高中物理竞赛十年预赛真题-热学(纯手打含答案)

高中物理竞赛十年预赛真题-热学(纯手打含答案)
高中物理竞赛十年预赛真题-热学(纯手打含答案)

十年真题-热学(预赛)

1.(34届预赛2)系统1和系统2质量相等,比热容分别为C 1和C 2,两系统接触后达到够达到共同的温度T ,整个过程中与外界(两系统之外)无热交换.两系统初始温度T 1和T 2的关系为

A .T 1=C 2C 1(T -T 2)-T

B .T 1=

C 1C 2

(T -T 2)-T C .T 1=C 1C 2(T -T 2)+T D .T 1=C 2C 1

(T -T 2)+T 2.(31届预赛1)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于

A .α

B .α1/3

C .α3

D .3α

3.(29届预赛1)下列说法中正确的是

A .水在0℃时密度最大

B .一个绝热容器中盛有气体,假设把气体中分子速率很大的如大于v A 的分子全部取走,则气体的温度会下降,此后气体中不再存在速率大于v A 的分子

C .杜瓦瓶的器壁是由两层玻璃制成的,两层玻璃之间抽成真空,抽成真空的主要作用是既可降低热传导,又可降低热辐射

D .图示为一绝热容器,中间有一隔板,隔板左边盛有温度为T 的理想气体,右边为真空.现抽掉隔板,则气体的最终温度仍为T

4.(28届预赛2)下面列出的一些说法中正确的是

A .在温度为20oC 和压强为1个大气压时,一定量的水蒸发为同温度的水蒸气,在此过程中,它所吸收的热量等于其内能的增量.

B .有人用水银和酒精制成两种温度计,他都把水的冰点定为0度,水的沸点定为100度,并都把0刻度与100刻度之间均匀等分成同数量的刻度,若用这两种温度计去测量同一环境的温度(大于0度小于100度)时,两者测得的温度数值必定相同.

C .一定量的理想气体分别经过不同的过程后,压强都减小了,体积都增大了,则从每个过程中气体与外界交换的总热量看,在有的过程中气体可能是吸收了热量,在有的过程中气体可能是放出了热量,在有的过程中气体与外界交换的热量为零.

D .地球表面一平方米所受的大气的压力,其大小等于这一平方米表面单位时间内受上方作热运动的空气分子对它碰撞的冲量,加上这一平方米以上的大气的重量.

5.(27届预赛2)烧杯内盛有0℃的水,一块0℃的冰浮在水面上,水面正好在杯口处.最后冰全部融化成0℃的水.在这过程中

A .无水溢出杯口,但最后水面下降了

B .有水溢出杯口,但最后水面仍在杯口处

C .无水溢出杯口,水面始终在杯口处

D .有水溢出杯口,但最后水面低于杯口

6.(27届预赛3)如图所示,a 和b 是绝热气缸中的两个活塞,它们把气缸分成甲和乙两部分,两部分中都封有等量的理想气体.a 是导热的,其热容量可不计,与气缸壁固连.b 是绝热的,可在气缸内无摩擦滑动,但不漏气,其右方为大气.图中k 为加热用的电炉丝.开始时,系统处于平衡状态,两部分中气体的温度和压强皆相同.现接通电源,缓慢加热一段时间后停止加热,系统又达到新的平衡,则

A .甲、乙中气体的温度有可能不变

B .甲、乙中气体的压强都增加了

C .甲、乙中气体的内能的增加量相等

D .电炉丝放出的总热量等于甲、乙中气体增加内能的总和

7.(27届预赛4)一杯水放在炉上加热烧开后,水面上方有“白色气”;夏天一块冰放在桌面上,冰的上方也有“白色气”.

A .前者主要是由杯中水变来的“水的气态物质”

B .前者主要是由杯中水变来的“水的液态物质”

C .后者主要是由冰变来的“水的气态物质”

D.后者主要是由冰变来的“水的液态物质”

8.(26届预赛3)一根内径均匀、两端开中的细长玻璃管,竖直插在水中,管的一部分在水面上.现用手指封住管的上端,把一定量的空气密封在玻璃管中,以V0表示其体积;

然后把玻璃管沿竖直方向提出水面,设此时封在玻璃管中的气体体积为V1;最后把玻璃管在竖直平面内转过900,让玻璃管处于水平位置,设此时封在玻璃管中的气体体积为V2.则有

A.V1>V0≥V2B.V1>V0>V2C.V1=V2>V0D.V1>V0,V2>V0 9.(25届预赛4)如图所示,放置在升降机地板上的盛有水的容器中,插有两根相对容器的位置是固定的玻璃管a和b,管的上端都是封闭的,下端都是开口的.管内被水各封有一定质量的气体.平衡时,a管内的水面比管外低,b管内的水面比

管外高.现令升降机从静止开始加速下降,已知在此过程中管内气体

仍被封闭在管内,且经历的过程可视为绝热过程,则在此过程中

A.a中气体内能将增加,b中气体内能将减少

B.a中气体内能将减少,b中气体内能将增加

C.a、b中气体内能都将增加

D.a、b中气体内能都将减少

10.(25届预赛5)图示为由粗细均匀的细玻璃管弯曲成的“双U形管”,a、b、c、d为其四段竖直的部分,其中a、d上端是开口的,处在大气中.管中的水银

把一段气体柱密封在b、c内,达到平衡时,管内水银面的位置如图

所示.现缓慢地降低气柱中气体的温度,若c中的水银面上升了一小

段高度Δh,则

A.b中的水银面也上升Δh

B.b中的水银面也上升,但上升的高度小于Δh

C.气柱中气体压强的减少量等于高为Δh的水银柱所产生的压强

D.气柱中气体压强的减少量等于高为2Δh的水银柱所产生的压强

11.(31届预赛9)图中所示的气缸壁是绝热的.缸内隔板A是导热的,它固定在缸壁上.活塞B是绝热的,它与缸壁的接触是光滑的,但不漏气.B的上方为大气.A

与B之间以及A与缸底之间都盛有n mol的同种理想气体.系统在开

始时处于平衡状态,现通过电炉丝E对气体缓慢加热.在加热过程中,

A、B之间的气体经历_________过程,A以下气体经历________过程;

气体温度每上升1K,A、B之间的气体吸收的热量与A以下气体净吸

收的热量之差等于_____________.已知普适气体常量为R.

答案:等压、等容、nR

解析:在加热过程中,AB之间的气体的压强始终等于大气压强与B活塞的重力产生的压强之和,故进行的是等压变化,由于隔板A是固定在气缸内的,所以,A以下的气体进行的是等容变化,当气体温度升高1K时,AB之间的气体吸收的热量为Q1=PΔV+ΔU,A以下的气体吸收的热量为Q2=ΔU,又根据克拉伯龙方程pΔV=nRΔT,所以Q1-Q2=pΔV=nR.

