机器视觉测量技术2.

机器视觉测量技术2.
机器视觉测量技术2.

实际中的光源总有一定的发光面积 扩展光源。扩展光源表面的每个面元ds 沿某个方向r 有一定发光强度dI

沿r 观察,则 ds ′=ds cos θ 投影面积

则面元ds 沿r 方向的光度学亮度B 定义为在此方向上单位投影面积的发光强度。 高度: θφ

θιc o s c o s ??Ω=?==

dS d d dS dI dS

dI B 单位:2m cd

被照表面照度:一个被光线照射的表面上的照度,为照射在单位面积上的光通量,设面积ds 上的光通量为d φ,则:

照度 dS

d E φ

=

单位:1×(勒[克斯]) 1Lx = 1 2m lm lm/㎡

照度

光学系统的像面照度和其他表面的照度是必须了解的光学量。参看图1.4-1,从轴面上

的面元dA 1、辐射到接收面上的面元dA 2的辐射通量为:

2Φd =LdA 1d Ω,Cos θ

式中

12

2

21cos r dA d θ=

Ω

图xx 辐射的传播

而从物面辐射到接收面的总辐射通量为

2112

12

2

2112cos dA dA dA r L

A A A θ???=Φ 设物面是朗伯面,即L 与面元dA 1的位置无关,则

2

112

2

12

112

112

2

12

112c o s c o s c o s c o s dA dA r dA dA r LA A A A A θθθθ??Φ=??=Φ

由此

2112

2

1211212cos dA dA r cs F A A θθ??==ΦΦ 式中F 12称为辐射传输系数,它只与表面的形状、位置、大小和方向有关。是一纯粹几何量。F 12是一二重积分量,很难计算,不过现在已经对一些典型情况,计算出了结果,并且列出了表格,可供查阅。

像面照度

光学系统像面上的照度会受两方面的影响:(1)光学系统的会聚和发散作用;(2)光学系统的吸收、反射、散射和挡光的作用;为了简单起见,将忽略第(2)种影响,而对于第(1)种影响将通过光学系统的几何度G 表示出来,并使这一计算变得很简单。

几何度G 的定义为

T

A A A dA dA r A G Ω=??=12

12122

12

11cos cos θθ

式中

212

12

2

12

1cos cos dA dA r A A T θθ??=Ω 这是投影立体角,它是接收面dA 2对物面dA 1所张立体角在物面法线方向的投影的积分。 几何度G 只和光源的几何尺寸、光源到光学系统的距离、光学系统的入瞳尺寸以及光学系统的结构有关。当光能通过光学系统且不存在损失时,G 是不变量,即在光学系统内的不同截面上,G 都是相同的。若从图1.4-2观察则有

Gs = Ge = Gx = Gi

式中Gs 、Ge 、Gx 、Gi 分别是光学系统的物面S 、入瞳面e 、出瞳面x 、像面i 的几何度。

图1.4-2

从上可以看出;

(1)几何度G 可以表示光学系统传输辐射的能力;

(2)可以根据易于计算的截面上的G 值,计算出任一截面上的照度。 例如:(1)光能无损失的光学系统像面中心的辐射度 由i i LA Ω=Φ得到

)

1(1)'(4)'()'(

442

2

222

αππ

π-==

=Ω=Φ

=

f D L l

f f D L l D L

L A E i i

式中,α是光学系统的纵向放大率。

(2)视场角为θ处像平面上的辐照度。

比较物方侧物点1和轴上点0所对应立体角的大小。对于物点1,入瞳所对应的立体角为

θθθθθ332

21cos cos )cos /(cos Ω===Ωl

A l A e

e

式中Ω0是入瞳对轴上点0所张的立体角,故轴外点像平面的辐照度为

θαπθαθπ

42

23

2

2cos )

1(1)'(4cos )

1(1)'(

cos 4-=-=

f D L f D L E i

上式说明:像面照度i E 与光学系统的相对孔径)'

(

f D

的平面成正比,又和视场角θ的余弦的4次方成正比;

需要特别注意的是:θ4

cos ∞i E ,这将严重影响像面照度的均匀性。但是,对于野外景物,它并不是朗伯体,而是各向均匀发光体,则θ3

cos ∞i E 。

1.7 视觉的空间知觉

人眼能在高和宽为2D 空间上形成的视象得到一个3D 视觉空间。 ① 非视觉性深度线索 眼睛聚焦调节:

