振荡器制造商的时间和频率测量

振荡器制造商的时间和频率测量
振荡器制造商的时间和频率测量

振荡器制造商的时间和频率测量使用FCA3000和FCA3100系列定时器/计数器/分析仪应用指南

应用指南

振荡器设计和制造要求准确地测量时间和频率参数,如果没有适当的测试计量技术,这可能是一个挑战。本应用指南考察了使用泰克FCA3000/3100系列定时器/计数器/分析仪快速准确地测量设计环境和生产环境中的高

精度振荡器有关的技术和技巧。

https://www.360docs.net/doc/c51735284.html,/counters

https://www.360docs.net/doc/c51735284.html,/counters 3

振荡器制造商的时间和频率测量

图1. 使用FCA3100系列上的艾伦偏差(Adev)统计报告功能,识别短期不稳定性。

图2. OCXO 的ADEV vs t 的TimeView TM

曲线。在设计过程中全面准确地检定振荡器

在研发中,工程师必须执行多项任务,检定振荡器设计,包括检定振荡器的开机性能、检验短期稳定性(ADEV 对τ)、分析时钟P L L 的行为、采样测试漂移参数(T I E ,

TDEV)、检测频率毛刺。

FCA3100系列拥有12位/秒的频率分辨率和50 ps 的时

间分辨率,提供了精确测量功能,保证准确地检定振荡

器。自动测量功能如TIE (时间间隔误差)、TDEV (时间

偏差)、频率和相位,简化了在振荡器设计过程中进行的

许多必要测量的工作。

为追踪振荡器输出怎样随时间变化或在环境条件下的变化,测量统计模式可以查看测量趋势。设计人员经常发

现,艾伦偏差是检定短期不稳定性的一个主要测量指标。

使用艾伦偏差(ADEV)进行短期不稳定性测试在试图隔离抖动引起的短期不稳定性时,使用标准偏差

技术是不可能实现的,因为标准偏差考虑所有类型的偏

差的影响,把样本中的所有样点与总平均值进行对比。泰克定时器/计数器/分析仪可以隔离及基本上缩窄短期

不稳定性的范围。

艾伦偏差是通过以短的间隔采样(测量)来检定短期不稳定

性使用的统计指标,其基本概念是消除由于老化、温度或

漂移引起的长期位移的影响。它连续比较相邻样点,而不

是在整个数据样本中进行比较。ADEV 是在任意2τ周期

上任何两个背对背频率样点fk 和fk + τ之差的RMS,其

中每个样点长τ。正确计算ADEV 时会假设死区时间为零或进行背对背测

量,因此不能使用传统计数器。只有零死区时间及带有时

间标记的计数器,如FCA3100系列,才能完成这一任务。

用户只需在前面板上按一下Analyze按钮,就可以在统计读数中看到艾伦偏差,如图1所示。也可以使用调制域分析软件。

4 https://www.360docs.net/doc/c51735284.html,/counters

应用指南

图3. 在开机后TCXO

输出频率随时间变化(最左面的红色光标)。

使用TimeView TM 调制域分析软件

TimeView TM 有哪些功能

对研发工程师来说,如果没有适当的测量工具,试图了解振荡器的短期行为和开机行为会是一项极具挑战性的任务。泰克FCA3000/3100系列定时器/计数器与选配的TimeView 调制域分析软件相结合,轻松提供了这一功能,而没有任何其它类型的仪器能够做到这一点。此外,TimeView 可以监测老化,测量时间间隔误差(对网络时钟),找到振荡器中的任何频率异常信号(毛刺、相移)。TimeView 怎样工作

TimeView 从FCA3100系列产品中获得零死区时间数据(频率、时间或相位),然后显示和处理数据。基本演示模式显示频率变化、时间或相位随时间变化。这种独特的调制域演示模式揭示的信号特点补充了传统时域(示波器视图)或频域(频谱分析仪视图)。

TimeView统计演示模式提供数字统计和直方图表示,揭示抖动类型和可能的调制。FFT 演示模式检测振荡器频率故意的不想要的调制,可以使用时间标记演示模式,计算短期不稳定性ADEV over τ。参见图2中的曲线。

使用TimeView 测量振荡器预热时间

在试图捕获振荡器预热时间时,您可以把TimeView设置成进行频率背对背(BtB)测量及自由运行数据捕获,迅速捕获振荡器的预热时间。如图3所示,被测设备为10MHz TCXO,使用的测量时间为200 μs。TimeView 图表显示了频率样点(Y)随时间轴(X)变化。第一个样点是带时间标记的开机触发(红色光标),另外还有TimeView时间标度的原点。

测量电信时钟模块中的漂移参数(TIE, TDEV)

预计用于同步电信网络中的振荡器和时钟模块有时会有额外的漂移参数指标(有时是最大时间间隔误差(MTIE),但最主要的是与漂移有关的时间偏差(TDEV))。这些漂移参数是基本时间间隔误差指标(TIE)的后处理结果。TIE 是实际时钟或数据信号的触发事件(正常情况下是零交点)与理想或参考时钟信号相比的时间差。TIE =0是时间t=0时获得的第一个值,TIE是相对于采集的第一个样点之间累积的相位差。由于连续零死区时间测量原理,FCA3100系列是市场上唯一内置TIE测量功能的频率计数器。

振荡器制造商的时间和频率测量

改善生产环境中的生产效率

世界各地的制造商都尽最大努力寻求各种技术来改善生产效率。不管是实施精密制造还是缩短测试时间,提高生产效率都可以降低成本,提高利润。对所有制造或测量振荡器或时钟模块、并希望改善处理时间的公司来说,泰克FCA系列定时器/计数器/分析仪提供了理想的选择。例如,在生产测试台中,产品的高时间和频率分辨率与业内最优秀的定时器/计数器测量速度及53131A/ 53132A GPIB兼容能力模式相结合,使得FCA3000/ 3100系列成为振荡器制造的最佳选择。

节约生产过程中的测试时间

振荡器的大批量生产测试一般在采用定制设计的测试夹的自动化测试系统中进行,其适用于多个振荡器,可以并行测量,也可以顺序切换。总吞吐量受到生产操作人员、测量时间、振荡器开关开销及数据传送时间的限制。在这些测量中,总线测量速度和分辨率是关键参数。