12.(28届预赛6)在大气中,将一容积为0.50m3的一端封闭一端开口的圆筒筒底朝上筒口朝下竖直插人水池中,然后放手,平衡时,筒内空气的体积为0.40m3.设大气的压强与

10.0m高的水柱产生的压强相同,则筒内外水面的高度差为.

答案:2.5m

13.(34届预赛13)横截面积为S和2S的两圆柱形容器按图示方式连接成一气缸,每隔圆筒中各置有一活塞,两活塞间的距离为l,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中Ⅰ、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一个小孔,与大气相通;1mol该种气体内能为CT(C是气体摩尔热容量,T是气体的绝对温度).当三个气室中气体的温度均为

T 1时,“工”字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时Ⅰ室内空气柱

长亦为l ,Ⅱ室内空气的摩尔数为32ν.已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦.现通过电热器对Ⅰ、Ⅲ两室中的气体缓慢加热,直至Ⅰ室内气体的温度升为其初始状态温度的2倍,活塞左移距离d .已知理想气体常量为R ,求:

(1)Ⅲ室内气体初态气柱的长度;

(2)Ⅲ室内气体末态的温度;

(3)此过程中ⅠⅢ室密闭气体吸收的总热量.

解析:(1)设大气压强为p 0.初态:Ⅰ室内气体压强为p 1;Ⅲ室内气体压强为p 1′,气

柱的长度为l ′.末态:Ⅰ室内气体压强为p 2;Ⅲ室内气体压强为p 2′.由初态到末态:活塞左移距离为d .对初态应用气体状态方程,对Ⅰ室气体有:p 1lS =νRT 1 ①

对Ⅱ室内气体有:p 0(l 2×S +l 2×2S )=32

ν0RT 1 ② 对Ⅲ室内气体有:p 1′l ′(2S )=(2ν)RT 1 ③ 由力学平衡条件有:p 1′(2S )=p 1S +p 0(2S -S ) ④ 由题给条件和①②③④式得:l ′=ν2ν1+ν0l =2νν+ν0

l ⑤ (2)对末态应用气体状态方程,对Ⅰ室内气体有:p 2(l -d )S =νRT 2=νR ·2T 1 ⑥ 对Ⅲ室内气体有:p 2′(l ′+d )(2S )=(2ν)RT 2′ ⑦ 由力学平衡条件有:p 2′(2S )=p 2S +p 0(2S -S ) ⑧

联立②⑤⑥⑦⑧和题给条件得:T 2′=2νl +(ν+ν0)d (l -d )(ν+ν0)????1+ν02νl -d l T 1

⑨ (3)大气对密闭气体系统做的功为W =p 0(2S -S )(-d )=-p 0Sd =-d l

ν0RT 1 ⑩ 已利用②式.

系统密闭气体内能增加量为:ΔU =νC (T 2-T 1)+(2ν)C (T 2′-T 1)=νC (2T 2′-T 1) ?

由⑨⑩式得:ΔU =2νl +(ν+ν0)d (l -d )(ν+ν0)?

???2ν+l -d l ν0CT 1-νCT 1 ? 系统吸收的热量为:Q =ΔU -W =2νl +(ν+ν0)d (l -d )(ν+ν0)?

???2ν+l -d l ν0CT 1-νCT 1+d l ν0RT 1 ? 参考评分:第(1)问9分,①②③④式各2分,⑤式1分.第(2)问4分,⑥⑦⑧⑨式各1分.第(3)问7分,⑩?式各2分,?式1分,?式2分.

14.(33届预赛16)充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得

该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原理,考虑如图所示的连通水管(由三段内径相同的U 形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两

个有水的U 形管两边水面分别等高.此时被封闭的

空气柱的长度为L a .已知大气压强P 0、水的密度ρ、

重力加速度大小为g ,L 0≡P 0/(ρg).现由左管口添

加体积为ΔV =xS 的水,S 为水管的横截面积,在

稳定后:

(1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱的长度;

(2)当x <

以及空气柱的长度.已知1+z ≈1+12z ,当z <<1. 解析:解法(一)(1)设在左管添加水之前左右两个U 形管两边水面的高度分贝为h 1和h 2,添加水之后左右两个U 形管两边水面的高度分别为h 1L 和h 1R 、h 2L 和h 2R .如图所示,设被封闭的空气的压强为p ,空气柱的长度为L b .水在常温常压下可视为不可被压缩的流体,故:2h 1+x =h 1L +h 1R ①

2h 2=h 2L +h 2R ②

由力学平衡条件有:p 0+ρgh 1L =p +ρgh 1R ③

p 0+ρgh 2R =p +ρgh 2L ④

由于连通管中间高度不变,有:

h 1+h 2+L a =h 1R +h 2L +L b ⑤

由玻意耳定律得:p 0L a =pL b ⑥

联立①②③④⑤⑥式得p 满足的方程:L 0p 0p 2+?

???L a -L 0-x 2p -p 0L a =0 解得:p =p 02L 0???

?L 0-L a +x 2+????L a -L 0-x 22+4L a L 0 ⑦ 将⑦式带入⑥式得:L b =12???

?L a -L 0-x 2+????L a -L 0-x 22+4L a L 0 ⑧ 由①②③④⑦式得:Δh 1L ≡h 1L -h 1=x -Δh 1R =

x -L 02+14[L 0-L a +x 2+????L a -L 0-x 22+4L a L 0] ⑨ =5x -2L a -2L 08+14?

???L a -L 0-x 22+4L a L 0 Δh 1R ≡h 1R -h 1=L 0+x 2-p 2ρg

=L 0+x 2-14????L 0-L a +x 2

+????L a -L 0-x 22+4L a L 0 ⑩ =3x +2L a +2L 08-14

????L a -L 0-x 22+4L a L 0 Δh 2L ≡h 2L -h 2=L 02-p 2ρg

=L 02-14????L 0-L a +x 2

+????L a -L 0-x 22+4L a L 0 ? =2L a +2L 0-x 8-14

????L a -L 0-x 22+4L a L 0 Δh 2R ≡h 2R -h 2=-Δh 2L =

x -2L a -2L 08+14????L a -L 0-x 22+4L a L 0 ? (2)在x <

) ? 由⑨⑩????式得:Δh 1L ≈34

x ?

Δh 1R ≈-Δh 2L =Δh 2R ≈14

x ? 参考评分:第(1)问14分,①②③④⑤⑥⑦⑧式各1分,⑨⑩式各2分,??式各1分;第(2)问6分,??式各1分,??式各2分.

解法(二)(1)设U 形管1左侧末态水面比初态上升x 2+y ,右侧末态水面比初态上升x 2

-y ,U 形管2左侧末态水面比初态下降y ,右侧末态水面比初态上升y .由玻意耳定律得: L a L 0=L b (L 0+2y ) ①

由几何关系有: L a -x 2

+2y =L b ② 将②式带入①式得: L a L 0=(L a -x 2

+2y ) (L 0+2y ) ③ 解得: y =x 8-L 04-L a 4+14

????L 0+L a -x 22+2xL 0 ④ 此即U 形管2左侧末态比初态水面下降值,也是右侧末态比初态水面上升值(负根y =x 8-L 04-L a 4-14?

