 1、变频器能耗制动工作原理 在同一个电力拖动系统中,当电机转速高于变频器输出频率所对应的同步转速时,处于发电状态的电动机及负载的惯性能量将反馈到变频器中 (这种情况一般发生在电机被拖着走的时候,如起重机重物下降)。但通用变频器大多没有设计使再生能量反馈到三相电源的功能, 因此所有变频器从电机吸收的能量都会保存在电解电容中,最终导致变频器中的直流母线电压因电容充电升高。如处理不当,变频器就会报警停机。 对于通用变频器通常采用的方法是为变频器配备制动单元和制动电阻,制动单元通过电平检测确定直流母线电压Ud是否超过规定的限值时(如660V或710V),如过压就可以通过短时间接通电阻,使电能以热能方式消耗掉。所以准确地计算制动功率、制动电阻阻值和功率容量等参数,对于变频器的正常工作是至关重要的。 2、起重变频器制动功率的简便计算 对于制动功率的计算通常是采用计算制动转矩的方法,但针对于起重变频器的制动功率的计算此方法不太适用且计算太复杂。 国内外的变频器厂家也没有针对起重变频器制动功率给出方便的计算方法,如果仅依据其选型手册按一般停车工况进行选型, 通常不能正常使用。如安川G7系列45KW变频器,如按手册选型最大选择制动单元为CDBR-4045B 1台,制动功率9.6KW,如果此变频器用于提升机构, 制动功率就会差的太多而无法工作。ABB变频器制动单元选型手册也都是针对停车工况选型的计算,无法完成在起重领域应用时的选型。 对于起重变频器停车工况所需的制动功率容量较小, 而重物下降时所需的制动功率容量较大,故选型时应满足最大下降重量、最大下降行程、最快下降速度的要求。 在起重机重荷下降时电动机作为发电机产生电能,而电动机的驱动是来自于重物的势能,根据能量守恒定律, 产生的电能应等于重物势能的释放,又等于电阻的热能耗(在不考虑功率损耗)。所以只需计算重物势能产生的功率就是所需的制动功率。 对于下降物体势能产生的功率很容易计算。 PE = GM ╳ VM PW = PE ╳ (1-η) PE 下降势能产生的功率单位:瓦 PW 制动功率单位:瓦

变频器制动电阻选择

在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。处理再生能量的方法:能耗制动和回馈制动. 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 制动过程 能耗制动的过程如下: 能耗制动的过程如下:A、当电机在外力作用下减速、反转时(包括被拖动),电机即以发电状态运行,能量反馈回直流回路,使母线电压升高;B、当直流电压到达制动单元开的状态时,制动单元的功率管导通,电流流过制动电阻;C、制动电阻消耗电能为热能,电机的转速降低,母线电压也降低;D、母线电压降至制动单元要关断的值,制动单元的功率管截止,制动电阻无电流流过;E、采样母线电压值,制动单元重复ON/OFF过程,平衡母线电压,使系统正常运行。制动单元与制动电阻的选配 A、首先估算出制动转矩 =((电机转动惯量+电机负载测折算到电机测的转动惯量)*(制动前速度-制动后速度))/375*减速时间-负载转矩 一般情况下,在进行电机制动时,电机内部存在一定的损耗,约为额定转矩的18%-22%左右,因此计算出的结果在小于此范围的话就无需接制动装置; B、接着计算制动电阻的阻值 =制动元件动作电压值的平方/(0.1047*(制动转矩-20%电机额定转矩)*制动前电