FCA3100系列产品提供了最优秀的分辨率(在测量时间为100 ms时分辨率为1E-11)及GPIB总线速度(每秒高达4000个低分辨率测量)。检验8个有效位的频率只要求5 ms的测量时间。在生产环境中最大限度地利用定时器/计数器

在FREQ A和FREQ B之间快速切换

在振荡器DUT(DUT = 被测设备)上快速进行频率测量的方式之一,是让生产操作人员一次把两个振荡器连接到一台计数器上,因此,测试顺序是:

把DUT 1和2连接到输入A和B上,测量A,测量B 切换到DUT 3和4,连接到输入A和B上,测量A,测量B,依此类推

而不是:

把DUT 1连接到输入A上,测量A

切换到DUT 2,把DUT 2连接到输入A上,测量A 切换到DUT 3,依此类推

在使用FCA3100系列时,先测量A、然后再测量B的切换时间为<30 ms,具体时间与生产操作人员切换DUT所需的时间有关。

https://www.360docs.net/doc/c51735284.html,/counters 5

应用指南

检测有问题DUT的开机超时时间短

振荡器快速生产测试的其中一个问题是DUT可能有故障,也就是说,您让分拣装置把DUT连接到计数器上,开始进行测量,结果没有什么反应。被测振荡器有问题,没有提供任何输出信号。某些计数器或多或少会一直等下去,直到控制器中止开始的频率测量。其它计数器拥有程控超时功能,可以自动中止测量工作。

传统计数器中超时设置的问题之一是,它们定义了测量应该已经结束、还没有开始的时间,而超时时间必须长于门限触发时间(测量时间)。例如,如果测量时间是500 ms,那么超时应设置为500 ms或以上,也就是说,您需要等500 ms以上的时间,才能知道DUT是否损坏。

FCA3100系列计数器/定时器可以设置测量开始和结束的超时,可以设置成非常短的开始超时时间(仅10 ms),迅速检测有问题的振荡器。

小批量生产测试

在小批量生产测试中,您可能会看到半自动测试台,手动处理DUT,有时还会看到手动读数。在这些应用中,FCA3100系列产品提供了独特的优势,如:

在内置显示器上以图形方式表示测试极限

使用USB连接器连接运行测试软件的PC,不需要购买GPIB卡生产质量控制

在质量控制部门中,所有类型的频率或时间参数检验都可以使用FCA系列定时器/计数器进行,通过增加泰克TimeView调制域分析软件,可以测量振荡器在几天、几周、甚至几个月内的老化,监测由于环境变化(如温度)导致的频率变化。

校准实验室

在校准实验室中,FCA3100系列定时器/计数器50 ps 的高时间间隔分辨率及选配的高稳定性恒温振荡器可以在内部频率标准(如铷标准或铯标准)之间快速准确地比较相位。作为多功能测量工具,FCA3100系列可以作为信号发生器、频谱分析仪和示波器时间间隔或相位校准中理想的频率时基校准装置使用。

https://www.360docs.net/doc/c51735284.html,/counters

振荡器制造商的时间和频率测量

小结

FCA3000或FCA3100系列定时器/计数器/分析仪与

TimeView软件相结合,为在研发或制造环境中进行振荡

器测量提供了一套强大的多功能工具。这些工具简便易

用,提供了杰出的测量吞吐速度,明显改善了多种应用

中的生产效率。

FCA系列提供了多种型号,可以满足您的需求和预算:

https://www.360docs.net/doc/c51735284.html,/counters 7

版权所有?泰克公司,侵权必究。泰克产品受到已经签发及正在申请的美国和国外专利的保护。本文中的信息代替以前出版的所有资料。技术数据和价格如有变更,恕不另行通告。Tektronix 和TEK 是泰克公司的注册商标。本文提到的所有其它商号均为各自公司的服务标志、商标或注册商标。

08/10 EA/WWW 3GC-25569-0

如需进一步信息

泰克维护完善的一套应用指南、技术简介和其它资源,并不断扩大,帮助工程师处理尖端技术。请访问:https://www.360docs.net/doc/c51735284.html,