观察远点不同的物体时,眼睛调节晶状体,使成清晰象,这种调节活动给大

脑提供信息,提供深度估计。 据此 共焦测距法 双眼视轴的融合

观察远近不同的物体,双眼自动调节使视轴对准视网膜中心,做幅合运动。

提供距离信息 三角测距法

② 双眼深度线索

中央眼确定主观视觉方向,视觉 是产生立体知觉和深度知觉。(单独产生) (图像复合后相当于1只眼睛看到)

③单眼深度线索

大小:尺寸相近的物体,近:成像大;远:成像小

物体的遮挡:遮挡来判断物体的前后距离

光亮与阴影:近:物体明亮;远:物体灰暗

颜色分布:近:黄或红;远:蓝

空气透视:近:轮廓清晰;远:模糊不清

纹理:近:纹理稀疏;远:纹理密集

运动:近:视角变化大;远:视角变化小

(坐车过电线杆,和远处的树)

第二章图像的采集和量化

2.1 采集装置的性能指标

接受外界的激励并产生响应,把模拟的响应转化为数字化的信号,从而可被计算机利用。

采集装置功能:

①接受辐射(光、声、电)

②进行模数转换。

采集装置性能指标:

①线性响应:输入物理信号的强度与输出响应信号的强度之间关系是否线性。

②灵敏度:绝对灵敏度用能拾测到的最小光子数表示。

相对灵敏度用能使输出发生一级变化所需光子数表示。

③信噪比:所采集的图像中有用信号与无用干扰的(能量或强度)比值。

④阴影(不均匀度):输入物理信号为常数而输出的数字形式不为常数的现象。

⑤象素形状:一般为正方形,但也有其它形状(如运动)。

⑥频谱灵敏度:对不同频率辐射的相对灵敏度。

⑦快门速度:采集拍摄时间。

⑧读取速度:信号数据从敏感单元读取(传输)的数率。

2.2 电荷藕合摄像器件

面阵CCD原理。(帧转移型,隔列转移型,线转移型)

面阵CCD的基本特性参数:

① 光电转移特性

光电转换因子γ,一般99.7﹪。 ② 光谱响应

③ 动态范围:输出信号峰值电压与均方根噪声电压之比。

噪声源:电荷注入器件引起的噪声。

电荷转移过程中,电荷量变化引起的噪声。 拾测时产生的噪声。

④ 暗电流:正常工作时,MOS 电容处于未饱和的非平衡状态,但由于热激发产生的少量载流子使系统趋向平衡。

暗电流是判断一个系统好坏的重要标志。

⑤ 分辨率:像元位数高的器件具有更高的分辨率。

面阵CCD ,只评价其水平分辨率, 且用电视线数的评价方法。

在一幅图像上,在水平方向能够分

辨出的黑白条数――分辨率。

⑥ 填充系数Fb

电敏感区域占整个矩阵面的比例 b

100???=b

b a

a n

F ﹪ ⑦ 拖影:由寄存器电荷移位时留下的剩余 电荷量产生。 三管CCD 彩色摄像机

分光棱镜三色三CCD接收RGB信号

单管CCD彩色摄像机

栅状滤色器三色三CCD接收RGB信号

(例举液晶显示器)

特种CCD图像传感器

①微光CCD图像传感器(多帧积累)

直视夜视仪微光透视图像传感器

特点:便于图像处理,实现远距传输或遥控,实现自动控制直接用于制导、录像并长期保存。

②红外CCD图像传感器(IR CCD)

用于夜视,、跟踪制导、红外侦察、预警。(海湾战争)

主动红外电视摄像:

红外光源(红外光源,半导体激光器)

红外摄像器件(CCD)

红外变像管:把不可见的红外线转变成可见光。

③X光CCD图像传感器医疗影像+工业探测

目标:小剂量X光照射,图像远程传输。

2.3 CCD相机

①分类: 彩色相机黑白相机

②按灵敏度划分:普通型(照度1~3 lux),月光型(照度0.1 lux)

星光型(照度0.01 lux),红外型(红外照明,天光线)