变频器制动单元的使用及其参数的计算

直流回路虽然并联大电容,但只能吸收部分能量,当负载惯量大或频萦变速时,由于回馈能量大,电容难以吸收,在这种场合,就需要使用制动单元,由制动单元监测直流回路电压,控制制动电阻的通断,形成一个斩波电路,如图的虚框示意,由此消耗电机回馈的电能,并产生制动力矩,获得瞬时减速快速停车的效果。 此外,在电梯的变颇调速系统中,一般也采用制动单元控制制动电阻工作的方法,达到减速停车释放能量的目的,这既减小使用四象限变频器的高投资,也避免电能回馈电网可能引起的污染。 几夕一调速系统的转矩值一调速系统的转动惯量,即电动机与负载转动惯量之和口一电动机的旋转角速度。 此式实际上是牛顿第二运动定律在电力拖动系统中的表达式。 由于电动机和工作机械(负载)的产品目录给出的参数一般不是转动惯量而是飞轮惯量为了便于计算,根据一瓷所以丸‘可变换为一寄箭寰。,以军二二厂式中习一电动机6硬和负载6硬之和一转速一常数,即卫丝名互2互一二互Z 互由图示意的制动时间图,设电动机从最高转速减速到。 须用秒时间,系统重复使用的周期为勺秒。 因此,合理地配备制动单元及其制动电阻,将关系到变频器与系统的安全可靠的使用。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/c414389555.html,/

变频器制动单元的,作用及选型

变频器制动单元的作用及制动电阻的选择 变频器在电机调速和自动化控制领域已经应用非常的普遍,在我实际的工作调试中发现一些电工对变频器的制动单元的作用和制动电阻的选择不是非常的清楚,有时候到故障设备现场观察,往往变频器模块炸掉以及储能电容炸掉与制动电阻的选择的错误有着千丝万缕的联系,现在我就结合自身的维修经验跟大家分享变频器制动单元的作用及制动电阻的选择。 郑州执锐智能变频器维修,伺服电机维修 第一点制动单元的作用 制动单元的作用是吸收电机的再生能量,利用电阻的发热特性,将电能转化成热能消耗掉 第二点:制动单元是如何工作的 1、当电动机在外力作用下减速或者反转时,电动机以发电状态运行,产生再生能量。电动 机处于发电状态,其产生的三相交流电被逆变部分六个续流二极管组成的全桥进行整流,使变频器内直流中间环节的直流电压升高。 2、直流电压达到使制动单元开0N的状态后,再生制动单元的功率开关管导通,电流流过 制动电阻 3、制动电阻放出热量,吸收了再生能量,电动机的转速降低,直流侧的电压降低。 4、直流侧的电压降低到使制动单元关断(OFF)的值是,再生制动单元的功率开关管关断, 这时没有电流流过制动电阻。 当再生能量大时,再生制动单元的开关(ON/OFF)频率增高,使制动转矩增大,单位时间内电能转换为热能的数量增大。 第三点:变频器制动单元和制动电阻的选择 制动电阻是将再生电能消耗在功率电阻上来实现制动。小功率制动单元一般在变频器内部,外部只接制动电阻。大功率的制动单元由外接的制动单元接到变频器的母线上。当电动机制动时,电动机的电能反馈回母线,使母线电压升高,升高到一定的值时,开通制动单元的开关管,用制动电阻消耗母线上一部分电能,维持母线电压不继续往上升高,使电动机能量消耗在制动电阻上,从而获得制动动力柜。制动单元的导线长度一般不大于5M,接到变频器的母线(P+、N端),要使用双绞线或密着平行线,其目的是减少电感,导线的截面应不小于电动机输电线的1/2~1/4。 1、制动电阻的选择 制动电阻的阻值不是随便选用的,它有一定的范围。太大,制动不迅速,太小制动用开关元件很容易烧毁。一般当负载惯量不太大时,认为电动机制动时最大有70%能量消耗于制动电阻,30%的能量消耗于电动机本身及负载的各种损耗上,此时制动电阻的计算公式为: 式中P---电动机功率,KW Uc—制动时母线上的电压,V。 一般对于三相380V电源,UC约等于700V,单相220V时,Uc约等于390V,代入上式可得三相380 V时制动电阻阻值为:R=700/p 单相220V时制动电阻阻值为:R=217/p 低频度制动的制动电阻的耗散功率一般为电动机功率的1/4~1/5,在频繁制动时,耗散功率要加大。 有的小变频器内部装有制动电阻,但在高频度或重力负载制动时,内部制动电阻的散热量不足,容易烧毁,此时要改用大功率的外接制动电阻。各种制动电阻都应选用低电感构的电阻器,连接线要短,并使用双绞线或密着平行线,采用如此地点刚措施的原因是为了防止和减

