高斯定理

高斯定理
高斯定理

条。因此,在上图(

高斯定理在空间对称引力场中的应用解析

本科毕业论文 题目:高斯定理在空间对称引力场的应用 姓名:石宇 学号:20120341006 院别:工程技术学学院 专业:物理学 年级:2012级1班 指导教师:黄永超

目录 1引言 (1) 2引力场建立的背景及初步认识 (2) 2.1引力场建立的背景 (2) 2.2引力场的初步认识 (2) 3静电场中高斯定理的理解与应用 (3) 3.1静电场中高斯定理的理解 (3) 3.1静电场中高斯定理的应用 (4) 4静电场与万有引力场的分析与类比 (5) 4.1静电场与万有引力场的分析 (5) 4.2静电场与万有引力场的类比 (5) 5高斯定理在空间对称引力场中的应用 (8) 5.1质量分布具有球对称性 (8) 5.2质量分布具有轴对称性 (9) 5.3质量分布具有面对称性 (10) 6结束语 (11) 参考文献 (12) 致谢 (13)

摘要 在静电场中,当电荷具有某种对称性时,场强的计算可以通过应用高斯定理而简化计算。所以,本文将通过比较静电场和引力场,从而用类比的方法把静电场中高斯定理的形式推广到万有引力场中。在此基础上,通过万有引力场中的“高斯定理”,从而解决在空间对称引力场中的相关问题。 关键词:高斯定理;万有引力;空间对称引力场;应用

Abstract In the electrostatic field, when the charge has a certain symmetry, the field strength calculation can be calculated by applying the simplified Gauss theorem. Therefore, this article will compare the electrostatic field and the gravitational field, which by analogy method to form an electrostatic field Gauss theorem to the gravitational field. On this basis, through the gravitational field of the "Gauss theorem" to solve symmetric gravitational field in space related issues. Learn gravitational field Gauss theorem space symmetry. Key words: Gauss theorem; gravitation; space symmetric gravitational field; application

数学家的小故事

中外数学家的小故事 八岁的高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 小欧拉智改羊圈 欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢? 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。 在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的

静电场中的高斯定理

静电场中的高斯定理 [摘要] 高斯定理是静电学的重要定理,它可以通过数学证明方法得到,同时 要注意高斯面的选择和对高斯定理的理解。 [关键字] 高斯定理 高斯面 证明 注意事项 [内容] 高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源就是电荷。可以将其表述为:在静电场中,通过任意闭合曲面的电通量,等于该闭合曲面所包围的电荷的代数和的ε0 分之一,而与闭合曲面外的电荷无关。高斯定理的表达式如下: ? ?= ?=ΦV e dq 1 d εS S E 其中,E 表示在闭合曲面上任一dS 面处的电场强度,而EdS 则表示通过面元dS 的电场强度通量, 就表示通过整个闭合曲面S 的电场强度通量, 习惯上称闭合曲面S 为高斯面。由高斯定理可知:静电场是有源的,发散的,源头在电荷所在处,由此确定的电场线起于正电荷,终于负电荷。 下面对于静电场中的高斯定理进行证明: (a )点电荷在球面中心 点电荷q 的电场强度为 r r q 41 30??=πεE 球面的电通量为 2 20S 2 030q r 4r 4q d r 4q d r r q 41 d εππεπεπε= ??==???=????S S S E S S (1) (b )点电荷在任意闭曲面外

闭曲面S 的电通量为 ()??? ?++= ++=??? =?S S S S S E zdxdy r 1ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d 3330S 3030 πεπεπε (2) 根据高斯公式 ?????++=???? ? ???+??+??S V R Q P R Q P dxdy dzdx dydz dxdydz z y x (3) 并考虑到3 33r z r y ,r x === R Q P ,在S 内有连续一阶的偏导数,故式(2)可以用高斯公式计算。 将式(2)代入式(3)中得 ()???? ?? ? =???? ? ??? ???????? ???+???? ???+???? ???= ++= ++=??? =?V 33303330 S 3030 0dxdydz z r z y r y x r x 4q zdxdy r 1 ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d πεπεπεπεS S S S S E