③按CCD灵敏度尺寸分为1/4 inch,1/3 inch,1/2 inch,1 inch相机。

④按扫描方式:有面扫描和线扫描方式,面扫描又分为逐行扫描和隔行扫描。

⑤按同步方式:内扫描(普通相机),外同步功能相机。

CCD相机主要功能调节

①同步方式选择:内同步(利用内置的同步信号发生器产生同步信号);

外同步(外触发信号);

电源同步(利用电源完成垂直同步);

②自动增益控制:CCD信号的视频放大器,对不同照度而随之改变增益,可使相机在较

大的光照范围内进行工作。

③背光补偿:自动补偿(AGC)以整个视场平均值来确定(亮背景,暗前景)启动背光

补偿,则AGC只对前景视场求平均确定增益。

④电子快门:CCD仅输出快门开启时的光电荷信号,其余时间则被泄放。最短电子快门为

1/1000 S。

⑤?校正:L?=V (机器视觉?=1)

光(L)→CCD →电(V)→显示器→光。

要保持二次转换中的综合特性具有线性。

⑥自平衡(仅用于彩色相机):对景物图像进行色温补偿,分为自动调节和手动调节两种。CCD相机接口:

①光学接口

②信号接口:

RS422:双绞线,相机具有110Ω终端负载。

Camera Link:控制信号、视频信号、串行通讯。

LVDS(低振幅差分信号):低电压和低电压驱动实现了低噪声和低功耗。

IEEE1394:串行接口(Firewire)→400Mbps,不需要集线器就可以连接63台设备,连接电脑可省去图像采集卡。

2.4 彩色数码相机

图像→镜头→CCD →A/D →数字信息存储

数码相机的最大特点是它的一系列的二进制数据和标准的图像存储方式把所摄图像存放在机内存储器,并可以通过专用接口与通用计算机联机,实现图像传输和计算机处理的功能。分辨率高达3060?2036。

主要性能:

1.分辨率:常有1600?1200,1024?768,640?780。

2.色彩深度:专业的达到36位或24位。

3.焦距:可高达10倍光学变焦,数码变焦。

4.光圈快门:快门1/500~16 S 广角光圈f2.5~f16;长焦光圈f3.8~f24。

5.图像存储:内置存储卡JPG格式120K。

6.取景器“观看拍摄效果和编辑修改(液晶)。

7.接口功能:RS232、SCS1、USB。1394接口。

8.其他接口:自动测光、自动调焦、自动闪光、自拍。

2.5 常用的图像文件格式

1.BMP

2.GIF

3.TIFF(TIF)

4.JPEG(JPG)

(依据数字图像处理内容简单扩展)

2.6 照明系统设计

照明系统设计的基本因素:

①镜头的视场:被测物尺寸→镜头视场→最佳照明(照亮整个视场)

②照明系统与工作间距:镜头到工作距离→照明系统到工作间距→光源到工作距离

③工件的外形,条纹及颜色:工作表面形状、平坦度、粗糙度、颜色

④成像物镜自配:针对确定的成像物镜进行光源设计→划痕、缺陷、印纹等能被清晰显现。

⑤照度自配:根据CCD的光表面动态响应范围确定合适的像表面度。

照明系统的选择:

①直接型:

沐光方式高环形光反射型

低角度方式低环形光漫反射

条形方式条形光源

聚光方式聚光高亮方式(激光)

②投射型:

高亮投射照明

导光面(光板)投射照明

线条光源投射照明

③同轴光照明:与光轴平行的平行光均匀照明工件。

④不同频率光线照明(多彩)

第三章 二值图像分析

一幅数字图像是一个二维阵列,阵列元素值称为灰度值或强度值.实际上,图像在量化成数字图像前是一个连续强度函数的集合,场景信息就包含在这些强度值中.图像强度通常被量化成256个不同灰度级,对某些应用来说,也常有32、64、128或512个灰度级的情况,在医疗领域里甚至使用高达4096(12bits )个灰度级.很明显,灰度级越高,图像质量越好,但所需的内存也越大.