制动单元及电阻配置,选型

制动单元的主要功能、优点和动作过程 一、制动单元的主要功能 在某些应用场合,需要快速降速,根据异步电动机原理可知,若滑差越大转矩也越大,同理制动转矩将随着降速速率的加大而增大,使系统降速时间大大缩短,能量回馈大大加快,直流母线电压快速上升,因此必须将该回馈能量迅速消耗掉,保持直流母线电压在某一安全范围以下。制动单元系统的主要功能就是能快速将该能量消耗掉(能量由制动电阻转换成热能散发)。它有效的弥补了普通变频器的制动速度慢、制动转矩小(≤20%额定转矩)的缺点,对于一些需快速制动但频度较低的场合非常适用。 二、制动单元的优点 由于制动单元的工况属于短时工作,即每次的通电时间很短,在通电时间内,其温升远远达不到稳定温升;而每次通电后的间歇时间则较长,在间歇时间内,其温度足以降到与环境温度相同,因此制动电阻的额定功率将大大降低,价格也随之下降;另外由于IGBT只有一个,制动时间为ms级,对功率管开通与关断的暂态性能指标要求低,甚至要求关断时间尽量短,以减少关断脉冲电压,保护功率管;控制机理也相对简单,实现较为容易。由于有以上优点,因此它广泛应用于起重机等势能负载及需快速制动但为短时工作制的场合。 三、制动单元的动作过程 1、当电动机在外力的作用下减速时,电机以发电状态运行,产生再生能量。其产生的三相交流电动势被变频器逆变部分的六个变频器专用型能量回馈单元续流二极管组成的三相全 控桥整流,使变频器内直流母线电压持续升高。 2、当直流电压达到某一电压(制动单元的开启电压)时,制动单元功率开关管开通,电流流过制动电阻。 3、制动电阻释放热量,吸收再生能量,电机转速下降,变频器直流母线电压降低。 4、当直流母线电压降到某一电压(制动单元停止电压)时,制动单元的功率管关断。此时没有制动电流流过电阻,制动电阻在自然散热,降低自身温度。 5、当直流母线的电压重新升高使制动单元动作时,制动单元将重复以上过程,平衡母线电压,使系统正常运行。

制动单元和制动电阻的选型方案

制动单元和制动电阻的选型方案 所示为变频器调速系统的二种运行状态,即电动和发电。在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速w1小于转子转速w时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态;与此同时,电机轴上的转矩变成了制动转矩Te,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能P经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能,但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压Ud升高。过高的直流电压将使各部分器件受到损害。 因此,对于负载处于发电制动状态中必须采取必需的措施处理这部分再生能量。本文阐述的就是处理再生能量的方法:能耗制动和回馈制动。 2 能耗制动的工作方式 能耗制动采用的方法是在变频器直流侧加放电电阻单元组件,将再生电能消耗在功率电阻上来实现制动(如图二所示)。这是一种处理再生能量的最直接的办法,它是将再生能量通过专门的能耗制动电路消耗在电阻上,转化为热能,因此又被称为“电阻制动”,它包括制动单元和制动电阻二部分。 2.1 制动单元 制动单元的功能是当直流回路的电压Ud超过规定的限值时(如660V或710V),接通耗能电路,使直流回路通过制动电阻后以热能方式释放能量。制动单元可分内置式和外置式二种,前者是适用于小功率的通用变频器,后者则是适用于大功率变频器或是对制动有特殊要求的工况中。从原理上讲,二者并无区别,都是作为接通制动电阻的“开关”,它包括功率管、电压采样比较电路和驱动电路。 2.2 制动电阻 制动电阻是用于将电机的再生能量以热能方式消耗的载体,它包括电阻阻值和功率容量两个重要的参数。通常在工程上选用较多的是波纹电阻和铝合金电阻两种:前者采用表面立式波纹有利于散热减低寄生电感量,并选用高阻燃无机涂层,有效保护电阻丝不被老化,延长使用寿命;后者电阻器耐气候性、耐震动性,优于传统瓷骨架电阻器,广泛应用于高要求恶劣工控环境使用,易紧密安装、易附加散热器,外型美观。 2.3 制动过程 能耗制动的过程如下:

