坐标转换软件使用简单说明

坐标转换软件使用简单说明
坐标转换软件使用简单说明

一、打开坐标转换文件夹,双击COORD.EXE文件运行程序

二、在程序主界面菜单栏选择(坐标转换)----(投影设置)

三、在弹出的投影设置对话框菜单中,左侧选中投影方式为(高斯投影3度带),右侧中央子午线为84度,基准纬度为42度(俄矿的参数),然后确定

四、最后在主界面左侧选择源坐标类型为(大地坐标),椭球基准为(WGS-84坐标系),然右侧目标坐标类型选择(平面坐标),然后再输入源坐标,度、分、秒用冒号分隔开,输入完毕后点中间的(转换坐标,右侧即可显示当前输入点的平面坐标

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

使用cass进行北京54坐标与西安80坐标相互转换教程

使用cass进行北京54坐标与西安80坐标相互转换教程 北京54坐标和西安80坐标是使用比较多的,有的时候涉及到这两个坐标系的转换,我们在这里介绍一下使用cass来进行互转的方法。当然还有其他的方法,比如利用COORD4.1进行坐标转换。COORD 4.1是一个免费的坐标转换软件,也是测绘工作者常备的工具之一。以后有机会再来介绍。先跟大家介绍如何使用cass来进行坐标系的互转。 第一步:输入公共点坐标数据 首先准备好2至3个公共点,即同时拥有54和80两套坐标,这些点要覆盖要转换数据所在在地区。然后打开CASS2008,选择“地物编辑”菜单下的“坐标转换”进入坐标转换界面,在“公共点”下面“转换前”后面的三个输入框中输入第一个公共点的54坐标, 再在“转换后”的三个输入框中输入该点的80西安坐标, 输完点击右侧“添加”按钮, 依次输入第二、第三个点的“54、80坐标并添加;如果经常在此区域进行坐标转换,可点击“存到公共点文件”,输入文件存储路径及文件名称,保存,下次使用时直接读入公共点文件即可。 第二步:输入转换前、后的数据文件名 在“转换前”右侧的输入框中输入转换前即54坐标数据的文件路径及文件名,也可以直接点击最右侧的查找按钮直接查找,然后在“转换后”右侧的输入框中输入转换后的文件名。 第三步:计算转换参数 如果用仅有两个已知点,可以计算四参数,三个或三个以上已知点则可以计算七参数。利用四参数转换就点击“计算转换四参数”按钮,如果用七参数转换还需选择转换前、后的坐标系统及转换点所在的中央子午线,点击“计算转换七参数”,软件就自动计算出了七参数。 第四步:进行数据转换 如果转换的是数据就把“转换数据”前面的对勾选上,点击“使用七参数”,即完成了数据的转换,当然也可点击“使用四参数”,完成转换。 补充:北京54坐标与西安80坐标转换原理 北京54坐标与西安坐标之间的转换其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密的,因此不存在一套转换参数可以全国通用,也没有现成的公式来完成转换因此必须利用具有两套坐标值的公共点实现转换。

不同类型地图使用的投影与坐标系

不同类型地图使用的投影与坐标系 (2016-08-12 15:29:29) 不同类型地图使用的投影与坐标系 1.概念辨析 地图投影跟大地坐标系是完全两个东西,尽管具有相关性。地球椭球体则是另一个东西。实际上地图编绘涉及三个基本的东西:椭球体、地图投影、大地坐标系。三者密切关联。(百科知识) 要绘制地图,首先考虑用什么椭球体,这是投影和坐标系的基础——我国三代坐标系使用三种椭球体。 三者之间的关系:先有个椭球体,然后是投影到承影面,然后是添加经纬网。椭球体是基础,投影是转换函数,是数学关系,大地坐标系是参照系。因此,同一椭球体可以用不同的投影;而同一投影,也可以用不同的大地坐标系。 但是一般三者是协调一致的,如我国的三代坐标系,有对应的椭球体、投影类型、基准面(坐标系)。 从地图反映地球表面来看,整个过程涉及五个环节:地球~椭球体~投影~坐标系~地图。而地球是球面的,是一个曲面,而地图是平面的,二者的结构性矛盾,导致我们不得不采用一系列转换,这个转换中不可避免地产生扭曲、变形和误差。具体关系:总结:地球(地球表面,存在高低起伏)→椭球体(光滑球面,相关参数)→投影(投影方式:几何投影与解析投影)→坐标系(地理坐标系与平面直角坐标系)→地图。 2. 我国三代坐标系 我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。 表:北京54、西安80和2000坐标系参数列表 坐标名称投影类型椭球体基准面 北京54Gauss Kruger (Transverse Mercator) Krasovsky D_Beijing_1954 西安80Gauss Kruger (Transverse Mercator) IAG75D_Xian_1980 CGCS2000Gauss Kruger CGCS2000D_China_2000