在机器视觉研究的早期,由于内存和计算能力非常有限,而且十分昂贵,因此视觉研究人员把精力主要集中在研究输入图像仅包含两个灰度值的二值视觉系统上.人们注意到,人类视觉在理解仅由两个灰度级组成的线条、轮廓影像或其它图像时没有任何困难,而且应用场合很多,这一点对研究二值视觉系统的研究人员是一个极大的鼓舞. 随着计算机计算能力的不断增强和计算成本的不断下降,人们普遍开始研究基于灰度图像、彩色图像和深度图像的视觉系统.尽管如此,二值视觉系统还是十分有用的,其原因如下:⑴ 计算二值图像特性的算法非常简单,容易理解和实现,并且计算速度很快.⑵ 二值视觉所需的内存小,对计算设备要求低.工作在256个灰度级的视觉系统所需内存是工作在相同大小二值图像视觉系统所需内存的八倍.如若利用游程长度编码等技术(见3.4节)还可使所需内存进一步减少.由于二值图像中的许多运算是逻辑运算而不是算术运算,所以所需的处理时间很短.(3)许多二值视觉系统技术也可以用于灰度图像视觉系统上.在灰度或彩色图像中,表示一个目标或物体的一种简易方法就是使用物体模板(mask),物体模板就是一幅二值图像,其中1表示目标上的点,0表示其它点.在物体从背景中分离出来后,为了进行决策,还需要求取物体的几何和拓扑特性,这些特性可以从它的二值图像计算出来.因此,尽管我们是在二值图像上讨论这些方法,但它们的应用并不限于二值图像. 一般来说,当物体轮廓足以用来识别物体且周围环境可以适当地控制时,二值视觉系统是非常有用的.当使用特殊的照明技术和背景并且场景中只有少数物体时,物体可以很容易地从背景中分离出来,并可得到较好的轮廓,比如,许多工业场合都属于这种情况.二值视觉系统的输入一般是灰度图像,通常使用阈值法首先将图像变成二值图像,以便把物体从背景中分离出来,其中的阈值取决于照明条件和物体的反射特性.二值图像可用来计算特定任务中物体的几何和拓扑特性,在许多应用中,这种特性对识别物体来说是足够的.二值视觉系统已经在光学字符识别、染色体分析和工业零件的识别中得到了广泛应用.

在下面的讨论中,假定二值图像大小为n m ?,其中物体像素值为1,背景像素值为0.

3.1 阈值

视觉系统中的一个重要问题是从图像中识别代表物体的区域(或子图像),这种对人来说是件非常容易的事,对计算机来说却是令人吃惊的困难.为了将物体区域同图像其它区域分离出来,需要首先对图像进行分割.把图像划分成区域的过程称为分割,即把图像],[j i F 划分成区域k p p p ,,,21???,使得每一个区域对应一个候选的物体.下面给出分割的严格定义. 定义 分割是把像素聚合成区域的过程,使得:

● ==i k i P 1 整幅图像 (}{i P 是一个完备分割 ). ●

j i P P j i ≠?=, ,(}{i P 是一个完备分割).

● 每个区域i P 满足一个谓词,即区域内的所有点有某种共同的性质.

不同区域的图像,不满足这一谓词.

正如上面所表明的,分割满足一个谓词,这一谓词可能是简单的,如分割灰度图像时用的均匀灰度分布、相同纹理等谓词,但在大多数应用场合,谓词十分复杂.在图像理解过程中,分割是一个非常重要的步骤.

二值图像可以通过适当地分割灰度图像得到.如果物体的灰度值落在某一区间内,并且背景的灰度值在这一区间之外,则可以通过阈值运算得到物体的二值图像,即把区间内的点置成1,区间外的点置成0.对于二值视觉,分割和阈值化是同义的.阈值化可以通过软件来实现,也可以通过硬件直接完成.

通过阈值运算是否可以有效地进行图像分割,取决于物体和背景之间是否有足够的对比度.设一幅灰度图像],[j i F 中物体的灰度分布在区间],[21T T 内,经过阈值运算后的图像为二值图像],[j i F T ,即:

?

??≤≤=其它如果0],[ 1],[2

1T j i F T j i F T

(3.1)

如果物体灰度值分布在几个不相邻区间内时,阈值化方案可表示为:

?

??∈=其它如果0],[ 1],[Z

j i F j i F T (3.2)

其中Z 是组成物体各部分灰度值的集合.图3.1是对一幅灰度图像使用不同阈值得到的二

值图像输出结果.