静电场的高斯定理复习题,DOC

-选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。 〔〕 答案:()D 2. ()A q 3.面的电通量为1φ,2φ,()A φ()B φ()C φ()D φ 4. () A () B () C () D 〔〕答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=;()B 120,2/q φφφε<=; ()C 120,/q φφφε==;()D 120,/q φφφε<=。 〔〕 q S 2

答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外;()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内;()D 将高斯面半径缩小。 7.A q -()A ()B 小为()C ()D 〔〕8. ( (9. (Q 60 ε ()C 穿过每一表面的电通量都等于 Q 30 ε;()D 穿过每一表面的电通量都等于0 24Q ε 〔〕 答案:()D 10.高斯定理0 nt i d ε∑?= ?q S E S ()A 适用于任何静电场。

八岁的高斯发现了数学定理

八岁的高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

静电场的高斯定理复习题

- 选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷, 则通过高斯面的电场强度通量必不为零。 〔 〕 答案:()D 2.如在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 ()A 0/q ε; ()B 0/2q ε; ()C 0/4q ε; ()D 0/6q ε。 〔 〕 答案:()D 3.在电场强度为E Ej =的匀强电场中,有一如图所示的三棱柱,取表面的法线向外,设过面AA'CO ,面B'BOC ,面ABB'A'的电通量为1φ, 2φ,3φ,则 ()A 1230Ebc Ebc φφφ===; ()B 1230Eac Eac φφφ=-==; ()C 22123Eac Ec a b Ebc φφφ=-=-+=-; ()D 22 123Eac Ec a b Ebc φφφ==+=。 〔 〕 答案:()B 4.已知一高斯面所包围的体积内电荷代数和 0i q =∑,则可肯定: ()A 高斯面上各点场强均为零。 ()B 穿过高斯面上每一面元的电通量均为零。 ()C 穿过整个高斯面的电通量为零。()D 以上说法都不对。 〔 〕 答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。 在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和 2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=; ()B 120,2/q φφφε<=; ()C 120,/q φφφε==; ()D 120,/q φφφε<=。 〔 〕 答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外; ()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内; ()D 将高斯面半径缩小。 答案:()B 7.A 和B 为两个均匀带电球体,A 带电荷q +,B 带电荷q -,作一与A 同心的球面S 为高斯面,如图所示。则 x y z a b c E O A A B B C x O q q a 2a S 1 S 2 A S +q r -q B

小学数学三年级上册《丰收了》资料八岁的高斯发现了定理

小学数学三年级上册 《丰收了》资料 八岁的高斯发现了数学定理 德国高斯(1777~1855) 是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

世界四大数学家的故事

世界四大数学家的故事 八岁的高斯发现了数学定理 德国高斯(1777~1855) 是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 小欧拉智改羊圈 欧拉,瑞士人,是世界数学史上与高斯、阿基米德、牛顿齐名的四大著名数学家之一,被誉为“数学界的莎士比亚”,在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却

[关于著名数学家的故事有哪些] 著名数学家的故事

[关于著名数学家的故事有哪些] 著名数学家的故事 数学家传记是数学历史发展的载体,数学家成长经历是数学家传记的重要的一部分。数学家的故事你了解吗?下面就是小编给大家整理的数学家的故事,希望大家喜欢。 数学家的故事篇1:陈景润攻克歌德巴赫猜想 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的陈氏定理,所以有许多人亲切地称他为数学王子。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。陈景润瞪着眼睛,听得入神。 数学家的故事篇2:8岁高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 有一天高斯的数学教师情绪低落的一天。对同学们说:你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。