经纬度和平面坐标的相当转换

经纬度和平面坐标的相互转换 首先,RTK中测量的坐标,想要再转换成经纬度,很简单,其实不用转。直接打开所测量的工程,在坐标管理库中有数据导出的功能,可以直接导出来你所测的每一个点的经纬度或者是把工程文件中的.RTK文件复制出来,用EXCEL表格打开,直接提取经纬度即可。 如果是别人提供的平面坐标,或者以前测量的原始文件删除了,那就需要通过软件进行转换来获得大地坐标。 GPStool GPS工具箱是常用的坐标转换软件,已上传到百度网盘。 第一步,打开软件 新建作业——起名,保存

第二步,设置转换参数 源椭球,肯定选择WGS84。 目标椭球,以西安80为例

投影参数设置,中心经度,也就是中央子午线,输入进去,在这里中央子午线的输入格式是“度.分秒”格式,(举例126度02分03.55秒就输126.020355 注意千万不要输成126.2355 中间的0不能少),其他一般不用。 四参数,校正参数,拟合参数,七参数这四个参数,有哪些,输哪些。一般都是四参数+高程拟合参数+校正参数或者七参数+校正参数。 这里以校正参数为例,记得使用校正参数一定打勾!

转换前坐标设置为大地坐标,格式有多种选择,一般选度或者无格式。 度就是度的格式,举个例子,125度30分,度的格式下,就应该输125.5。无格式的情况下,就输入125.30或者125.3(末位的0可以不用输) 说到这,告诉大家怎么区分“度”和“度.分秒”的区别,当你拿到一些经纬度时,出现43.6579 125.7484这种情况,肯定就是“度”的格式了,因为度分秒中,分秒不会大于60的。如果所有的经纬度中,小数点后第一位和第三位都小于6,那么基本就可以判断,这是“度.分秒”的格式。 转换后类型,根据需要,自己选择。 经纬度转平面,转换前椭球选择WGS84,类型选择大地坐标,转换后椭球选择80,类型选择平面坐标。 平面转经纬度,转换前椭球选择80,类型选择平面坐标,转换后椭球选择WGS84,类型选择大地坐标。 这是单点转换的例子,很简单,输入经纬度点箭头,就出平面。

科傻GPS平差软件说明书

科傻系统(COSA)系列软件GPS工程测量网 通用平差软件包(CosaGPS V5.1) 使用说明书 2007年11月

所有不得翻录Tel: Email: https://www.360docs.net/doc/c49317205.html, https://www.360docs.net/doc/c49317205.html,

目录 目录 (1) 1.简介 (3) 1.1 功能全面 (3) 1.2 整体性好 (3) 1.3 解算容量大,运算速度快 (3) 1.4 操作简明,使用方便 (4) 2.“文件”下拉菜单 (6) 2.1 工程与文件 (6) 2.2 “文件”菜单项 (8) 2.2.1新建 (8) 2.2.2打开 (9) 2.2.3关闭 (9) 2.2.4保存 (9) 2.2.5另存为 (9) 2.2.6新建工程 (9) 2.2.7 打开工程 (15) 2.2.8 打印 (16) 2.2.9 打印预览 (16) 2.2.10 打印设置 (16) 2.2.11 退出 (16) 3.“GPS数据处理”下拉菜单 (17) 3.1 已知数据 (17) 3.1.1 三维已知坐标 (18) 3.1.2 二维已知坐标 (19) 3.1.3 一维高程点 (19) 3.1.4 输入地面边长 (19) 3.1.5 输入地面方位 (20) 3.2 基线数据 (20) 3.3 GPS三维向量网平差(无约束平差或约束平差) (21) 3.4 二维网联合/约束平差 (22) 3.4.1 联合/约束平差 (22)