???L 0+L a -x 22+2xL 0不符合题意,已舍去). U 形管1左侧末态比初态水面上升: x 2+y =5x -2L a -2L 08+14?

???L a +L 0-x 22+2xL 0 ⑤ 右侧末态比初态水面上升: x 2-y =3x +2L a +2L 08-14?

???L a +L 0-x 2 2+2xL 0 ⑥ 将④式带入②式得: L b =L a -x 2+2y =2L a -2L 0-x 4+12

????L a +L 0-x 22+2xL 0 ⑦ (2)在x <

?

???L a +L 0-x 22+2xL 0=L a 2+L 02+x 24+2L 0L a -xL 0-xL a +2xL 0 =L 01+L a 2L 02+x 24L 02+2L a L 0-xL a 2L 02+x L 0

≈L 0????1+12(L a 2L 02+x 24L 0

2+2L a L 0-xL a L 02+x L 0 =L 0+12???

?L a 2L 0+x 24L 0+2L a -xL a L 0+x ⑧ ≈L 0+12

(2L a +x ) =L a +L 0+x 2

⑧式在推导过程中用到了1+z ≈1+12

z ,当z <<1. 将⑧式带入④⑤⑥⑦式中分别得到:

y ≈x 8-L 04-L a 4+14????L 0+L a +x 2=x 4

x 2+y ≈x 2+x 4=3x 4 ⑩ x 2-y ≈x 2-x 4=x 4

? L b ≈L a 2-L 02-x 4+12???

?L 0+L a +x 2=L a ? 参考评分:第(1)问14分,①式4分,②③式各1分,④式3分,⑤式2分,⑥式1分.第(2)问6分,⑨⑩式各2分,??式各1分.

15.(32届预赛15)如图,导热性能良好的气缸A 和B 高度均为h

(已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0

的恒温槽内,它们的底部由一细管连通(细管容积可忽略).两

气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞

与气缸之间无摩擦,两活塞的下方为理想气体,上方为真

空.当两活塞下方气体处于平衡状态时,两活塞底面相对于

气缸底的高度均为h /2.现保持恒温槽温度不变,在两活塞上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2m g (g 为重力加速度)为止,并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为h /2处.求:

(1)两个活塞的横截面积之比S A ∶S B .

(2)气缸内气体的最后的温度.

(3)在加热气体的过程中,气体对活塞所做的总功.

解析:(1)平衡时气缸A 、B 内气体的压强相等,故:m A g S A =m B g S B

① 由①式和题给条件得: S A ∶S B =2∶1 ②

(2)两活塞上各放一质量为2m 的质点前,气体的压强p 1和体积V 1分别为:

p 1=2mg S A =mg S B

③ V 1=32

S B h ④ 两活塞上各放一质量为2m 的质点后,B 中活塞所受到的气体压力小于它和质点所受重力之和,B 中活塞将一直下降至气缸底部为之,B 中气体全部进入气缸A .假设此时气缸A

中活塞并未上升到气缸顶部,气体的压强p 2=4mg S A =2mg S B

⑤ 设平衡时气体体积为V 2,由于初态末态都是平衡态,由理想气体状态方程有:

p 1V 1T 0=p 2V 2T 0

⑥ 由③④⑤⑥式得: V 2=34S 0h =38

S A h ⑦ 这时气体的体积小于气缸A 的体积,与活塞未上升到气缸顶部的假设一致.

缓慢加热时,气体先等压膨胀,B 中活塞不动,A 中活塞上升;A 中活塞上升至顶部后,

气体等容升压;压强升至3mg S B

时,B 中活塞开始上升,气体等压膨胀. 设当温度升至T 时,该活塞恰好位于h 2处.此时气体的体积变为V 3=52

S B h ⑧

气体压强 p 3=3mg S B ⑨ 设此时气缸内气体的温度为T ,由状态方程有:p 2V 2T 0=p 3V 3T

⑩ 由⑤⑦⑧⑨⑩式得: T =5T 0 ?

(3)升高恒温槽的温度后,加热过程中,A 活塞上升量为h -38h =58

h ? 气体对活塞所做的总功为W =4mg ·58h +3mg ·h 2

=4mgh ? 参考评分:第(1)问3分,①式2分,②式1分;第(2)问13分,③④⑤⑥式各2分,⑦⑧⑨⑩?式各1分;第(3)问4分,??式各2分.

16.(31届预赛14)1mol 的理想气体经历一循环过程1-2-3-1,如p -T 图示所示,过程1-2

是等压过程,过程3-1是通过p -T 图原点的直线上的一段,描述过程2-3的方程为c 1p 2+c 2p =T ,式中c 1和c 2都是待定的常量,p 和T 分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P 1和T 1,气体在

状态2的绝对温度以及在状态3的压强和绝对温度分别为

T 2以及p 3和T 3.气体常量R 也是已知的.

(1)求常量c 1和c 2的值;

(2)将过程1-2 -3 -1在p -v 图示上表示出来;

(3)求该气体在一次循环过程中对外做的总功.

解析:(1)设气体在状态i (i =1、2、3)下的压强、体积和温度分别为p i 、V i 和T i ,由题设条件有:c 1p 22+c 2p 2=T 2 ①

c 1p 32+c 2p 3=T 3 ②

由此解得:c 1=T 2p 3-T 3p 2p 22p 3-p 32p 2=T 2p 3-T 3p 1p 12p 3-p 32p 1

③ c 2=T 2p 32-T 3p 22p 2p 32-p 22p 3=T 2p 32-T 3p 12

p 1p 32-p 12p 3

④ (2)利用气体状态方程pV =RT 以及V 1=R T 1p 1、V 2=R T 2p 2、V 3=R T 3p 3

⑤ 可将过程2—3的方程写为p V 2-V 3p 2-p 3=V +V 2p 3-V 3p 2p 2-p 3

⑥ 可见,在p -V 图上过程2-3是以(p 2,V 2)和(p 3,V 3)为状态端点的直线,过程3

-1是通过原点直线上的一段,因而描述其过程的方程为:p T

=c 3 ⑦ 式中c 3是一常量,

利用气体状态方程pV =RT ,可将过程3-1的方程改写为:

V =R c 3

=V 3=V 1 ⑧ 这是以(p 3,V 1)和(p 1,V 1)为状态端点的等容降压过程.

综上所述,过程1-2-3-1在p -V 图上是一直角三角形,如

图所示.

(3)气体在一次循环过程中对外做的总功为:W =-12

(p 3-p 1)(V 2-V 1) ⑨

利用气体状态方程pV =RT 和⑤式,上式即:W =-12R (T 2-T 1)????p 3p 1-1 ⑩ 参考评分:第(1)问8分,①②③④式各2分;第(2)问10分,⑤⑥式各2分,过程1-2-3-1在p -V 上的图示正确得6分;第(3)问2分,⑩式2分.