著名数学家的5个传奇小故事

著名数学家的5个传奇小故事 很多伟大的数学家有一些传奇的故事,在这些故事中,不是无意义的琐碎,也不是一些让人盲目追求的癖好。而且一些高贵的品质和令人称艳的能力,让我们对其敬仰,这些伟人也会因此成为我们的偶像,让孩子有一个追逐的目标。如果孩子认为数学是枯燥的,对数学没兴趣,就让孩子一起看看数学家的故事吧! Top1:伽利略质疑权威 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝

毫没有改变。正因为这样,他才最终成为一代科学巨匠。 Top2:小欧拉怀疑上帝 小欧拉在一个教会学校里读书。有次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:”天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 老师又一次被问住了。心中顿时升起一股怒气,这不仅是因为孩的问题使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。 在欧拉的年代,对上帝是绝对不能怀疑的。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。上帝也许是个别人编造出来的家伙,根本就不存在。 Top 3:小欧拉机智改羊圈

八岁的高斯发现了数学定理

八岁的高斯发现了数学定理德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。 “你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。 还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

高斯定理

电场与磁场的散度定理和旋度定理磁通连续性原理 散度定理(高斯定理):一个矢量通过包围它的闭合面的总通量(矢量的面积分)等于该矢量的散度(和算子点乘)在该闭合面构成的体积内的体积分。散度定理搭建了面积分与体积分之间的转换桥梁。散度定理可用一个球图示。 散度定理是高斯定理在物理中的应用.即矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 旋度定理(斯托克斯定理):一个矢量的闭合线积分等于矢量的旋度(和算子叉乘)在该闭合线围成的开放面上的面积分。旋度定理搭建了线积分与面积分之间的转换桥梁。旋度定理可用一个环图示。 散度定理和旋度定理是将麦克斯韦方程从积分形式向差分形式转化的基础,而麦克方程的差分形式方才便于求解。 高斯散度定律有"两个",分别是对电通密度矢量和磁通密度矢量而言,也即分别描述电场和磁场。高斯定律描述的是流出闭合面的电通/磁通总量与电场源/磁场源之间的对应关系。 1)对电场来说(闭合面内有电场源,对应流出闭合面的是电通总量),高斯定律描述如下:电通密度矢量D在S上的闭合面积分,等于电荷体密度在该闭合面围成的体积内的体积分。D单位C/m^2,电荷体密度单位C/m^3。电场高斯定律的物理意义是:流出闭合面的总电通量等于闭合面内包围的总正电荷。 也就是说,电场源是独立的,电场是一去不返的,从正电荷出发,到负电荷终止。其微分方程如下: 表示电场是有散场,这

是由于自然界存在着自由电荷,因此,▽·E ≠0的地方,味着此处一定存在着净的正电荷或净的负电荷. (1)自然界存在着自由电荷,电子电荷的绝对值e 就是自由电荷的基本值. (2)静电场的场线即E 线始发于正电荷并终止于负电荷,也就是说静电场的E 线不是闭合曲线,它们没有涡旋状结构.即无旋.静电场的这种性质,反映在电场高斯定理和环路定理中. 2)对磁场来说(对应流出闭合面的是磁通总量)(磁通连续性原理),高斯定律描述如下:磁通密度矢量B在S上的闭合面积分,等于0。B单位Wb/m^2。磁场高斯定律的物理意义是:通过任意闭合曲面S 的净磁通量必定恒为零。也就是说,自然界不存在独立的磁场源,磁场是有来有去的,磁力线通过任意闭合面后必然会从相反方向再次通过。磁力线是闭合的! 式子 这就是磁场的“高斯定理”.它反映了磁通量的连续性,所以也被称为“磁通连续性原理”.