上海市浦东新区川桥路1227号邮编:201206

电话:(8621)50312000传真:(8621)58993156

泰克上海办事处

上海市徐汇区宜山路900号科技大楼C 楼7楼邮编:200233

电话:(8621)33970800传真:(8621)62897267

泰克深圳办事处

深圳市福田区南园路68号上步大厦21层G/H/I/J 室邮编:518031

电话:(86755)82460909传真:(86755)82461539

泰克西安办事处

西安市二环南路西段88号老三届世纪星大厦20层K 座邮编:710065

电话:(8629)87231794传真:(8629)87218549

泰克成都办事处

成都市人民南路一段86号城市之心23层D-F 座邮编:610016

电话:(8628)86203028传真:(8628)86203038

泰克科技(中国)有限公司

泰克武汉办事处

武汉市汉口建设大道518号招银大厦1611室邮编:430022

电话:(8627)87812760/2831

泰克北京办事处

北京市海淀区花园路4号通恒大厦1楼101室邮编:100088

电话:(8610)57950700传真:(8610)62351236

泰克香港办事处

九龙尖沙咀加连威老道2-6号爱宾大厦15楼6室

电话:(852)25856688传真:(852)25986260

时间综合参数测试仪

时间综合测试仪 随着目前电力系统统一时钟的推广应用,以及行业标准对时间同步系统提出的各项新技术要求,验证一个时间同步系统的输出信号以及被对时设备的同步情况是否符合设计指标成为一个不可忽视的问题。同时在PTN网络工程开局时,为了精确地测量路径的不对称,需要精确的仪表进行测量,在3G网络的运行过程中,为了随时掌握基站之间的同步状况,需要精确的仪表进行测量。 虽然目前市面上有各类时频方面的测试仪,但是功能和接口都相对比较单一,性能指标也达不到计量仪表的标准。SYN5104型时间综合测试仪是一款便携式时间频率综合测试设备。内装OCXO恒温晶体振荡器,接收GPS(全球定位系统)以及北斗二代卫星定时信号,驯服恒温晶振,使其输出频率同步于卫星铯原子钟信号上,产生极其准确的时间信号及频率信号。以此为参照,实时精确测量多种输入时间频率信号的精度,为时间同步装置及时统设备的现场检测、校验、验收提供了有效而便捷的解决方案。 产品功能 1)在结构设计上,将时间标准源、时差测量和测试结果显示三块功能实现一体 化, 从而可以在一台便携式智能仪表中方便而准确地完成测试项目; 2)测试功能齐全:时间准确度、频率准确度、报文准确度,周波测量,温湿度 测量,时间记录; 3)采用GPS/北斗二代卫星定时信号控制内置振荡器提供高精度时间频率标准, 测量精度100 ns; 4)能直接测量,在前面板上直接显示被测时钟和标准时间的时差,测量方式直 观方便; 5)可便携移动,既可用于现场,又可用于检测机构; 6)可以输出时间信号与更高级的标准时间源进行比对,以标定本测试仪的精度 等级。也可用于给现场有需求的设备提供高精度的时间信号; 7)测量结果数据自动导出到计算机中; 8)具有7AH电池供电。 产品特点 a)精度高、高性价比; b)功能齐全、性能可靠;

xx公司时间、频率测量仪器项目审查申请书参考范文

时间、频率测量仪器项目 审查申请书 一、项目申报单位概况 (一)项目单位名称 xxx科技公司 (二)法定代表人 曾xx (三)项目单位简介 公司始终坚持“服务为先、品质为本、创新为魄、共赢为道”的经营理念,遵循“以客户需求为中心,坚持高端精品战略,提高最高的服务价值”的服务理念,奉行“唯才是用,唯德重用”的人才理念,致力于为客户量身定制出完美解决方案,满足高端市场高品质的需求。公司坚持诚信为本、铸就品牌,优质服务、赢得市场的经营理念,秉承以人为本,宾客至上服务理念,将一整套针对用户使用过程中完善的服务方案。 公司致力于高新技术产业发展,拥有有效专利和软件著作权50多项,全国质量管理先进企业、全国用户满意企业、国家标准化良好行为AAAA企业,全国工业知识产权运用标杆企业。公司始终秉承“集领先智造,创美好未来”的企业使命,发展先进制造,不断提升自主研发与生产工艺的核心技术能力,贴近客户需求,助力中国智造,持续为社会提供先进科技,

覆盖上下游业务领域的行业综合服务商。公司坚持走“专、精、特、新” 的发展道路,不断推动转型升级,使产品在全球市场拥有一流的竞争力。 公司自设立以来,组建了一批经验丰富、能力优秀的管理团队。管理 团队人员对行业有着深刻的认识,能够敏锐地把握行业内的发展趋势,抓 住业务拓展机会,对公司未来发展有着科学的规划。相关管理人员利用自 己在行业内深耕积累的经验优势,为公司未来业绩发展提供了有力保障。 公司建立完整的质量控制体系,贯穿于公司采购、研发、生产、仓储、销 售等各环节,并制定了《产品开发控制程序》、《产品审核程序》、《产 品检测控制程序》、等质量控制制度。公司坚持精益化、规模化、品牌化、国际化的战略,充分发挥渠道优势、技术优势、品牌优势、产品质量优势、规模化生产优势,为客户提供高附加值、高质量的产品。公司将不断改善 治理结构,持续提高公司的自主研发能力,积极开拓国内外市场。 (四)项目单位经营情况 上一年度,xxx有限责任公司实现营业收入25647.26万元,同比增长28.29%(5656.01万元)。其中,主营业业务时间、频率测量仪器生产及销售收入为21882.84万元,占营业总收入的85.32%。 根据初步统计测算,公司实现利润总额7055.08万元,较去年同期相 比增长684.84万元,增长率10.75%;实现净利润5291.31万元,较去年同期相比增长957.68万元,增长率22.10%。

简易频率特性测试仪

简易频率特性测试仪(E题) 2013年全国电子设计大赛 摘要:本频率特性测试仪由AD9854为DDS频率合成器,MSP430为主控制器,根据零中频正交解调原理对被测网络针对频率特性进行扫描测量,将DDS 输出的正弦信号输入被测网络,将被测网络的出口信号分别与DDS输出的两路正交信号通过模拟乘法器进行乘法混频,通过低通滤波器取得含有幅频特性与相频特性的直流分量,由高精度A/D转换器传递给MSP430主控器,由MSP430对所测数据进行分析处理,最终测得目标网络的幅频特性与相频特性,同时通过LCD绘制相应的特性曲线,从而完成对目标网络的特性测试。本系统具有低功

耗,成本低廉,控制方便,人机交互友好,工作性能稳定等特点,不失为简易频率特性测试仪的一种优越方案。 关键字:DDS9854,MSP430,频率特性测试 目录 一、设计目标 (3) 1、基本要求: (4)

2、发挥部分: (4) 二、系统方案 (4) 方案一 (5) 方案三 (5) 方案二 (5) 三、控制方法及显示方案 (5) 四、系统总体框图 (6) 五、电路设计 (6) 1、DDS模块设计 (6) 2、DDS输出放大电路 (7) 3、RLC被测网络 (8) 4、乘法器电路 (8) 5、AD模数转换 (9) 六、软件方案 (10) 七、测试情况 (11) 1、测试仪器 (11) 2、DDS频率合成输出信号: (11) 3、RLC被测网络测试结果 (12) 4、频谱特性测试 (12) 八、总结 (12) 九、参考文献 (12) 十、附录 (13) 一、设计目标 根据零中频正交解调原理,设计并制作一个双端口网络频率特性测试仪,包括幅频特性和相频特性。