普传制动单元中文说明书

前言 感谢使用我公司生产的制动单元。 本手册详细介绍了 PB 系列制动单元的型号与规格、安装、配线、功能、日常维护、故障诊断与排除、制动电阻的选型等注意事项。可作为系统设计人员的参考选型资料。 为了正确使用本制动单元,充分发挥产品的性能、确保使用者和设备的安全,在使用制动单元之前请务必阅读本手册。 不正确的使用可能会造成变频器和制动单元的运行异常和损坏。 本公司致力于产品性能的不断提高,此资料如有变动,恕不另行通知。 普传科技 2014年8月

目录 一、安全注意事项 (1) 二、检查 (3) 三、安装 (4) 四、参数调整 (7) 五、单台运行 (8) 六、并联运行 (9) 七、故障分析及处理 (10) 八、使用规范 (11) 九、品质保证 (14)

一、安全注意事项 在对制动单元进行安装、操作和检查之前请阅读本使用说明书。为安全操作,提醒您特别注意本使用说明书中“警告”和“注意”事项。 *注意: 说明此种潜在危险情况将导致轻微或中等程度人身伤害或设备损坏。它也可用来警示违规操作。 说明此种潜在危险情况将导致严重人身伤害或财产损失! 声明:当本产品和其它品牌变频器一起使用制动时,本公司只承担本产品出现品质问题三包责任;客户若需其他项目的连带责任保障,请自行投保国内相关保险公司的财物保险,以便获得相对良好的赔偿责任。 *注意: *注意: *注意:

一、安全注意事项*注意: *注意:

一、安全注意事项 二、检查 普传制动单元在出厂之前均已经过测试和品质检验。在购买后,开箱之前请检查产品的包装是否因运输不慎而造成损伤,产品的规格、型号是否与订购之机种相符。如有问题,请联络普传供货厂商。

制动单元及制动电阻选型要求

感謝您選用台達VFDB 動力制動煞車模塊。VFDB 制動單元主要應用於當三相感應電機由交流電機驅動器所驅動,在減速停止時用以吸收由電機側所回生的能量,藉由VFDB 制動單元將此能量以熱能的方式消耗在煞車電阻上。本產品在安裝使用前,請詳細參閱使用手冊的說明再進行施工配線,以免造成機械或人員的傷害。 VFDB 動力制動煞車模塊適用於本公司VFD 所有系列的交流電機驅動器。VFDB 制動單元需搭配煞車電阻BR 系列,才能發揮優異的制動特性,詳細的規格及使用方法請繼續參閱本使用說明書。 VFDB 制動單元規格 使用電壓等級 230V 級 460V 級 型號 VFDB-□□□□ 2015 2022 4030 4045 最大適用電機容量 (KW) 15 22 30 45 最大放電電流 (Apeak)10ED% 40 60 40 60 連續放電電流 (A) 15 20 15 18 輸 出 額 定 制動起始電壓 (DC) 330/345/360/380/400/415±3V 660/690/720/760/800/830±6V 電 源 直流電壓 200—400VDC 400—800VDC 散熱片過熱 溫度開關 +95℃ 故障輸出 RELAY 接點5A120Vac/28Vdc(RA.RB.RC) 保 護 充電中顯示 主回路 (P-N) 電壓在50VDC 以下熄滅 安裝場所 屋內(無腐蝕性氣體、金屬粉塵) 環境溫度 -10℃~+50℃ 儲存溫度 -20℃~+60℃ 濕度 90%RH 以下不結露 使 用 環 境 振動 20Hz 以下9.8m/S 2(1G)、20~50Hz 2m/S 2(0.2G) 機構構造 閉掛型IP50 BR 制動電阻規格 型 號 規 格 BR1K5W005 1500W 5.0Ω BR1K2W6P8 1200W 6.8Ω BR1K2W008 1200W 8.0Ω BR1K5W040 1500W 40Ω BR1K0W050 1000W 50Ω