电磁场与电磁波例题详解

第1章 矢量分析 例1.1 求标量场z y x -+=2)(φ通过点M (1, 0, 1)的等值面方程。 解:点M 的坐标是1,0,1000===z y x ,则该点的标量场值为 0)(0200=-+=z y x φ。其等值面方程为 : 0)(2=-+=z y x φ 或 2)(y x z += 例1.2 求矢量场222zy a y x a xy a A z y x ++=的矢量线方程。 解: 矢量线应满足的微分方程为 : z y dz y x dy xy dx 222== 从而有 ???????==z y dz xy dx y x dy xy dx 2222 解之即得矢量方程???=-=2 2 21c y x x c z ,c 1和c 2是积分常数。 例1.3 求函数xyz z xy -+=22?在点(1,1,2)处沿方向角 3 ,4 ,3 π γπ βπ α= = = 的方向导数。 解:由于 1) 2,1,1(2) 2,1,1(-=-=??==M M yz y x ?, 02) 2,1,1() 2,1,1(=-=??==M M xz xy y ?, 32) 2,1,1() 2,1,1(=-=??==M M xy z z ?, 2 1cos ,22cos ,21cos === γβα 所以

1cos cos cos =??+??+??= ??γ?β?α??z y x l M 例1.4 求函数xyz =?在点)2,1,5(处沿着点)2,1,5(到点)19,4,9(的方向导数。 解:点)2,1,5(到点)19,4,9(的方向矢量为 1734)219()14()59(z y x z y x a a a a a a l ++=-+-+-= 其单位矢量 3147 31433144cos cos cos z y x z y x a a a a a a l ++=++=γβα 5, 10, 2) 2,1,5()2,1,5()2,1,5() 2,1,5() 2,1,5() 2,1,5(==??==??==??xy z xz y yz x ? ?? 所求方向导数 314 123 cos cos cos = ??=??+??+??= ?? l z y x l M ?γ?β?α?? 例1.5 已知z y x xy z y x 62332222--++++=?,求在点)0,0,0(和点)1,1,1( 处的梯度。 解:由于)66()24()32(-+-++++=?z a x y a y x a z y x ? 所以 623) 0,0,0(z y x a a a ---=?? ,36) 1,1,1(y x a a +=?? 例1.6 运用散度定理计算下列积分: ??++-+=S z y x S d z y xy a z y x a xz a I )]2()([2322 S 是0=z 和2 2 22y x a z --=所围成的半球区域的外表面。 解:设:)2()(2322z y xy a z y x a xz a A z y x ++-+= 则由散度定理???=??τ τs S d A d A 可得

大物课后部分参考答案及解析

大物课后部分参考答案及解析

第一章 P17 1-2 已知j t A i v v sin 0 ,则j t A i t v dt v r cos 0 由 t A y t v x cos 0 可得A v x A y 0 cos (以出发点为原点) j t mA a m F j t A a cos cos 22 1-4 如图,在B 点时,根据其受力情 况,有 20 2 02130sin 60cos B B B mv mgl l mv mg T 解得)N (92 3 mg T B 在B 点时,根据其受力情况,有 22 21C C C mv mgl l mv mg T 解得) N (183 mg T C 1-6 由题意设kv f ,其受力方向在竖直方向上,则有 注意基本概念的理解和掌握:位移,速注意受力分析,区分出

dt dv m ma kv F mg f F mg 变形可得 dt dv kv F mg m 两边同时积分 t v dt dv kv F mg m 00 整理可得 ) 1(t m k e k F mg v 设沉降距离为y ,则dt dy v )] 1([)1(0 t m k t t m k e k m t k F mg dt e k F mg vdt y 1-9 由题意,当h=50m 时,桶中水已全部漏完,故木桶从井中提到井口所做的功为 J) (3500)(J 3430)1.011(]2.0)[(100 50 500 2 10050 50 0或 gh g h h Mgdh dh gh g m M W 1-14 (1)子弹所受的冲量 ) m /s kg (9)50050(02.0 p I 木块所受的冲量与子弹所受的冲量反向,即)m/s kg (9 木块 I (2)对木块,有) m/s kg (950 m p I 木块,因此kg 18.0 m 。 注意题意,要熟练分析题意,具体问题采注意利用运动学中各物理量之间的关系,注意动量定理的灵活应用