精确的频率和时间测量-时基的选择

少年易学老难成,一寸光阴不可轻 - 百度文库 1 精确的频率和时间测量 - 时基的选择 上篇文章谈到了频率和时间测量的分辨率和精度。相信很多工程师会感兴趣测量一个结果后,其误差或不确定度到底是多少。测量的不确定度是由3个因素构成的,即 基本不确定度 = k* (随机不确定度 ± 系统不确定度 ± 时基不确定度) 事实上,要获得准确的随机不确定度和系统不确定度是一件非常恐怖的事情。它是与众多参数相关的非常复杂的函数。如果诸位有兴趣了解这个,可以到网上查阅安捷伦53200 系列频率计数器的详细资料,出版号是 5990-6283CHCN 。 好在安捷伦的工程师将这个复杂的运算公式做成了一个简单的表格。您只需输入测量的相关设置和结果,这个表格可以自动帮助你得出不确定度。如果有兴趣,可以与安捷伦的电话服务中心联系 400-810-0189 关于随机不确定度和系统不确定度,这与闸门时间和测量次数密切相关。简单地讲,延长闸门时间和增加测量次数,都可以降低者两个不确定度。但时基的不确定度是由计数器本身的老化和工作环境,以及其本身的相位噪声等参数决定的。频率计数器的测量精度始于时基,因为它建立了测量输入信号的参考。更好的时基有可能得到更好的测量。例如,如果时基的月老化率是0.1ppm ,仪器在校准后一个月内使用,它对10MHz 信号测量带来的不确定度则是 1Hz 。 但如果老化率是0.01ppm, 其带来的不确定度只有0.1Hz. 环境温度对石英晶体的振动频率有很大影响,可根据热行为把时基技术分为三类: 1. 标准时基。标准或“室温”时基,不使用任何类型的温度补偿或控制。其最大优点是便宜,但它也有最大的频率误差。下图中的曲线示出典型晶体的热行为。随着环境温度的改变,频率输出能变化5ppm 或更高。对于1MHz 信号为±5Hz ,因此是测量中必须考虑的重要因素。在通用侧测试仪器,如示波器、函数信号发生器、频谱仪中,采用的是这种时基。在过去低端的频率计数器,其标准配置的时基也这这种得标准时基 2. 温度补偿时基。有时,我们也称之为高稳时基。一种解决晶体热变化的方法是让振荡器电路中的其它电子元件补偿其热响应。这种方法可稳定其热行为,把时基误差降低到约0.1ppm (对1MHz 信号为±10.1Hz )典型的事安捷伦53200A 系列频率计数器标准配置的时基就是这种,其老化率可达到0.1ppm 。 有时,这种时基也被用于输出频率精度更高的信号源,如安捷伦的33520A 系列函数和任意波性发生器,这种时基就是一个选件 3. 恒温槽控制。稳定振荡器输出的最有效方法是让晶体免受温度变化。计数器设计师把晶体放入恒温槽,保持其温度在热响应曲线的特定点。从而能得到好得多的时基稳定度,典型误差只有0.0025ppm (对于1MHz 信号为±0.0025Hz )。

16振荡器频率稳定和幅度稳定

一、振荡器频率稳定和幅度稳定 1、相位的稳定性 外界因素的变化会破坏相位平衡条件,使环路相移偏离2nπ。相位稳定条件是指相位条件一旦被破坏时环路能自动恢复φT=2nπ所应具有的条件。 相位稳定条件满足相位稳定条件的φ(ω)特性曲线如图所示。T上式表示φ(ω)在ω0附近具有负斜率变化,其绝对值愈大,相位愈稳定。T在LC并联谐振回路中,振荡环路φ(ω)=φ(ω)+φ(ω),即φ(ω)由两部分组成,其中,TTFAφ(ω)是反馈网络相移,与频率近似无关;φ(ω)是放大器相移,主要取决于并联谐振回路AF的相频特性φ(ω) Z 并联振荡电路中,是依靠具有负斜率相频特性的谐振回路来满足相位稳定条件的,且Q越大,φ(ω)随ω增加而下降的斜率就越大,振荡器的频率稳定度也就越高。Z2、频率的稳定 (1)影响振荡器振荡频率变化的原因:温度、湿度、电源电压、负载的变化以及机械振动、元LCQr)、、、都有可能引起决定振荡频率的回路元件参数件器的老化、周围磁场等外部因素,(、e φ的变化)的变化,从而使振荡频率发生变化,后者是引起管子的参数和相位(主要回路相位频率不稳定的内因。. (2)稳频措施为一是减少外界因素的变化。例如,将振荡器或回路元件置于恒温槽内来减小温度的变化,采用密封工艺来减小湿度的变化,采用高稳定的稳压电源来减小电源电压的变化,采用减振装置来减小机械振动,采用屏蔽罩来减小周围磁场的影响,在振荡器与负载之间插入f 高且性能稳定可靠的振荡管,跟随器来减小负载变化等。二是合理选择元器件。例如,选择Tβ较高),而且由于极间电容小,相移小,使振荡频率更接不但有利于起振(因在振荡频率上QL(如在近回路的固有谐振频率,有利于提高频率稳定度;选择温度系数小、值高的回路电感CLC在温度改变时变化很小,振,一方面使高频瓷骨架上用烧渗银法制成的电感)和电容和Q值高,其频率稳定度也高;采用贴片元器件,可减小分荡频率的变化也很小,另一方面由于L一般具有正温度系数,若选用适当负温度系布参数的影响,有利于振荡频率的稳定。此外,数的电容(如陶瓷电容器)进行温度补偿,就可以使温度改变时振荡频率的变化大大减小。为了防止元器件老化带来的振荡频率变化,在组装电路前应对元器件进行老化处理。三是合理设计振荡电路。例如,减小管子与回路之间的耦合,如采用部分接入法,可有效减小管子参数和Q值下降很少,起到稳定振荡频率的作分布参数对回路的影响,使回路电感和电容变化小,且用;适当增加回路总电容,可减小管子的输入、输出电容在总电容中的比重,从而提高回路总电容的稳定性,则频率的稳定度也提高了;采用稳定静态工作点的偏置电路,可减小振荡管参数和工作状态的变化,也可使振荡频率的变化减小。 3、幅度的稳定 幅度稳定度:在规定的条件下,输出信号幅度的相对变化量。如振荡器输出电压标称值为UO,实际输出电压与标称值之差为ΔU,则振幅稳定度为ΔU/UO。 实现方法: 内稳幅:利用放大器工作于非线性区来实现的方法,与晶体管的静态初始工作状态、自给偏压效应以及起振时AF的大小有关。静态时工作电流越小,起振时AF越大,自给偏压效应越灵敏,