17.(30届预赛14)如图所示,1摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,

经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状

态A 的压强之比为12

,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条

件?已知此理想气体每摩尔的内能为32

RT ,R 为普适气体常量,T 为热力学温度.

解析:令ΔU 表示系统内能的增量,Q 和W 分别表示系统吸收的热量和外界对系统所

做的功,由热力学第一定律有:ΔU =Q +W ①

令T 1和T 2分别表示状态A 和状态B 的温度,有:ΔU =32

R (T 2-T 1) ② 令p 1、p 2和V 1、V 2分别表示状态A 、B 的压强和体积,由②式和状态方程可得:

ΔU =32

(p 2V 2-p 1V 1) ③ 由状态图可知,做功等于图线下所围面积,即:W =-12

(p 1+p 2)(V 2-V 1) ④ 要系统吸热,即Q >0,由以上格式可得:32(p 2V 2-p 1V 1)+12

(p 1+p 2)(V 2-V 1)>0 ⑤ 按题意,p 2p 1=12,带入上式,可得:V 2V 1>32

⑥ 参考评分:①②③式各3分,④式4分,⑤式3分,⑥式2分.

18.(29届预赛14)由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成

两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:

试求温度分别为1073K 和1473K 时该碘蒸气中单原

子分子碘蒸气的质量与碘的总质量之比值.已知碘

蒸气的总质量与一个摩尔的双原子碘分子的质量相

同,普适气体常量R =8.31J·mol -1·K -1

解析:以m 表示碘蒸气的总之,m 1表示蒸气的温度为T 时单原子分子的碘蒸气的质量,μ1、μ2分别表示单原子分子碘蒸气和双原子分子碘蒸气的摩尔质量,p 1、p 2分别表示容器中单原子分子碘蒸气和双原子分子碘蒸气的分压强,则由理想气体的状态方程有: p 1V =m 1μ1

RT ① p 2V =m -m 1μ2

RT ② 其中,R 为理想气体常量.

根据道尔顿分压定律,容器中碘蒸气的总压强p 满足:p =p 1+p 2 ③

设α=m 1m 为单原子分子碘蒸气的质量与碘蒸气的总质量的比值,注意到μ1=12

μ2 ④ 由以上各式解得:α=μ2V mR ·p T

-1 ⑤ 带入有关数据可得,当温度为1073K 时,α=0.06 ⑥ 当温度为1473K 时,α=0051 ⑦ 参考评分:①②③⑤式各4分,⑥⑦式各2分.

19.(26届预赛15)图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞

与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍.M 1把一定质量的气体封闭在气缸为L 1部分,M 1和M 2把一定质量的气体封闭在气缸的L 2部分,M 2的右侧为大气,大气的

压强p 0是恒定的.K 是加热L 2中气体用的电热丝.初

始时,两个活塞和气体都处在平衡状态,分别以V 10

和V 20表示L 1和L 2中气体的体积.现通过K 对气体

缓慢加热一段时间后停止加热,让气体重新达到平

衡太,这时,活塞未被气缸壁挡住.加热后与加热

前比,L 1和L 2中气体的压强是增大了、减小还是未

变?要求进行定量论证.

解析:解法(一)用n 1和n 2分别表示L 1和L 2中气体的摩尔数,p 1、p 2和V 1、V 2分别

表示L 1和L 2中气体处在平衡状态时的压强和体积,T 表示气体的温度(因为M 1是导热的,两部分气体的温度相等),由理想气体状态方程有:p 1V 1=n 1RT ① p 2V 2=n 2RT ② 式中R 为普适气体常量.若以两个活塞和轻杆构成的系统为研究对象,处在平衡状态

时有:p 1S 1-p 2S 1+p 2S 2-p 0S 2=0 ③ 已知S 2=2S 1 ④ 有③④式得:p 1+p 2=2p 0 ⑤

由①②⑤三式得:p 1=2n 1n 2p 0V 2V 1+n 1n 2

V 2 ⑥ 若⑥式中的V 1、V 2是加热后L 1和L 2中气体的体积,则p 1就是加热后L 1中气体的压强.加

热前L 1中气体的压强则为p 10=2n 1n 2p 0V 20V 10+n 1n 2

V 2 ⑦ 设加热后L 1中气体体积的增加量为ΔV 1,L 2中气体体积的增加量为ΔV 2,因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:ΔV 1=ΔV 2=ΔV ⑧ 加热后L 1和L 2中气体的体积都是增大的,即ΔV >0.(若ΔV <0,即加热后活塞是向左移动的,则大气将对封闭在气缸中的气体做功,电热丝又对气体加热,根据热力学第一定律,气体的内能增加,温度将上升,而体积是减小的,故L 1和L 2中气体的压强p 1和p 2都将增大,这违反力学平衡条件⑤式)于是有V 1=V 10+ΔV ⑨ V 2=V 20+ΔV ⑩

由⑥⑦⑨⑩四式得:p 1-p 10=2n 1n 2p 0(V 10-V 20)ΔV ????V 10+ΔV +n 1n 2(V 20+ΔV )?

???V 10+n 1n 2V 20 ? 由?式可知:

若加热前V 10=V 20,则p 1=p 10,即加热后p 1不变,由⑤式知p 2亦不变;

若加热前V 10<V 20,则p 1<p 10,即加热后p 1必减小,由⑤式知p 2必增大;

若加热前V 10>V 20,则p 1>p 10,即加热后p 1必增大,由⑤式知p 2必减小.

参考评分:得到⑤式3分,得到⑧式3分,得到?式8分,最后结论6分. 解法(二)设加热前L 1和L 2中气体的压强和体积分别为p 10、p 20和V 10、V 20,以p 1、p 2和V 1、V 2分别表示加热后L 1和L 2中气体的压强和体积,由于M 1是导热的,加热前L 1和L 2中气体的温度是相等的,设为T 0,加热后L 1和L 2中气体的温度也相等,设为T .因为加热前、后两个活塞和轻杆构成的系统都处在力学平衡状态,注意到S 2=2S 1,力学平衡条件分别为:p 10+p 20=2p 0 ① p 1+p 2=2p 0 ② 由①②两式得:p 1-p 10=-(p 2-p 20) ③

根据理想气体状态方程,对L 1中的气体有:p 1V 1p 10V 10=T T 0

④ 对L 2中气体有:p 2V 2p 20V 20=T T 0

⑤ 由④⑤两式得:p 1V 1p 10V 10=p 2V 2p 20V 20

⑥ ⑥式可改写成:?

???1+p 1-p 10p 10????1+V 1-V 10V 10=????1+p 2-p 20p 20????1+V 2-V 20V 20 ⑦ 因连接两活塞的杆是刚性的,活塞M 2的横截面积是M 1的2倍,故有:

V 1-V 10=V 2-V 20 ⑧

把③⑧式带入⑦式得:?