高斯定理

§4 高斯定理 一、电力线 1、引入目的:形象化、直观性地描写电场,作为一种辅助工具。 2、引入方法:电场是矢量场,引入电力线要反映场的两个方面方向 大小,在 电场中人为地作出许多曲线,作法如下: (1)反映电场方向——曲线上每点切向与该点场方向一致; (2)反映电场大小——用所画电力线的疏密程度表示,电力线数密度与该点场的大小成正比 ⊥ ??∝ S N E 其中⊥ ??S N 表示通过垂直场方向单位面积的电力线条数——电力线数密度,参见 图1-15。 (a) 垂直时:S N ?? (b) 非垂直时: θ cos S N S N ??= ??⊥ 图1-15 在SI 制中,比例系数取1,则⊥ ??= S N E ,即S E S E N ?=??=?θcos 。更精 确地有:ds E s d E dN θcos =?= 。 例:点电荷Q 均匀辐射N 条电力线,各向同性,半径为r 的球面上电力线数密度为 2 4r N π;而场强2 04r Q E πε= ,两者一致,且0 εQ N = ,球面立体角Ωd 中 E E ΔS ΔS n θ

占有(N d π 4Ω)条。 3、电力线的普遍性质 (1) 电力线起自正电荷(或来自无穷远处)、止于负电荷(或伸向无穷远处), 不会在没有电荷的地方中断——不中断; (2) 对于正、负电荷等量的体系,正电荷发出的电力线全部集中到负电荷上 去——不多余; (3) 无电荷空间任两条电力线不相交——不相交(否则,场则不唯一); (4) 电力线不能是自我闭合线——不闭合。 4、说明 (1) 电力线非客观存在,是人为引入的辅助工具; (2) 电力线可用实验演示; (3) 展示几种带电体电力线的分布(图略)。 二、电通量 静电场是用E 描述的矢量场。一般地,研究矢量场时常引入矢量的通量概念,如:流体力学中的流量θcos s v s v ?=?? 等,静电场中虽无什么在流,但可藉此研究静电场。 1、定义电通量E Φ 在电场中通过一曲面元s ?的电通量E ?Φ定义为: )(c o s N s E s E E ?=??=?=?Φ θ 式中n s s ?=?。因θ可锐角、钝角,故E ?Φ可正、可负。 对于非无限小的曲面,有 ?? ?= = ΦS S E s d E ds E cos 其中,任意曲面S 的法向有两种取法,对于不闭合的曲面,其法向n 取何方向无关紧要。 对于闭合曲面,其电通量定义为: ? ??== ΦS S E s d E ds E θcos

世界四大数学家的故事剖析

数学家的故事 外国篇 1.八岁的高斯发现了数学定理 德国高斯(1777~1855) 是当代最杰出的天文学家、数学家,在物理的电磁学方面也有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们称呼他为“数学王子”。 高斯出生在一个贫穷的家庭,是一个农民的儿子,幼年时,他在数学方面就显示出了非凡的才华。3岁能纠正父亲计算中的错误。 他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。 这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发地拿起一本小说坐在椅子上看去了。 教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来…… 还不到半个小时,小高斯拿起了他的石板走上前去,“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人

静电场中高斯定理

静电场中的高斯定理: 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01()1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 下面举一些例子来说静电场中高定理的应用: 例1:一半径为R 的带电球体,其电荷体密度分布为()Ar r R ρ=≤,0()r R ρ=>,A 为大于零的常量。试求球体内外的场强分布及其方向。 解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为 23d d 4d 4d q V Ar r r Ar r ρ==?π=π 在径为r 的球面内包含的总电荷为 430d 4d Ar r r A V q V r ππρ==?=???? ()r R ≤

相关文档
最新文档