阈值算法与应用领域密切相关.事实上,某一阈值运算常常是为某一应用专门设计的,在其它应用领域可能无法工作.阈值选择常常是基于在某一应用领域获取的先验知识,因此在某些场合下,前几轮运算通常采用交互式方式来分析图像,以便确定合适的阈值.但是,在机器视觉系统中,由于视觉系统的自主性能(autonomy )要求,必须进行自动阈值选择.现在已经研究出许多利用图像灰度分布和有关的物体知识来自动选择适当阈值的技术.其中的一些方法将在3.2节介绍.

图3.1 一幅灰度图像和使用不同阈值得到的二值图像结果.上左:原始灰度图像,上右:

阈值T=100;左下:T=128.右下:T1=100|T2=128.

3.2 几何特性

通过阈值化方法从图像中检测出物体后,下一步就要对物体进行识别和定位.在大多数

工业应用中,摄像机的位置和环境是已知的,因此通过简单的几何知识就可以从物体的二维图像确定出物体的三维位置.在大多数应用中,物体的数量不是很多,如果物体的尺寸和形状完全不同,则可以利用尺度和形状特征来识别这些物体.实际上在许多工业应用中,经常使用区域的一些简单特征,如大小、位置和方向,来确定物体的位置并识别它们.

3.2.1 尺寸和位置

一幅二值图像区域的面积(或零阶矩)由下式给出:

∑∑-=-==101

0],[n i m j j i B A (3.3)

在许多应用中,物体的位置起着十分重要的作用.工业应用中,物体通常出现在已知表面(如工作台面)上,而且摄像机相对台面的位置也是已知的.在这种情况下,图像中的物体位置决定了它的空间位置.确定物体位置的方法有许多,比如用物体的外接矩形、物体矩心(区域中心)等来表示物体的位置.区域中心是通过对图像进行“全局”运算得到的一个点,因此它对图像中的噪声相对来说是不敏感的.对于二值图像,物体的中心位置与物体的质心相同,因此可以使用下式求物体的中心位置:

∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-==10101

10

101

1010

]

,[],[]

,[],[n i n i m j m j n i m j n i m j j i iB j i B y j i jB j i B x (3.4)

其中x 和y 是区域相对于左上角图像的中心坐标.物体的位置为:

A

j i iB y A

j i jB x n i m j n i m j ∑∑∑∑-=-=-=-=-

==

101

101

]

,[]

,[ (3.5)

这些是一阶矩.注意,由于约定y 轴向上,因此方程3.4和3.5的第二个式子的等号右边加了负号.

3.2.2 方向

计算物体的方向比计算它的位置稍微复杂一点.某些形状(如圆)的方向不是唯一的,为了定义唯一的方向,一般假定物体是长形的,其长轴方向被定义为物体的方向.通常,二维平面上与最小惯量轴同方向的最小二阶矩轴被定为长轴. 图像中物体的二阶矩轴是这样一条线,物体上的全部点到该线的距离平方和最小.给出一幅二值图像],[j i B ,计算物体点到直线的最小二乘方拟合,使所有物体点到直线的距离平方和最小:

χ2

20

1

01==-=-∑∑r B i j ij j m i n [,]

(3.6)

其中r ij 是物体点],[j i 到直线的距离.为了避免直线处于近似垂直时所出现的数值病态问题,人们一般把直线表示成极坐标形式:

θθρsin cos y x += (3.7)

如图3.2所示,θ是直线的法线与x 轴的夹角,ρ是直线到原点的距离.把点),(j i 坐标代入直线的极坐标方程得出距离r :

2

2

)sin cos (ρθθ-+=y x r (3.