3.4.2 输出用户自定义任意两点相对精度 (23) 3.5 椭球面上三维平差 (23) 3.6 工程网(一点一方向)平差 (24) 3.7 GPS高程拟合 (25) 3.8 GPS三维秩亏自由网平差 (26) 3.9 稳定性分析 (27) 3.10 设置 (28) 4.“查看”下拉菜单 (28) 5.“工具”下拉菜单 (29) 5.1 闭合差计算 (30) 5.2 重复基线差 (30) 5.3 网图显绘 (31) 5.4 贯通误差影响值计算 (31) 5.5 GPS网设计 (32) 5.6 输出AutoCAD格式的GPS网图 (33) 6.“坐标转换”下拉菜单 (34) 6.1 XYZ-〉BLH (34) 6.2 BLH->XYZ (35) 6.3 BL->XY (36) 6.4 XY->BL (36) 6.5 XY1->XY2 (37) 6.6 XYZ1->XYZ2 (39) 6.7 高程面坐标变换 (41) 7.“帮助”下拉菜单 (42) 附录1. 功能菜单框图 (43) 附录2. 算例及说明 (44) 附录3. 基线解文件格式说明 (46) 附录4. 方向及经纬度的角度格式说明 (54) 附录5. 简要操作步骤 (55)

坐标变换就是两种坐标类型

坐标变换就是两种坐标类型、不同参照体系之间的变换 坐标变换因不同的坐标类型、体系变换方法不一样,没有固定的公式 比方说测量地球,就有多种坐标体系: 1。以地心为原点的空间直角坐标 2。经纬度坐标 3。把地球表面分成很多格子,对于一个小格子区,球面接近平面,在这个平面上设一个平面直角坐标系,就是北京54坐标等坐标形式 这些坐标来回转换,比较复杂,甚至是学术性的问题,一般根据不同的观点和精度,有一些小程序,做转换工作 工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m, y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。

空间大地坐标系与平面直角坐标系转换公式

§2.3.1 坐标系的分类 正如前面所提及的,所谓坐标系指的是描述空间位置的表达形式,即采用什么方法来表示空间位置。人们为了描述空间位置,采用了多种方法,从而也产生了不同的坐标系,如直角坐标系、极坐标系等。 在测量中常用的坐标系有以下几种: 一、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z 轴指向参考椭球的北极,X 轴指向起始子午面与赤道的交点,Y 轴位于赤道面上且按右手系与X 轴呈90°夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。空间直角坐标系可用图2-3来表示: 图2-3 空间直角坐标系 二、空间大地坐标系 空间大地坐标系是采用大地经、纬度和大地高来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角;经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角;大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。空间大地坐标系可用图2-4来表示:

图2-4空间大地坐标系 三、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标空间直角坐标或空间大地坐标通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如横轴墨卡托投影、UTM 投影、兰勃特投影等。在我国采用的是高斯-克吕格投影也称为高斯投影。UTM 投影和高斯投影都是横轴墨卡托投影的特例,只是投影的个别参数不同而已。 高斯投影是一种横轴、椭圆柱面、等角投影。从几何意义上讲,是一种横轴椭圆柱正切投影。如图左侧所示,设想有一个椭圆柱面横套在椭球外面,并与某一子午线相切(此子午线称为中央子午线或轴子午线),椭球轴的中心轴CC ’通过椭球中心而与地轴垂直。 高斯投影满足以下两个条件: 1、 它是正形投影; 2、 中央子午线投影后应为x 轴,且长度保持不变。 将中央子午线东西各一定经差(一般为6度或3度)范围内的地区投影到椭圆柱面上,再将此柱面沿某一棱线展开,便构成了高斯平面直角坐标系,如下图2-5右侧所示。 图2-5 高斯投影 x 方向指北,y 方向指东。 可见,高斯投影存在长度变形,为使其在测图和用图时影响很小,应相隔一定的地区,另立中央子午线,采取分带投影的办法。我国国家测量规定采用六度带和三度带两种分带方法。六度带和三度带与中央子午线存在如下关系: 366 N L =中; n L 33=中 其中,N 、n 分别为6度带和3度带的带号。