???1+p 1-p 10p 10????1+V 1-V 10V 10=????1-p 1-p 10p 20????1+V 1-V 10V 20 ⑨ 若V 10=V 20,则由⑨式得p 1=p 10,若加热前L 1中气体的体积等于L 2中气体的体积,则加热后L 1中气体的压强不变,由②式可知加热后L 2中气体的压强亦不变;

若V 10<V 20,则由⑨式得p 1<p 10,若加热前L 1中气体的体积小于L 2中气体的体积,则加热后L 1中气体的压强必减小,由②式可知加热后L 2中气体的压强必增大;

若V 10>V 20,则由⑨式得p 1>p 10,若加热前L 1中气体的体积大于L 2中气体的体积,则加热后L 1中气体的压强必增大,由②式可知加热后L 2中气体的压强必减小;

参考评分:得到①式和②式或得到③式得3分,得到⑧式得3分,得到⑨式得8分,最后结论得6分.

初中物理竞赛高难度热学试题

A9\A10A 班初中物理竞赛热学训练试题 班级________学号_________姓名_________得分________ (时间:60分 满分100分) 1.液体表面分界线单位长度上的表面张力叫作表面张力系数,用下面方法可以测量液体的表面张力从而 求得液体的表面张力系数.如图所示,容器内盛有肥皂液,AB 为一杠杆,AC=15cm ,BC=12cm.在其A 端 挂一细钢丝框,在B 端加砝码使杠杆平衡.然后先将钢丝框浸于肥皂液中,再慢慢地将它拉起一小段距 离(不脱离肥皂液),使钢丝框被拉起的部分蒙卜一层肥皂膜,这时需将杠杆B 端砝码的质量增加5.0×10 -4 kg ,杠杆才重新平衡(钢丝框的钢丝很细,在肥皂中受到的浮力可不计).则肥皂液的表面张力为( ).c (A)6×10-3N (B)14×10-3N (C)4×10-3N (D)3×10-3N 2.如图所示,若玻璃在空气中重为G 1,排开的水重为G 2,则图中弹簧秤的示数为( ). (A )等于G 1 (B )等于G 2 (C )等于(G 1-G 2) (D )大于(G 1-G 2) 3. 两个相同的轻金属容器里装有同样质量的水。一个重球挂在不导热的细线上。放入其中一个容器内,使球 位于容器内水的体积中心。球的质量等于水的质量,球的密度比水的密度大得多。两个容器加热到水的沸点,再冷却。已知:放有球的容器冷却到室温所需时间为未放球的容器冷却到室温所需时间的k 倍。试求制作球的物质的比热与水的比热之比c 球:c 两个完全相同的金属球a 、b,其中a 球放在不导热的水平面上,b 球用不导热的细线悬挂起来。现供给两球相同的热量,他们的温度分别升高了△ta 、△tb ,假设两球热膨胀的体积相等,则 A.△ta>△tb B.△ta<△tb C.△ta=△tb D.无法比较 4.水和油边界的表面张力系数为σ=1.8×10-2N /m ,为了使1.0×103kg 的油在水内散成半径为r =10- 6m 的小油滴,若油的密度为900kg /m 3,问至少做多少功? 5.炎热的夏季,人们通过空调来降低并维持房间较低的温度,在室外的温度为1T 时,要维持房间0T 的温度,空调每小时工作0n 次。已知一厚度d ,面积为S 的截面,当两端截面处的温度分别为a T 、b T ,且b a T T >,则热量沿着垂直于截面方向传递,达到稳定状态时,在t ?时间内通过横截面S 所传递的热量为: t S d T T K Q b a ?-= (其中K 为物质的导热系数。) 求:(1)当室外的温度升高到2T 时,如房间的温度仍然维持为0T ,则空调平均每小时工作多少次? (2)设房屋墙壁以及顶部的厚度均为L 、导热系数为1K ,如房间内再增加一厚度均为l 、导热系数为2K 的保温涂层,在室外的温度为1T ,房间的温度仍然维持为0T ,那么空调平均每小时工作多少次?(不考虑门窗及地面的热传导) 6.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。导线按斯特藩定律从其表面散热。斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即 () ,44外辐T T S P -∞ 试说明为什么用保险丝时并不需要准确的长度。

高中物理竞赛练习7 热学一08

高中物理竞赛练习7 热学一08.5 1.证明理想气体的压强p = k n ε32,其中n 为单位体积内的分子数,k ε是气体分子的平均动能. 2.已知地球和太阳的半径分别为R 1=6×106m 、R 2=7× 108m ,地球与太阳的距离d =1.5×1011m .若地球与太阳均可视为黑体,试估算太阳表面温度. 3.如图所示,两根金属棒A 、B 尺寸相同,A 的导热系数是B 的两倍,用它们来导热,设高温端和低温端温度恒定,求将A 、B 并联使用与串联使用的能流之比.设棒侧面是绝热的. 4.估算地球大气总质量M 和总分子数N . 5.一卡诺机在温度为27℃和127℃两个热源之间运转.(1)若在正循环中,该机从高温热源吸热1.2×103 cal , 则将向低温热源放热多少?对外作功多少?(2)若使该机反向运转(致冷机),当从低温热源吸热1.2×103cal 热量,则将向高温热源放热多少?外界作功多少? 6.一定质量的单原子理想气体在一密闭容器中等压膨胀到体积为原来的1.5倍,然后又被压缩,体积和压强均减为1/3,且过程中压强与体积始终成正比,比例系数不变,在此压缩过程中气体向外放热Q o ,压缩后气体重新等压膨胀到原体积(气体在第一次等压膨胀前的状态),为使气体等容回到上面提到的原状态(第一次膨胀前的状态),需要传递给气体的热量Q 1是多少?

7.1 moI单原子理想气体初始温度为T o,分别通过等压和绝热(即不吸热也不放热)两种方式使其膨胀,且膨胀后末体积相等.如果已知两过程末状态气体的压强相比为1.5,求在此两过程中气体所做的功之和. 8.如图所示,两块铅直的玻璃板部分浸入水中,两板平行,间距d=0.5 mm,由于水的表面张力的缘故,水沿板上升一定的高度h,取水的表面张力系数σ =7.3×10-2N·m-1,求h的大小. 9.内径均匀的U形玻璃管,左端封闭,右端开口,注入水银后;左管封闭的气体被一小段长为h1=3.0cm 的术银柱分成m和n两段.在27℃时,L m=20 cm,L n=10 cm,且右管内水银面与n气柱下表面相平,如图所示.现设法使n上升与m气柱合在一起,并将U形管加热到127℃,试求m和n气柱混合后的压强和长度.(p o=75cmHg) 10.在密度为ρ=7.8 g·cm-3的钢针表面上涂一薄层不能被水润湿的油以后,再把它轻轻地横放在水的表面,为了使针在0℃时不掉落水中,不考虑浮力,问该钢针的直径最大为多少? 11.已知水的表面张力系数为σ1=7.26×10-2N·m-1,酒精的表面张力系数为σ2=2.2×10-2N·m-1.由两个内径相等的滴管滴出相同质量的水和酒精,求两者的液滴数之比.