西门子变频器配套专用制动单元

制动单元制动电阻箱 波纹电阻器铝壳电阻器 上海民恩电气有限公司主营变频器配套系列产品:制动单元,制动电阻,输入电抗器,输出电抗器,直流电抗器,滤波器,变压器等产品;产品质量保证,价格实惠,欢迎来电咨询! 西门子变频器配套专用制动单元技术参数: 1)配置制动单元型号:CDBR-430C 2)适配变频器功率:30KW 3)制动单元品牌:上海民恩 4)额定电流:15A 5)峰值电流:50A 6)最小阻值:20Ω

7)斩波电压:DC630V DC660V DC690V DC730V DC760V 8)外形及安装尺寸:见表格 9)制动方式:能耗式 10)包装:纸箱包装 1)设计加工周期:3个工作日(常规型号现货) 12)售后服务:国家三包1年,免费提供技术咨询,技术指导,安装指导 13)产品咨询:请联系上海民恩客服 西门子变频器配套专用制动单元产品概述 当传动应用中需要电机快速或精确的减速时,为了获得所需的制动转矩,并避免在减速过程中产生过高的泵升电压影响设备的安全运行,应当使用CDBR

系列制动单元。CDBR系列制动单元是采用德国技术生产制造的低成本能耗式制动单元,配合适当的制动电阻后可以将调速电机在减速过程中所产生的再生电能加以吸收消耗在电阻上,同时获得良好的制动效果。CDBR是将电机在调速过程中所产生的再生电能直接消耗在制动电阻上,所需的设备简单,成本较低。所有的CDBR产品,均来自高度可靠的设计和精良的制造技术,CDBR的每一件产品都能发挥最大的效能。 (产品接线图) (产品性能测试)

西门子变频器配套专用制动单元产品规格及技术参数 产品型号额定 电流峰值 电流 最小 阻值 斩波电压 图 号 尺寸/(mm) 配线 L W H L1W1 CDBR-2022C15A50A 6.8DC380V P1240100153228704-6 CDBR-2030C25A75A10240100153228704-6 CDBR-4030C15A50A20DC630V DC660V DC690V DC730V DC760V 240100153228704-6 CDBR-4045C25A75A13.6240100153228704-6 CDBR-4055C27A85A12.5240100153228704-6 CDBR-4075C30A100A10P232018716330412016-36 CDBR-4110C50A 6.832018716330412016-36

制动单元原理图与维修技巧

制动单元原理图与维修技巧 一例变频器制动单元电路及图解 一、《CDBR-4030C制动单元》主电路图 《CDBR-4030C制动单元》主电路图说 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。负载电机的反发电能量,又称为再生能量。 一些特殊机械,如矿用提升机、卷扬机、高速电梯等,当电动机减速、制动或者下放负载重物时(普通大惯性负荷,减速停车过程),因机械系统的位能和势能作用,会使变频器的实际转速有可能超过变频器的给定转速,电机绕组中的感生电流的相位超前于感生电压,出现了容性电流,而变频器逆变回路I G B T两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。