时间间隔测量技术综述

高精度时间间隔测量方法综述 孙 杰 潘继飞 (解放军电子工程学院,安徽合肥,230037) 摘要:时间间隔测量技术在众多领域已经获得了应用,如何提高其测量精度是一个迫切需要解决的问题。在分析电子计数法测量原理与误差的基础上,重点介绍了国内外高精度时间间隔测量方法,这些方法都是对电子计数法的原理误差进行测量,并且取得了非常好的效果。文章的最后给出了高精度时间间隔测量方法的发展方向及应用前景。 关键词:时间间隔;原理误差;内插;时间数字转换;时间幅度转换 Methods of High Precision Time-Interval Measurement SUN Jie , PAN Ji-fei (Electronic Engineering Institute of PLA, HeFei 230037, China ) Abstract: Technology of time-interval measurement has been applied in many fields. How to improve its precision is an emergent question. On the bases of analyzing electronic counter ’s principle and error, this paper puts emphasis upon introducing high precision time-interval measurements all over the world. All these methods aim at electronic counter ’s principle error, and obtain special effect. Lastly, the progress direction and application foreground of high precision time-interval measurement methods are predicted. Key Words: time interval; principle error; interpolating; time-to-digital conversion; time-to-amplitude conversion 0引言 时间有两种含义,一种是指时间坐标系中的某一刻;另一种是指时间间隔,即在时间坐标系中两个时刻之间的持续时间,因此,时间间隔测量属于时间测量的范畴。 时间间隔测量技术在通信、雷达、卫星及导航定位等领域都有着非常重要的作用,因此,如何高精度测量出时间间隔是测量领域一直关注的问题。本文详细分析了目前国内外所采用的高精度时间间隔测量方法,指出其发展趋势,为研究新的测量方法指明了方向。 1 电子计数法 1.1 测量原理与误差分析 在测量精度要求不高的前提下,电子计数法是一种非常好的时间间隔测量方法,已经在许多领域获得了实际应用,其测量原理如图1 量化时钟频率为 0f ,对应的周期001f T =,在待测脉冲上升沿计数器输出计数脉冲个数N M ,,1T ,2T 为待测脉 冲上升沿与下一个量化时钟脉冲上升沿之间的时间间隔,则待测脉冲时间间隔x T 为: ()210T T T M N T x -+?-= (1) 然而,电子计数法得到的是计数脉冲个数N M ,,因此其测量的脉冲时间间隔为: ()0' T M N T x ?-= (2) 比较表达式(1)(2)可得电子计数法的测量误差为21T T -=?,其最大值为一个量化时钟周期0T ,产生的原因是待 测脉冲上升沿与量化时钟上升沿的不一致,该误差称为电子计数法的原理误差。 除了原理误差之外,电子计数法还存在时标误差,分析表达式(2)得到: ()()00'..T M N T M N T x ?-+-?=? (3) 比较表达式(3)(2): ()()00 ''T T M N M N T T x x ?+--?=? (4) 根据电子计数法原理,()1±=-? M N ,0'T T M N x =-,因此: 00'0'T T T T T x x ??+±=? (5) 00'T T T x ??即为时标误差,其产生的原因是量化时钟的稳定度00T T ?,可以看出待测脉冲间隔x T 越大,量化时钟的稳 定度导致的时标误差越大。 作者简介:孙杰: (1975—),男(汉族),安徽合肥人,解放军电子工程学院讲师 潘继飞:(1978—),男(汉族),安徽凤阳人,解放军电子工程学院信号与信息处理专业博士生

基于FPGA的数字频率测量仪

EDA实验报告 题目:基于FPGA的数字频率测量仪姓名:吕游 学号:201212171909

1.实验目的 1)掌握偶数倍分频电路的设计思路。 2)掌握带有计数使能输入端和异步清零功能的模为10的计数模块。 3)掌握动态扫描数码管的计数的工作原理及其使用方法。 2.实验任务 1)利用所学的知识设计一个4位的频率计,可以测量从1-9999Hz的信号频率。 2)将被测信号的频率在四个动态数码管上显示出来。采用文本设计的方法,设计软件用Quartus2。 3.实验原理 1. 功能与原理 采用一个标准的基准时钟,在单位时间(如1s)里对被测信号的脉冲数进行计数。 即为信号的频率。4位数字频率计的顶层框如下图所示,整个系统分三个模块:控制模块、计数测量模块和数据锁存器。 1)控制模块 控制模块的作用是产生测频所需要的各种控制信号。控制模块的标准输入时钟为

1Hz,每两个周期进行一次频率测量。该模块产生三个控制信号,分别是:count_en,count_clr和load。Count_clr信号用于在每一次测量开始时,对计数模块进行复位,以清除上次测量的结果。复位信号高电平有效,持续半个时钟周期的时间。Count_en 信号为计数允许信号,在Count_en信号的上升沿时刻,计数模块开始对输入信号的频率进行测量,测量时间恰为一个时钟周期(1s),在此时间里对被测信号的脉冲数进行计数,即为信号的频率。然后将该值锁存,并送到数码管显示出来。设置锁存器的好处是,显示的数据稳定,不会由于周期性的清零信号而闪烁不断。在每一次测量开始时,都必须重新对计数模块清零。 控制模块所产生的几个控制信号的时序关系如下图所示。从图中可以看到,计数使能信号Count_en在1s的高电平后,利用其反相值的上跳沿产生一个锁存信号Load,然后产生清零信号上升沿。 2)锁存器模块 锁存器模块也是必不可少的。测频模块测量完后,在Load信号的上升沿时刻将测量值锁存到寄存器中,然后输出,送到实验板上的数码管上显示出相应的数据。 3)计数模块 计数模块用于在单位时间中对输入信号的脉冲数进行计数,该模块必须有计数允许、异步清零等端口,以便于控制模块对其进行控制。 2. 设计实现 4位数字频率测试仪的顶层原理图,其中fre_ctrl是控制模块,count_10是计数模块,latch_16是16位锁存器模块。这三个模块都采用文本方式设计实现。