参考系坐标系及转换汇总

1 天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。天球直角坐标系 天球坐标系 天球球面坐标系 坐标系 地球直角坐标系 地球坐标系 地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1 天球空间直角坐标系的定义 地球质心O为坐标原点,Z轴指向天球北极,X轴指向春分点,Y轴垂直于XOZ平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,Y,Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交 点).

2 天球球面坐标系的定义 地球质心O为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天球经度(赤经)测量基准——基准子午面,赤道为天球纬度测量基准而建立球面坐标。空间点的位置在天球坐标系下的表述为(r,α,δ)。

表示:2-1天球空间直角坐标系与天球球面坐标系的关系可用图

岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这 使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬时春分点的方向,经过瞬时的岁差和章动改正后,分别作为X轴和Z轴的指向,。协议天球坐标系由此建立的坐标系称为 3 地球坐标系

坐标转换COORD4.2使用手册

坐标转换问题的详细了解对于测量很重要,那么请和我一起来讨论这个问题。 首先,我们要弄清楚几种坐标表示方法。大致有三种坐标表示方法:经纬度和高程,空间直角坐标,平面坐标和高程。 我们通常说的WGS-84坐标是经纬度和高程这一种,北京54坐标是平面坐标和高程着一种。 现在,再搞清楚转换的严密性问题,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换这时不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点,如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。在本软件中提供了计算三参数、七参数的功能。 在一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。本软件提供计算四参数的功能。 现在举个例子说明:在珠江有一个测区,需要完成WGS-84坐标到珠江坐标系(54椭球)的坐标转换,整个转换过程是 这样的:

本软件使用说明: 本软件采用文件化管理,用户可以将一种转换作为一个文件保存下来,下次使用时从文件菜单中选择打开这个文件来调用所有已有的转换参数。 实例一: 转换要求: 用户在一个佛山测区内使用RTK GPS接收机接受了一些点的WGS-84的坐标,现在希望将其转换为北京54和佛山坐标系下的坐标。用户有佛山测区的一些控制点,这些控制点有WGS-84坐标,也有北京-54坐标也有佛山坐标。 分析: WGS-84坐标和北京54坐标是不同两个椭球的坐标转换,所以要求得三参数或七参数,而北京54和佛山坐标都是同一个椭球,所以他们之间的转换是地方坐标转换,需要求得地方转化四参数,因为要求得到的北京54是平面坐标所以需要设置投影参数。: 步骤: 1.1.新建坐标转换文件,便于下次使用转换是不用重新输入,直接打开即可。 2.2.设置投影参数。 3.3.用一个已知点(WGS84坐标和北京54坐标),计算不同椭球转换的三参数(或七参数)。

南方CASS坐标转换方法

南方CASS坐标转换方法 摘要本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的两种方法。 关键词:坐标系坐标转换方法 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。

一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球) 。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: 如果空间上任意一点P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: 在GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 天球坐标系的定义是这样的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 地球坐标系的定义是这样的,原点为地球质心(O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 那么,什么是“协议”坐标系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协议天 球坐标系和协议地球坐标系。