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

全国中学生物理竞赛真题汇编热学

全国中学生物理竞赛真题汇编---热学 1.(19Y4) 四、(20分)如图预19-4所示,三个绝热的、容积相同的球状容器A 、B 、C ,用带有阀门K 1、K 2的绝热细管连通,相邻两球球心的高度差 1.00m h =.初始时,阀门是关闭的,A 中装有1mol 的氦(He ),B 中装有1mol 的氪(Kr ),C 中装有lmol 的氙(Xe ),三者的温度和压强都相同.气体均可视为理想气体.现打开阀门K 1、K 2,三种气体相互混合,最终每一种气体在整个容器中均匀分布,三个容器中气体的温度相同.求气体温度的改变量.已知三种气体的摩尔质量分别为 31He 4.00310kg mol μ--=?? 在体积不变时,这三种气体任何一种每摩尔温度升高1K ,所吸收的热量均为 3/2R ,R 为普适气体常量. 2.(20Y3)(20分)在野外施工中,需要使质量m =4.20 kg 的铝合金构件升温;除了保温瓶中尚存有温度t =90.0oC 的1.200kg 的热水外,无其他热源。试提出一个操作方案,能利用这些热水使构件从温度t 0=10.0oC 升温到66.0oC 以上(含66.0oC),并通过计算验证你的方案. 已知铝合金的比热容c =0.880×103J ·(k g·oC)-1 , 水的比热容c = 4.20×103J ·(kg ·oC)-1 ,不计向周围环境散失的热量. 3.(22Y6)(25分)如图所示。两根位于同一水平面内的平行的直长金属导轨,处于恒定磁场中。 磁场方向与导轨所在平面垂直.一质量为m 的均匀导体细杆,放在导轨上,并与导轨垂 直,可沿导轨无摩擦地滑动,细杆与导轨的电阻均可忽略不计.导轨的左端与一根阻值为 尺0的电阻丝相连,电阻丝置于一绝热容器中,电阻丝的热容量不计.容器与一水平放置的开口细管相通,细管内有一截面为S 的小液柱(质量不计),液柱将l mol 气体(可视为理想气体)封闭在容器中.已知温度升高1 K 时,该气体的内能的增加量为5R /2(R 为普适气体常量),大气压强为po ,现令细杆沿导轨方向以初速V 0向右运动,试求达到平衡时细管中液柱的位移. 4.(16F1)20分)一汽缸的初始体积为0V ,其中盛有2mol 的空气和少量的水(水的体积可以忽略)。平衡时气体的总压强是3.0atm ,经做等温膨胀后使其体积加倍,在膨胀结束时,其中的水刚好全部消失,此时的总压强为2.0atm 。若让其继续作等温膨胀,使体积再次加倍。试计算此时: 1.汽缸中气体的温度; 2.汽缸中水蒸气的摩尔数; 3.汽缸中气体的总压强。 假定空气和水蒸气均可以当作理想气体处理。 5.(17F1)在一大水银槽中竖直插有一根玻璃管,管上端封闭,下端开口.已知槽中水银液面以上的那部分玻璃管 的长度l=76cm,管内封闭有n=1.0×10-3 mol的空气,保持水银槽与玻璃管都不动而设法使玻璃管内空气的温度缓慢地降低10℃,问在此过程中管内空气放出的热量为多少?已知管外大气的压强为76cmHg,每摩尔空 气的内能U=CVT,其中T为绝对温度,常量CV=20.5J·(mol·K)-1 ,普适气体常量R=8.31J·(m ol·K)-1 31Kr 83.810kg mol μ--=??31Xe 131.310kg mol μ--=??

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

高中物理竞赛热学公式整合知识分享

高中物理竞赛热学公 式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p nE = ——理想气体的压强公式 4> 32 k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v =——最概然速率 v =——平均速率 r v == ——方均根速率 3> /0P E kT n n e -= ——玻尔兹曼分布律 /0 mgz kT n n e -= ——气体分子在重力场中按高度的分布律

4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p = 5> 1(2)2 E t r s kT =++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2 V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) dU Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν =

27高中物理竞赛热学习题2整理

高中物理竞赛热学习题 热学2 姓名: 班级: 成绩: 1. 如图所示,一摩尔理想气体,由压强与体积关系的p-V 图中的状态A 出发,经过一缓慢的直线过程到达状态B ,已知状态B 的压强与状态A 的压强之比为1/2 ,若要使整个过程的最终结果是气体从外界吸收了热量,则状态B 与状态A 的体积之比应满足什么条件?已知此理想气体每摩尔的内能为 23RT ,R 为普适气体常量,T 为热力学温度. 2.有一气缸,除底部外都是绝热的,上面是一个不计重力的活塞,中间是一块固定的导热隔板,把气缸分隔成相等的两部分A 和B ,上、下各有1mol 氮气(52 U RT = ),现由底部慢慢地将350J 热量传送给缸内气体,求 (1)A 、B 内气体的温度各改变了多少? (2)它们各吸收了多少热量。 3. 使1mol 理想气体实行如图所示循环。求这过程气体做的总功。仅用T 1,T 2和常数R 表示。 (在1-2过程,12P T α= )

4.如图所示,绝热的活塞S 把一定质量的稀薄气体(可视为理想气体)密封在水平放置的绝热气缸内.活塞可在气缸内无摩擦地滑动.气缸左端的电热丝可通弱电流对气缸内气体十分缓慢地加热.气缸处在大气中,大气压强为p0.初始时,气体的体积为V0、压强为p0.已知1 摩尔该气体温度升高1K 时其内能的增量为一已知恒量。,求以下两种过程中电热丝传给气体的热量Q1与Q2之比. 1 .从初始状态出发,保持活塞S 位置固定,在电热丝中通以弱电流,并持续一段时间,然后停止通电,待气体达到热平衡时,测得气体的压强为p1 . 2 .仍从初始状态出发,让活塞处在自由状态,在电热丝中通以弱电流,也持续一段时间,然后停止通电,最后测得气体的体积为V 2 . 5. 图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p0。用一热容量可忽略的导热隔板N和一绝热活塞M将气缸分为A、B、C三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A室中有一电加热器Ω。已知在A、B室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A、B两室中气体的温度均为T0,A、B、C三室的体积均为V0。现通过电加热器对A室中气体缓慢加热,若提供的总热量为Q0,试求B室中气体末态体积和A室中气体的末态温度。设A、B 两室中气体1摩尔的内能 5 2 U RT 。R为普适恒量,T为热力学温度。

物理竞赛热学专题40题刷题练习(带答案详解)