模块四 时间与频率的测量

模块四时间与频率的测量 §4-1数字式频率计 学习目标 1、了解数字式频率计的基本组成和主要技术指标 2、熟悉数字式频率计的测量原理 3、掌握数字式频率计的使用 数字式频率计是一种用电子学方法测出一定时间间隔内输入的脉冲数目,并以数字形式显示测量结果的测量仪表。数字式频率计的核心是电子计数器,其作用是在一定的时间间隔内进行累加计数,以完成各种测量。实际上,它还可以进行计数测量周期、平均周期、频率比、时间间隔、累订数、计时等其他操作。 一、数字式频率计的组成 数字式频率计一般由频率/电压(f/U)转换器和数字式电压基本表配合组成。f/U转换器的作用是将被测频率信号转换成直流电压,然后送入数字式电压基本表进行测量,其工作程序如图4-1-1所示。f/U转换器主要由6部分组成,各部分的名称及功能见表4-1。 图4-1-1 数字式频率计的工作方框图 表4-1 f/U转换器的组成及各组成部分的功能

从f/U转换器输出的、与被测频率成正比的直流电压直接送到数字式直流 电压表即可测量出被测信号的频率。 二、数字式频率计的工作原理 被测信号f x经放大整形后成为计数脉冲CP(如图4-1-2a和b所示),送到 控制门。由石英晶体振荡器产生的振荡信号经分频器分频后输出时间基准信号 T ,并打开控制门,如果控制门打开的时间正好是1s,则通过控制门送入计数器a 的CP脉冲个数,就是被测信号的频率。这就是数字式频率表的基本工作原理。 显然,频率表显示的是在T a这段时间内被测信号的平均值。 在数字式频率计中,控制门每打开一次,就完成一个测量过程,过程结束自 动回到零位,接着重复下一个测量过程。换句话说,控制门每开闭一次,显示器 就显示一次被测信号的频率,而且控制门开闭的时间间隔可以调节。于是,数字 式频率表就会以不同的速度重复闪动,显示出被测信号的频率。

器件基础知识振荡器

器件基础知识(振荡器) 2.8 振荡器 (1)石英晶体谐振器为晶体振荡器的核心元件,由石英片、电极、支架及其他辅助装置 组成,它是利用石英晶体的压电效应原理制成的电、机械振荡系统,由于石英晶体在物理和化学性能上都是较稳定的材料,因而其谐振频率必然稳定,晶体具有品质因数高,弹性振动损耗小的特点以及采用不同切割方式和几何形状可获得良好频率温度特性的优点,它被广泛应用于各类普通振荡器,压控振荡器,温度补偿晶体振荡器以及恒温晶体振荡器等。 (2)晶体振荡器是一种把直流电能转变成交流电能的装置,有时也称为信号发生器,它由直流电源、晶体管或电子管及振荡系统三个主要部分组成。使用了以晶体为核心的振荡电路,由于使用了具有高Q值的晶体,因此振荡器稳定性比较好,主要用于时钟信号产生电路和时钟标准。按用途和特点可分为普通晶体振荡器、电压控制晶体振荡器、温补晶体振荡器和温度控制晶体振荡器;按晶体振荡模式分,基频晶体振荡器、泛音晶体可分为振荡器;按采用分频、倍频技术可分为倍频晶体振荡器、分频晶体振荡器;如果按特定的技术要求也可以分为高稳定晶体振荡器、低噪声晶体振荡器、耐高温晶体振荡器、耐高温晶体振荡器、耐低温晶体振荡器、 耐辐射晶体振荡器等等。 2.8.2 石英晶体谐振器结构特点

(一)振荡器的频率稳定与Q值关系 频率稳定度一般用频率的相对变化量?f/f0来表示,f0为振荡频率,?f为频率偏移。谐振回路的Q值愈高,频率稳定度愈高。但一般的LC振荡器,其Q值只可达到几百,振荡器频率稳定度大约为10-2~10-3;如果用石英晶体谐振器取代LC振荡器中的L、C元件所组成的振荡器,其Q 值低十万高达百万,晶体振荡器频率稳定度在10-4~10-11量级,因此在要求高频率稳定度的场合,都采用石英晶体振荡器。 (二)石英晶体材料的基本特性 (1)各向异性 石英晶体是一种各向异性的结晶体,它是硅石的一种,其化学成分是SiO2,两端呈角锥形,中间是一个六面体。从一块晶体上按一定的方位角度切下的薄片称为晶片(可以是正方形,矩形或圆形等),然后在晶片的两个对应表面上涂敷银层并装上一对金属板,就构成石英晶体产品,如图1所示,一般用金属外壳密封,也有用玻璃封装的。 图1 石英晶体的一种结构 (2)压电效应 石英晶片所以能做振荡器是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。如在极板间所加的是交变电压,就会产生机械变压振动,同时机械变形振动又会产生交变电场。一般来说,这种机械振动的幅度是比较小的,其振动频率则是很稳定的。但当外加交变电压的频率与晶片做固有频率(决定于晶片的尺寸)相等时,机械

使用AGILENT频率计数器进行快速测量

使用频率计数器进行快速测量 您可以配置新型频率计数器使其每秒能够读取数百个读数,以便随时检定信号变化。需牢记的是,频率计数器最适合测量稳定或变化缓慢的信号。此外,为了获得精确读数,最好是选取一个理想的读数,而不要试图获取许多读数的平均值。按照以下步骤设置频率计数器可帮您实现最快测量。下面以Agilent53131A、53132A和53181A频率计数器的SCPI命令进行介绍。 技巧1:将计数器设置为已知状态。 发出重新设置命令之后,在仪器回到就绪状态之前最好不要发出其他命令。对于大多数仪器而言,在程序中设置1秒钟的等候或延迟即足以使其返回到就绪状态。如果仪器在重新设置过程中收到命令,那么该命令可能会被丢失。 *RST i?Reset the counter, i?Clear the counter and interface *CLS i?Clear errors and status registers *SRE0i?Clear service request enable register *ESE0i?Clear event status enable register i?Preset enable registers and transition filters :STATus:PRESet 技巧2:对输出格式进行设置,以匹配仪器所使用的数据类型。 这将避免当仪器在后期处理阶段将数据转换为不同格式时发生延迟。 :FORMAT ASCII i?Data in ASCII format 技巧3:禁用所有的后期处理和打印操作。 当您禁用这些功能时,处理器将会专注于获取读数,并将它们发送至计算机上,而不会去响应其他干扰(例如,更新显示等)。 :CALC:MATH:STATE OFF :CALC2:LIM:STATE OFF :CALC3:AVER:STATE OFF :HCOPY:CONT OFF :ROSC:SOUR INT :ROSC:EXT:CHECK OFF