参考系坐标系及转换

1天球坐标系、地球坐标系和卫星测量中常用的坐标系的建立方法。 L天球直角坐标系 厂天球坐标系 天球球面坐标系 地球直角坐标系地球大地坐标系 常用的天球坐标系:天球赤道坐标系、天球地平坐标系和天文坐标系。 在天球坐标系中,天体的空间位置可用天球空间直角坐标系或天球球面坐标系两种方式来描述。 1天球空间直角坐标系的定义 地球质心0为坐标原点,Z轴指向天球北极,X轴指向春分点,丫轴垂直于XOZ 平面,与X轴和Z轴构成右手坐标系。则在此坐标系下,空间点的位置由坐标(X,丫Z)来描述。 春分点:当太阳在地球的黄道上由天球南半球进入北半球,黄道与赤道的交点)

A <空闵直笥坐瑟厂K V : z 丿的楚辽” 2天球球面坐标系的定义 地球质心0为坐标原点,春分点轴与天轴(天轴:地球自转的轴)所在平面为天 球经度(赤经)测量基准一一基准子午面,赤道为天球纬度测量基准而建立球面 坐标。空间点的位置在天球坐标系下的表述为(r ,a,S )。 天欢申诗与地球质?M 重合T 赤礙刊为舍天黏 和感分点的天球子牛面 与过天体$的天球子牛面 之间的夾角,未纬 S 为 原点Mi 天体£的连規与 天球击道面之间的夹角, 旬題丫为展点Mi 天体S 球球】?坐抚1就,S 1 r )的C 义: 天球空间直角坐标系与天球球面坐标系的关系可用图 2-1表示: 感鼻—地I 球质心M 一孑塾一指向天球北奴Pn 、 ¥菇'一垂直于XMZ 平面, 与X 抽和Z 抽枸成右 手坐 标系统。 Pn A Z y X 1 \y X 奋 My\5 Ps / /

对同一空间点,直角坐标糸与其著效的球面坐标糸参教间有如下转换关务: C X - /cos a cos S < Y= / sin cos -Z = ysin 5 Y V a = arctan —— L Xz d -arctail . 岁差和章动的影响 岁差:地球实际上不是一个理想的球体,地球自转轴方向不再保持不变,这使春分点在黄道上产生缓慢的西移,这种现象在天文学中称为岁差。 章动:在日月引力等因素的影响下,瞬时北天极将绕瞬时平北天极旋转,大致呈椭圆,这种现象称为章动。 极移:地球自转轴相对地球体的位置并不是固定的,因而,地极点在地球表面上的位置,是随时间而变化的,这种现象称为极移。地球的自转轴不仅受日、月引力作用而使其在空间变化,而且还受地球内部质量不均匀影响在地球内部运动。 前者导致岁差和章动,后者导致极移。 协议天球坐标系:为了建立一个与惯性坐标系统相接近的坐标系,人们通常选择某一时刻,作为标准历元,并将此刻地球的瞬时自转轴(指向北极)和地心至瞬 时春分点的方向,经过瞬时的岁差和章动改正后,分别作为 X轴和Z轴的指向, 由此建立的坐标系称为协议天球坐标系。天味奋 5 y X X Ps

各种坐标系的关系

WGS84经纬度坐标与北京54坐标或者西安80坐标的关系一般来讲,GPS直接提供的坐标(B,L,H)是1984年世界大地坐标系(Word Geodetic System1984即WGS-84)的坐标,其中B为纬度,L为经度,H为大地高即是到WGS-84椭球面的高度。而在实际应用中,我国地图采用的是1954北京坐标系或者1980西安坐标系下的高斯投影坐标(x,y,),不过也有一些电子地图采用1954北京坐标系或者1980西安坐标系下的经纬度坐标(B,L),高程一般为海拔高度h。 GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同,经粗落统计,我国西部相差70米左右,东北部140米左右,南部75米左右,中部45米左右。 1、1984世界大地坐标系 WGS-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。定义是:原点是地球的质心,空间直角坐标系的Z轴指向BIH(1984.0)定义的地极(CTP)方向,即国际协议原点CIO,它由IAU和IUGG共同推荐。X轴指向BIH定义的零度子午面和CTP 赤道的交点,Y轴和Z,X轴构成右手坐标系。WGS-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数:长半轴a=6378137m;扁率f=1:298.257223563。 2、1954北京坐标系 1954北京坐标系是将我国大地控制网与前苏联1942年普尔科沃大地坐标系相联结后建立的我国大地坐标系。属于参心大地坐标系,采用了前苏联的克拉索夫斯基椭球体。其长半轴 a=6378245,扁率