此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V 左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,则根据负载运行情况选配制动单元和制动电阻,C D B R-4030C制动单元,即是变频器的辅助配置之一。 先不管具体电路,我们可先从控制原理设想一下。所谓制动单元,就是一个电子开关(I G B T模块),接通时将制动电阻(R B)接入变频器的直流回路,对电机的反发电能量进行快速消耗(转化为热量耗散于环境空气中),以维持直流回路的电压在容许值以内。有一个直流电压检测电路,输出一个制动动作信号,来控制电子开关的通和断。从性能上讲,变频器直流回路电压上升到某值(如660V或680V)后,开关接通将制动电阻R B接入电路,一直至电压降至620V(或620V)以下,开关再断开,也是可行的。反正制动单元有R B的限流作用,并无烧毁的危险。若将其性能再优化一点的话,则由电压检测电路控制一个压/频(或电压/脉冲宽度)转换电路,进而控制制动单元中I G B T模块的通断。直流回路的电压较高时,制动单元工作频率高或导通周期长,电压低时,则相反。此种脉冲式制动比起直接通断式制动,性能上要优良多了。再加上对I G B T模块的过流保护和散热处理,那么这应是一款性能较为优良的制动单元电路了。 C D B R-4030C制动单元,从结构和性能上不是很优化,但实际应用的效果也还可以。内部电子开关是一只双管I G B T模块,上管的栅、射极短接未用,只用了下管,当然有些浪费,用单管的I G B T模块就可以的呀。保护电路是电子电路和机械脱扣电路的复合,厂家将空气断路器Q F0内部结构进行了改造,由漏电动作脱扣改为了模块过热时的动作脱扣。温度检测和动作控制由温度继电器、Q4和K A1构成,在模块温升达75oC时,K A1动作引发脱扣跳闸,Q F1跳脱,将制动单元的电源关断,从而在一定程度上保护了I G B T模块不因过流或过热烧毁。 检测电路(见下图)的供电,是由功率电阻降压、稳压管稳压和电容滤波来取得的,为15V直流供电。 该制动单元的故障主要多发于控制供电电路,表现为降压电阻开路,稳压管击穿等;另外,因引入了变频器直流回路的530V直流高压,线路板因受潮造成绝缘下降而导致的高压放电,使大片线路的铜箔条烧毁,控制电路的集成块短路等。又因线路板全部涂覆有黑色防护漆,看不清铜箔条的连接和走向,也为检修带来了一定的不便。

变频器的制动电阻与制动单元

变频器的制动电阻与制动单元 杨德印 变频器在运行中有时频繁启动和制动,有时拖动具有位能的负载( 例如起重机械在降落时制动) ,这将导致直流电路的电压UD 增高.从而产生过电压,因此必须配接制动电阻,将滤波电容器 C 上多余的电荷释放掉。 一、制动电路工作原理 如图 1 所示。图中DR 是制动电阻,V 是制动单元。制动单元是一个控制开关,当直流电路的电压UD 增高到一定限值时,开关接通,将制动电阻并联到电容器C 两端,泄放电容器上存储的过多电荷。其控制原理如图2 虚线框内电路所示。电压比较器的反向输入端接一个稳定的基准电压.而正向输入端则通过电阻R1 和R2 对直流电路电压UD 取样,当UD 数值超过一定限值时.正向端电压超过反向端,电压比较器的输出端为高。经驱动电路使IGBT 管导通,制动电阻开始放电。当UD 电压数值在正常范围时,IGBT 管截止,制动电阻退出工作。

IGBT 管是一种新型半导体元件,它兼有场效应管输入阻抗高、驱动电流小和双极性晶体管增益高、工作电流大和工作电压高的优点.在变频器中被普遍使用,除了制动电路外,其逆变电路中的开关管也几乎清一色地选用IGBT 管。 图 1 中的电阻R 是限流电阻,可以限制开机瞬间电容器 C 较大的充电涌流。适当延时后,交流接触器KM 触点接通.将电阻R 短路。有的变频器在这里使用一只晶闸管,作用与此类似。 二、制动电阻的阻值和容量 准确计算制动电阻值的方法比较麻烦,必要性也不大。作为一种选配件,各变频器的制造商推荐的制动电阻规格也不是很严格,而为了减少制动电阻的规格挡次,常常对若干种相邻容量规格的电动机推荐相同阻值的制动电阻。取值范围如下:

相关文档
最新文档