时间频率测量技术的发展与应用

时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关 重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程 技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间 频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量 精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

简易频率测量仪

一、设计任务和主要内容 1、设计题目 简易频率测量仪 2、设计内容与要求 对800—1200HZ 中频电源进行频率监控,测量精度不低于1%并用数码管实时显示被测脉冲频率值。 (1)信号传送:对被测信号实现两个转换:强电→弱电;正弦→方波 (2)频率计算:计算频率并保存两位小数 (3)频率显示:十六进制→BCD 码 3、设计目的 1.通过亲身的设计应用电路,将所用的理论知识应用到实践中,增强实践动手能力,进而促进理论知识的强化。 2.通过频率计的设计系统掌握单片机的应用。根据课题的要求,提出选择设计方案,查找所需元器,编程写入EPROM 并进行调试等。 3.通过频率计的设计,掌握单片机的扩展芯片CD4093B 的应用 二、设计原理 1.频率计 频率计是直接用十进制来显示被测信号频率的一种测量装置。利用放大整形电路将输入信号整形为方波,即将被测信号变成脉冲信号,其重复频率等于被测频率f x 。通过利用计数器测量1s 内脉冲的个数,利用锁存器锁存, 稳定显示在数码管上,即可。频率,即是周期信号在单位时间(1s )内变化的次数。若在一定时间间隔T 内测得这个周期信号的重复变化次数N ,则其频率就可以表示: T N =f 由于计数器计得的脉冲数N 是在1秒时间内的累计数,所以被测频率NHZ x =f 。 我们选择通过待测电路产生的脉冲信号与基准电路的脉冲信号比较计数的总体思路,即时间基准信号发生器提供标准的时间脉冲信号,其周期为1s ,门控电路的输出信号持续时间亦准确地等于1s 。闸门电路由标准秒信号进行控制,当秒信号来到时,闸门开通,被测脉冲信号通过闸门送到计数译码显示电路。秒信号结束时闸门关闭,计数器停止计数。测量结果便以数字显示的方式读出,实现设计要求。 2. STC89C52 S TC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash ,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。 具有以下标准功能: 8k 字节Flash ,512字节RAM , 32 位I/O 口线,看门狗定时器,内置4KB EEPROM ,MAX810复位电路,三个16 位 定时器/计数器,一个6向量2级中断结构,全双工串行口。另外 STC89X52 可降至0Hz 静态逻辑操作,支持2种

固有频率测定方式

实验三振动系统固有频率的测量 一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图

图3-1实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: t F Kx x C x m e ωsin 0=++ 方程式的解由21X X +这两部分组成: ) sin cos (211t w C t w C e X D D t +=-ε 21D w w D -= 式中1C 、2C 常数由初始条件决定: t w A t w A X e e sin cos 212+= 其中 ( ) () 2 2 2 22 2 214e e e q A ω εω ω ωω+--= , () 22 222 242e e e q A ω εω ω ε ω+-= , m F q 0= 1X 代表阻尼自由振动基,2X 代表阻尼强迫振动项。 自由振动周期: D D T ωπ 2= 强迫振动项周期: e e T ωπ 2= 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: ( ) () () t q t q x e e e e e e e e ωω εω ω ε ωωω εω ω ωωsin 42cos 422 222 22 222 2 2+-+ +--=

时间频率测量技术的发展与应用

21世纪中国电子仪器发展战略研讨会2004年9月时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关 重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程 技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量 精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

压控振荡器-振荡频率约为1.8GHz

振荡器是一种不需要外加输入信号就能够自激输出交变信号的电子装置,起到把直流电源能量转变为交流输出能量的作用。根据振荡器输出信号波形的不同,可以将振荡器分为正弦波振荡器和非正弦波振荡器,其中非正弦振荡器一般为多谐振荡器,它产生的信号可以是方波或三角波等。按照振荡器的原理,可以将振荡器分为反馈振荡器和负阻振荡器。本章设计是一个正弦负阻型振荡器。 振荡器设计与放大器设计很类似。对于放大器设计来说,S11和S22都小于1,可以用圆图来设计M1和M2;而对于振荡器设计来说,为了产生振荡,S11 和S22均大于1。从而可以利用同样的晶体管、同样的直流偏置电路和同样的一组S参数用于振荡器设计,对于负载来说,并不知道是被接到振荡器,还是被接到放大器,如图13-1所示。 1.主要技术指标 射频/微波振荡器的主要技术指标是频率和功率。 1)工作频率振荡器的输出信号基本上是一个正弦信号。要做到振荡频率绝对准确是不可能的,频率越高,误差越大。影响频率的因素很多,如环境温度、内部噪声、元件老化、机械振动、电源纹波等。实际设计中,针对指标侧重点,应采取相应的补偿措施。调试中,也要有经验和技巧,才能达到预期的频率指标。关于频率经常会遇到下列概念。 (1)频率精度:频率精度有绝对精度(Hz)和相对精度(ppm)两种表示方式。相对精度是最大频偏和中心频率的比值。绝对精度是在给定环境条件下的最大频偏。 (2)频率温漂:随着温度的变化,物质材料的热胀冷缩引起的尺寸变化会导致振荡器的频率偏移,这种频偏是不可避免的,只能采取恰当的方法降低。常用的方法有温度补偿(数字或模拟微调)、恒温措施等,用MHz/℃或ppm/℃描述。(3)年老化率:随着时间的推移,振荡器的输出频率也会偏移,用ppm/年描述。(4)电源牵引:电源的纹波或上电瞬间会影响振荡器的频率精度,也可看做电源的频率调谐,用Hz/V表示。在振荡器内部可以通过增加稳压电路和滤波电容来改善这一指标。 (5)负载牵引:在振荡器与负载紧耦合的情况下,振荡频率会受到负载的影响。使负载与振荡器匹配,增加隔离器或隔离放大器,减小负载的牵引作用。 (6)振动牵引:振荡器内谐振腔或晶振等频率敏感元件随机械振动的形变,会影响振荡器的输出频率。振动敏感性与元件的安装和固定有关,用Hz/g表示。(7)相位噪声:相位噪声是近代振荡器和微波频率合成器的关键指标。它是输出信号时域抖动的频域等效。相位噪声、调频噪声和抖动是同一问题的不同表达