f=1/298.3。1954年北京坐标系虽然是苏联1942年坐标系的延伸,但不能说它们完全相同。 3、1980西安坐标系 1978年,我国决定建立新的国家大地坐标系统,并且在新的大地坐标系统中进行全国天文大地网的整体平差,这个坐标系统定名为1980年西安坐标系。属参心大地坐标系。1980年西安坐标系Xi'an Geodetic Coordinate System 1980 采用1975国际椭球,以JYD 1968.0系统为椭球定向基准,大地原点设在陕西省泾阳县永乐镇,采用多点定位所建立的大地坐标系.其椭球参数采用1975年国际大地测量与地球物理联合会推荐值,它们为:其长半轴a=6378140m; 扁率f=1/298.257。 4 高斯平面直角坐标系和UTM 一般的地图均为平面图,其对应的也是平面坐标.因此,需要将椭球面上各点的大地坐标,按照一定的数学规律投影到平面上成为平面直角坐标.目前世界各国采用最广泛的高斯- 克吕格投影和墨卡托投影(UTM)均是正形投影(等角投影),即该投影在小区域范围内使平面图形与椭球面上的图形保持相似。为了限制长度变形,根据国际测量协会规定,将全球按一定经差分成若干带。我国采用6度带或3度带,6度带是自零度子午线起每隔经度。 高斯平面直角坐标系一般以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,在投影中规定将坐标纵轴西移500公里当作起始轴。为了区

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 张兢1 王文瑞2 陈溪1 (1.广西第一测绘院广西南宁530023; 2.南宁市勘测院广西南宁530022) 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1 坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数

坐标系之间的转换

大地坐标(BLH经纬度高程)和北京54等坐标系之间的转换 2008-12-11 16:25:23| 分类:默认分类| 标签:|字号大中小订阅 工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。 3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中:V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差

科傻平差说明文件..

科傻系统系列软件之二 (COSA_CODAPS) 现代测量控制网 测量数据处理通用软件包 Version 6.0 使用说明书 武汉大学测绘学院 武地课题组 2009年4月

目录 前言 (1) 第一章概述 (3) 1.1 系统简介 (3) 1.2 安装及运行 (4) 1.3 快速入门 (5) 第二章平差 (10) 2.1 控制网观测值文件 (10) 2.2 控制网平差 (20) 2.3 设置与选项 (23) 2.4 生成概算用文件 (32) 2.5 附加信息文件 (33) 2.6 自由网平差 (34) 第三章工具 (40) 3.1 平面闭合差计算 (40) 3.2 高程闭合差计算 (42) 3.3贯通误差影响值计算 (42) 3.4图形显绘 (44) 3.5斜距化平 (44) 3.6手簿通讯 (46) 3.7格式转换 (47)

3.8高差转换 (47) 3.9徕卡DNA格式转换 (47) 3.10拓普康GTS格式转换 (50) 3.8叠置分析 (52) 第四章粗差定值定位和方差分量估计 (54) 4.1粗差定值定位 (54) 4.2方差分量估计 (60) 第五章网的模拟计算和优化设计 (62) 5.1生成正态标准随机数 (62) 5.2网的模拟计算 (62) 5.3平面网优化设计 (70) 第六章报表输出 (72) 6.1原始数据报表 (72) 6.2 平差结果报表 (79) 第七章坐标转换 (82) 7.1 XYZ-〉BLH (82) 7.2 BLH->XYZ (83) 7.3 XY->BL (84) 7.4 BL->XY (85) 7.5 XY1->XY2 (85) 7.6 XY1->XY2 (86) 7.8 几何转换 (87) ii

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法 一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而 来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1 。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但 该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成果相矛盾给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建 立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球 ) 。其主要参数为长半轴为6378140 米扁率为 1/。IAG-1975 椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面较好的吻合。 此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平 差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。 由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球

相关文档
最新文档