物理竞赛热学专题40题刷题练习(带答案详解) 1.潜水艇的贮气筒与水箱相连,当贮气筒中的空气压入水箱后,水箱便排出水,使潜水艇浮起。某潜水艇贮气简的容积是2m 3,其上的气压表显示内部贮有压强为2×107Pa 的压缩空气,在一次潜到海底作业后的上浮操作中利用简内的压缩空气将水箱中体积为10m 3水排出了潜水艇的水箱,此时气压表显示筒内剩余空气的压强是9.5×106pa ,设在排水过程中压缩空气的温度不变,试估算此潜水艇所在海底位置的深度。 设想让压强p 1=2× 107Pa 、体积V 1=2m 3的压缩空气都变成压强p 2=9.5×106Pa 压缩气体,其体积为V 2,根据玻-马定律则有 p 1V 1=p 2V 2 排水过程中排出压强p 2=9.5× 106Pa 的压缩空气的体积 221V V V '=-, 设潜水艇所在处水的压强为p 3,则压强p 2=9.5×106Pa 、体积为2V '的压缩空气,变成压强为p 3的空气的体积V 3=10m 3。 根据玻马定律则有 2233p V p V '= 联立可解得 p 3=2.1×106Pa 设潜水艇所在海底位置的深度为h ,因 p 3=p 0+ρ gh 解得 h =200m 2.在我国北方的冬天,即便气温很低,一些较深的河 流、湖泊、池塘里的水一般也不会冻结到底,鱼类还可以在水面结冰的情况下安全过冬,试解释水不会冻结到底的原因? 【详解】 由于水的特殊内部结构,从4C ?到0C ?,体积随温度的降低而增大,达到0C ?后开始结冰,冰的密度比水的密度小。 入秋冬季节,气温开始下降,河流、湖泊、池塘里的水上层的先变冷,密度变大而沉到水底,形成对流,到达4C ?时气温如果再降低,上层水反而膨胀,密度变小,对流停止,“漂浮”在水面上,形成一个“盖子”,而下面的水主要靠热传导散失内能,但由于水

高中物理竞赛辅导习题热学部分..

高中物理竞赛热学部分题选 1.一个老式的电保险丝,由连接在两个端纽之间的一根细而均匀的导线构成。导线按斯特藩定律从其表面散热。斯特藩定律指出:辐射功率P 跟辐射体表面积S 以及一个与温度有关的函数成正比,即 () ,4 4外辐T T S P -∞ 试说明为什么用保险丝时并不需要准确的长度。 解:设l 为保险丝长度,r 为其半径,P 为输至整个保险丝上的功率。若P 增大,保险丝的温度将上升, 直到输入的电功率等于辐射的功率。 所以当P 超过某一值max P 时,在一定的时间内,保险丝将烧毁,而 ( ) ,2144 max l r c T T kS P ??=-=π外熔 式中k 为一常数,S 为表面积,1c 为一常数。 由于P=I 2R ,假设保险丝的电阻R 比它所保护的线路电阻小很多,则I 不依赖于R ,而 ρρ ,S l R =为 常数,2 r S π=为保险丝的横截面积。 ,/22 r l I P πρ= 当rl c r l I 22 2/=时(这里2c 为另一常数),保险丝将熔化。 .3 22 r c I = 可见,保险丝的熔断电流不依赖于长度,仅与其粗细程度(半径r)有关。 2.有两根长度均为50cm 的金属丝A 和B 牢固地焊在一起,另两端固定在牢固的支架上(如图21-3)。 其线胀系数分别为αA =1.1×10-5/℃,αB =1.9×10-5/℃,倔强系数分别为K A =2×106N/m ,K B =1×106 N/m ;金属丝A 受到450N 的拉力时就会被拉断,金属丝B 受到520N 的拉力时才断,假定支架的间距不随温度改变。问:温度由+30°C 下降至-20°C 时,会出现什么情况?(A 、B 丝都不断呢,还是A 断或者B 断呢,还是两丝都断呢?)不计金属丝的重量,在温度为30°C 时它们被拉直但张力为零。 解:金属A 和B 从自由状态降温,当温度降低t ?时的总缩短为 t l l l l B A B A ?+=?+?=?0)(αα (1) 而在-20°C 时,若金属丝中的拉力为F ,则根据胡克定律,A 、B 的伸长量分别为F/K A 和F/K B , 所以 l K E K E B A ?=+ (2) t l K K F B A B A ?+-? ??? ??+0)(11αα (3) 所以 N K K t l F B A B A 50011)(0=+?+=αα 因为N F 450>,所以温度下降到-20°C 前A 丝即被拉断。A 丝断后。F=0,即使温度再下降很多,B 丝也不会断。 3.长江大桥的钢梁是一端固定,另一端自由的。这是为什么?如果在-10℃时把两端都固定起来,当温度升高到40℃时,钢梁所承担的胁强(压强)是多少?(钢的线胀系数为12×10-6/℃,弹性模量为2.0×105N/mm 2,g=10m/s 2) 解:长1m 、横截面积为1mm 2的杆,受到10N 拉力后伸长的量,叫伸长系数,用a 来表示,而它的倒数叫弹性模量E ,./1a E =当杆长为L 0m ,拉力为F ,S 为横截面积(单位为mm 2),则有伸长量

高中物理竞赛讲义-热力学第一定律

热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

高中物理竞赛十年复赛真题-热学(含答案)

十年真题-热学(复赛) 1.(34届复赛7)如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程.双原子理想气体的定容摩尔热容为52 R , R 为气体常量. (1)求直线AB 过程中的最高温度; (2)求直线AB 过程中气体的摩尔热容量随气体体积变 化的关系式,说明气体在直线AB 过程各段体积范围内 是吸热过程还是放热过程,确定吸热和放热过程发生转 变时的温度T c ; (3)求整个直线AB 过程中所吸收的净热量和一个正循 环过程中气体对外所作的净功. 解析:(1)直线AB 过程中任一平衡态气体的压强p 和体积V 满足方程p -p 0p 0-p 02=V -V 02V 02 -V 0 此即 p =32p 0-p 0V 0 V ① 根据理想气体状态方程有:pV =νRT ② 由①②式得: T =1νR ????-p 0V 0V 2+32p 0V =-p 0νR ????V -34V 02+9p 0V 016νR ③ 由③式知,当V =34 V 0时, ④ 气体达到直线AB 过程中的最高温度为:T max =9p 0V 016νR ⑤ (2)由直线AB 过程的摩尔热容C m 的定义有:dQ =νC m dT ⑥ 由热力学第一定律有: dU =dQ -pdV ⑦ 由理想气体内能公式和题给数据有:dU =νC V dT =ν52 RdT ⑧ 由①⑥⑦⑧式得:C m =C V +p νdV dT =52R +????32 p 0-p 0V 0V 1νdV dT ⑨ 由③式两边微分得:dV dT =2νRV 0p 0(3V 0-4V ) ⑩ 由⑩式带入⑨式得:C m =21V 0-24V 3V 0-4V R 2 ? 由⑥⑩?式得,直线AB 过程中, 在V 从V 02增大到3V 04的过程中,C m >0,dV dT >0,故dQ dV >0,吸热 ? 在V 从3V 04增大到21V 024的过程中,C m <0,dV dT <0,故dQ dV >0,吸热 ? 在V 从21V 024增大到V 0的过程中,C m >0,dV dT <0,故dQ dV <0,放热 ?