基于FPGA的频率测试仪设计

1 引言 频率特性是一个网络性能最直观的反映。频率特性测试仪用于测量网络的幅频特性和相频特性,是根据扫频法的测量原理设计,是一种快速、简便、实时、动态、多参数、直观的测量仪器,可广泛应用于电子工程等领域。由于模拟式扫频仪价格昂贵,不能直接得到相频特性,更不能打印网络的频率响应曲线,给使用带来诸多不便。为此,设计了低频段数字式频率特性测试仪。该测试仪采用数字直接频率合成技术专用的集成电路AD985l产生扫频信号,以单片机和FPGA为控制核心,通过A/D和D/A转换器等接口电路,实现扫频信号频率的步进调整、数字显示及被测网络幅频特性与相频特性的数显等。该系统成本低廉,扫频范围较宽(10 Hz~1MHz),可方便地与打印机连接,实现频率特性曲线的打印。 2 多功能计数器设计方案 2.1 幅频和相频特性测量方案 方案1:利用公式H(s)=R(s)/E(s),以冲击函数为激励,则输出信号的拉氏变换与系统函数相等。但是产生性能很好的冲击函数比较困难,需要对采集的数据做FFT变换,需要占用大量的硬件和软件资源,且精度也受到限制。 方案2:扫频测试法。当系统在正弦信号的激励下,稳态时,响应信号与输入激励信号频率相同,其幅值比即为该频率的幅频响应值,而两者的相位差即为相频特性值。采用频率逐点步进的测试方法。无需对信号进行时域与频域的变换计算,通过对模拟量的测量与计算完成,且精度较高。 综上所述,选择方案2。 2.2 扫描信号产生方案 方案1:采用单片函数发生器。其频率可由外围电路控制。产生的信号频率稳定度低,抗干扰能力差,灵活性差。 方案2:采用数字锁相环频率合成技术。但锁相环本身是一个惰性环节,频率转换时间长,整个测试仪的反应速度就会很慢,而且带宽不高。 方案3:采用数字直接频率合成技术(DDFS)。以单片机和FPGA为控制核心,通过相位累加器的输出寻址波形存储器中的数据,以产生固定频率的正弦信号。该方案实现简单,频率稳定,抗干扰能力强。 综上分析,采用方案3。 2.3 幅度检测方案 方案1:采用二极管峰值检测电路。但是二极管的导通压降会带来较大误差,小信号测量精度不高,而且模拟电路易受到外部的影响,稳定性不高。 方案2:采用真有效值检测器件。该方法电路简单,精度高,稳定性高。 综上所述,采用方案2。 2.4 相位检测方案

时间频率测量技术的发

时间频率测量技术的发展与应用

21世纪中国电子仪器发展战略研讨会2004年9月时间频率测量技术的发展与应用 陈洪卿 (中国科学院国家授时中心) 1时间频率精密测量的目的和意义 信息化时代的到来,高精度时问频率已经成为一个国家科技、经济、政治、军事和社会生活中至关重要的一个参量。时间的应用范围已经渗透到从基础研究领域(天文学、地球动力学、物理学等)到工程技术领域(信息传递、电力输配、深空跟踪、空间旅行、导航定位、武器实验、地震监测、计量测试等),以及关系到国计民生的国家诸多重要部门和领域(交通运输、金融证券、邮电通信等)的各个方面,几乎无所不及。 中国科协副主席、时间工作专家叶叔华院士认为“生活离不开时间频率,它是高新技术的基础”。“863”高科技计划倡导者陈芳允院士认为“时间频率在工业、交通、电信等方面的应用十分广泛。计时、工业控制、定位导航、现代数字化技术和计算机都离不开时频技术和时频测量”。它“在科技发展和社会进步中占有特殊重要的地位。”[1]2003年全国时间频率学术会议上,王义道教授作特邀报告“建设我国独立自主时间频率系统的思考”[2]指出:时间频率系统是维护国家安全和独立自主的命脉;现代化战争中原子钟比原子弹更重要;精密时间频率广泛应用于现代通信、导航、制导、定位、天文观察、大地测量、地质勘探、电网调配、电子对抗、交通管理、精密测量、科学研究等领域,设备需求量很大;标准频率与时间信号可以通过电磁波发射、传播、接收,直接为各种应用服务。 时间是国际单位制中的最基本的物理量之一,也是目前能够实现的测量不确定度最小的物理量。时间测量的精密度可小于10—18,准确度可达10一15。这使时间频率在计量、测量领域中起着十分突出的领先和独特作用[3]。因此,其它的物理量,如果能够通过一定的物理关系和物理常数转化为时间频率量来进行测量,用时间测量来表征,那么,该物理量的测量 精度将会大大提高,并使计量单位趋向于统一。典型的例子,莫过于长度单位一米的定义。100 多年前,为适应世界贸易和科学技术发展需求,为统一国际长度度量单位和标准,成立国际米 制委员会,并确定和保持米尺原器,成为现代国际公制计量系统的基础。长度单位一米的测量精度好不容易才达到10一8[4]。而今,由光速不变原理和L=CT确定长度,长度单位l米=真 空中光在1/299 792458秒时间内传播的距离,这样就可以用时间测量来表征长度测量,其精 度就提高到lO一9以上。作为原始基准的独立定义的长度单位,蜕变成由时间一光速联合定义的导出单位,长度单位就统一于时间单位了。此外,通过交流约瑟夫森量子效应,从加在约瑟 夫森结上的电压V与所产生的交流电频率之间的关系f=(2e/h)/v和国际协定常数值2e/h=483 597.9GHz/V,由测量频率求得电压;也可以求得电流、电阻以及温度等等[3]。

相关文档
最新文档