高中物理竞赛热学公式整合

高中物理竞赛热学公式整合 第一章 热力学平衡态和气体物态方程 1> pV TR ν= ——理想气体物态方程 8.314R =11??J mol kg -- 2> 222213 x y z v v v v === ——分子的速度分布 3> 213 p nmv = 23 k p n E = ——理想气体的压强公式 4> 32k E kT = ——分子运动的能量公式 231.3810A R k N -==?1?J K - 5> p nkT = ——阿伏伽德罗定律 6> 12i p p p p =++???+ ——道尔顿分压定律 第二章 气体分子的统计分布律 1> 23/2224()2mv kT dN m v e dv N kT ππ-= ——麦克斯韦速率分布律 2> P v = ——最概然速率 v =——平均速率 r v ==——方均根速率 3> /0 P E kT n n e -= ——玻尔兹曼分布律 /0m g z k T n n e -= ——气体分子在重力场中按高度的分布律 4> 0Mgz RT z p p e -= ——等温气压公式 0ln z p RT z Mg p =

5> 1(2)2 E t r s kT = ++ ——分子的平均总能量(能量按自由度均分定理) 6> 1(2)2 m U t r s RT M =++ ——理想气体的内能 1(2)2 m U t r s R T M ?=++? 7> ,1(2)2V m C t r s R =++ ——理想气体的摩尔定容热容 第三章 略 第四章 热力学第一定律 1> A pdV δ= ——元功的表达(系统对外界所做的) 2> 2 1V V A pdV =? ——系统对外界所做的功 3> 21U U Q A '-=+ 或 21U U Q A -=- ——热力学第一定律(积分形式) d U Q A δδ'=+ 或 dU Q A δδ=- ——热力学第一定律(微分形式) 4> ()U U T = ——焦耳定律 5> 0lim T Q Q C T dT δ?→?==? ——热容 ()V V U C T ?=? ——定容热容 ()()[]p p p Q U pV C dT T δ?+==? ——定压热容 6> ,()V V m V C u C T ν?==? ——气体摩尔定容热容 ,()()p m p m p C u pV C T ν?+= =? ——气体摩尔定压热容 U u ν = 7> ——理想气体的摩尔热容 8> ,,p m V m C C R =+ ——迈耶公式

高中物理竞赛辅导讲义-8.2热力学第一定律

8.2热力学第一定律 一、热力学第一定律 理想气体从一个状态缓慢变化到另一个状态的过程(准静态过程)中,做功和热传递会导致气体内能发生变化。 二、理想气体的内能 由于理想气体不考虑分子间作用力,因此没有分子势能,因此内能即为分子的总动能 由压强的表达式23p n ε= 和p nkT =,可得:32 kT ε=。注意ε的物理意义,ε是分子的平均平动动能。 1、对于单原子分子,总能量即平动动能 (3个自由度)32 kT ε= 总 2、对于双原子分子,总能量包括平动动能、转动动能(5个自由度)52 kT ε=总 3、对于多原子分子,总能量包括平动动能、转动动能(6个自由度)62kT ε=总 因此可得对应气理想体的内能: 1、单原子分子组成的理想气体,内能3322 A U NN kT NRT = = 2、双原子分子组成的理想气体,内能5522 A U NN kT NRT == 3、多原子分子组成的理想气体,内能6622A U NN kT NRT == 三、外力对气体做功的计算 1、恒力(恒压)做功 W F l pS l p V =-?=-?=-? 2、变力(变压)做功(微元法) i i i W W p V = ?=-?∑∑ 四、热量传递的计算 1、对于固体和液体: 一般来说体积变化可以忽略: Q cm T =? 其中,c 为比热:1kg 的物质,升温1°C 吸收的热量 2、对于气体: (1)如果体积不变,所有热量都用来改变温度: V Q Nc T =? 其中,c V 为摩尔定容比热:1mol 的物质,保持体积不变,升温1°C 吸收的热量 (2)如果压强不变,根据状态方程,温度变化,体积随之变化。因此,一部分热量都用来改变温度,另一部分用来做功:

上海物理竞赛热学

上海物理竞赛热学 The Standardization Office was revised on the afternoon of December 13, 2020

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是()A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。

14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 :3 C.1:4 :5。 5.现有一扇形的均质金属物体,该材料具有热胀冷缩的性质,如图所示。室温状 态下AB、CD边所成的圆心角为α。若使物体温度均匀升高,则α角的变化情况是:( ) (A)变大 (B)不变

上海物理竞赛热学之令狐文艳创作

8.质量相等的甲、乙两金属块,其材质不同。将它们放入沸水中,一段时间后温度均达到100℃,然后将它们按不同的方式投入一杯冷水中,使冷水升温。第一种方式:先从沸水中取出甲,将其投入冷水,当达到热平衡后将甲从杯中取出,测得水温升高20℃;然后将乙从沸水中取出投入这杯水中,再次达到热平衡,测得水温又升高了20℃。第二种方式:先从沸水中取出乙投入冷水,当达到热平衡后将乙从杯中取出;然后将甲从沸水中取出,投入这杯水中,再次达到热平衡。则在第二种方式下,这杯冷水温度的变化是() 令狐文艳

A.升高不足40℃ B.升高超过40℃ C.恰好升高了40℃ D.条件不足,无法判断 5.食用冻豆腐时,发现豆腐内存在许多小孔,在小孔形成的过程中,发生的主要物态变 化是 ( ) A.凝固和熔化。 B.液化和升华。 C.凝华和熔化。 D.凝固和汽化。 7.如图24-3所示,从温度与室温(20℃左右)相同的酒精里取出温度计。温度计的示数会 ( ) A.减小。 B.增大。 C.先减小后增大。 D.先增大后减小。 14.星期天,小林同学在父母的协助下,从早上6:00开始每隔半小时分别对他家附近的气 温和一个深水池里的水温进行测量,并根据记录的数据绘成温度一时刻图线,如图24-9 所示。则可以判断 ( ) A.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的大。

B.甲是“气温”图线,乙是“水温”图线,因为水的比热容比空气的小。 C.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的大。 D.甲是“水温”图线,乙是“气温”图线,因为水的比热容比空气的小。 21.将质量为m、温度为O℃的雪(可看成是冰水混合物)投入装有热水的容器中,热水的质量为M,平衡后水温下降了t;向容器中再投入质量为2m上述同样性质的雪,平衡后容器中的水温恰好又下降了t。则m:M为 ( ) A. 1:2 B.1:3 C.1:4 D.1:5。 5.现有一扇形的均质金属物体,该材料 具有热胀冷缩的性质,如图所示。室温 状 态下AB、CD边所成的圆心角为α。 若使物体温度均匀 升高,则α角的变化情况是:( ) (A)变大 (B)不变 (C)变小 (D)无法确定 4.如果不考虑散热的影响,给一定质量的水加热,水的温

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

相关文档
最新文档