8)

图3.2 直线的极坐标表示

将方程3.8代入方程3.6并求极小化问题,可以确定参数ρ和θ: ∑∑-=-=-+=

101

2

2

],[)sin cos (n i m j ij

ij j i B y x

ρθθχ (3.9) 令2

χ对ρ的导数等于零求解ρ得:

)sin cos (θθρy x += (3.10)

它说明回归直线通过物体中心),(y x .用这一ρ值代入上面的2

χ,则极小化问题变为:

θθθθχ2

2

2

sin cos sin cos c b a ++= (3.11)

其中的参数:

]

,[)(],[))((2]

,[)(1021

101

101

2j i B y y c j i B y y x x b j i B x x a n i m j ij n i m j ij ij n i m j ij ∑∑∑∑∑∑-=-=-=-=-=-=-=--=-= (3.12)

是二阶矩.表达式2χ可重写为:

θθχ2sin 2

12cos )(21)(212b c a c a +-++= (3.13)

对2

χ微分,并置微分结果为零,求解θ 值:

c

a b

-=

θ2tan (3.14) 因此,惯性轴的方向由下式给出:

2

22

2)(2cos )(2sin c a b c a c a b b -+-±

=-+±

=θθ (3.15)

所以由2

χ的最小值可以确定方向轴.注意,如果c a b ==,0,那么物体就不会只有唯一的方向轴.物体的伸长率E 是2

χ的最大值与最小值之比:

m in

m ax

χχ=

E (3.16) 3.2.3 密集度和体态比

区域的密集度(compact )可用下面的式子来度量:

2

p A

C =

(3.17) 其中,p 和A 分别为图形的周长和面积.根据这一衡量标准,圆是最密集的图形,其密集密度为最大值π4/1,其它一些图形的比值要小一些.让我们来看一下圆,当圆后仰时,形状成了一椭圆,面积减小了而周长却不象面积减小的那么快,因此密集度降低了.在后仰到极限角时,椭圆被压缩成了一条无限长直线,椭圆的周长为无穷大,故密集度变成了零.对于数字图像, 2p A 是指物体尺寸(像素点数量)除以边界长度的平方.这是一种很好的散布性或密集性度量方法.这一比值在许多应用中被用作为区域的一个特征.

密集度的另一层意义是:在给定周长的条件下,密集度越高,围成的面积就越大.注意在等周长的情况下,正方形密集度大于长方形密集度.

体态比定义为区域的最小外接矩形的长与宽之比,正方形和圆的体态比等于1,细长形物体的体态比大于1.图3.3所示的是几种形状的外接矩形.

图3.3 几种外接矩形示意图

3.3 投影

给定一条直线,用垂直该直线的一簇等间距直线将一幅二值图像分割成若干条,每一条内像素值为1的像素个数为该条二值图像在给定直线上的投影(projection ).当给定直线为水平或垂直直线时,计算二值图像每一列或每一行上像素值为1的像素数量,就得到了二值图像的水平和垂直投影,如图3.4所示.由于投影包含了图像的许多信息,所以投影是二值图像的一种简洁表示方式.显然,投影不是唯一的,同样的投影可能对应不同的图像.

图3.4 一幅二值图像及其水平投影图

在某些应用中,投影可以作为物体识别的一个特征.投影既是一种简洁的图像表示,又可以实现快速算法.下面介绍对角线投影的求解方法.对角线投影的关键是计算当前行和列对应的投影分布图位置标号.设行和列的标号分别用i 和j 表示.若图像矩阵为n 行m 列,则i 和j 的范围分别为0到1-n 和0到1-m .假设对角线的标号d 用行和列的仿射变换(线性组合加上常数)计算,即:

c bj ai

d ++= (3.18) 对角线投影共对应1-+m n 个条,其中仿射变换把右上角像素映射成对角线投影的第一个位置,把左下角像素映射成最后一个位置,如图3.5所示,则当前行列对应的标号d 的公式为:

1-+-=m j i d (3.19)

图3.5 二值图像及其对角线上的投影图

3.4 游程长度编码

游程长度编码(run-length encoding)是另一种二值图像的简洁表示方法,它是用图像像素值连续为1的个数(像素1的长度)来描述图像.这种编码已被用于图像传输.另外,图像的某些性质,如物体区域面积,也可以从游程长度编码直接计算出来.

在游程长度编码中经常运用两种方法,一种是使用1的起始位置和1的游程长度,另一种是仅仅使用游程长度,但须从1的游程长度开始描述,如图3.6所示.

1的游程(2,2) (6,3) (13,6) (20,1) (4,6) (11,10)

(1,5 ) (11,1) (17,4)

1和0的游程长度:0,2,2,3,4,6,1,1 0,3,6,1,10

5,5,1,5,4

图3.6 一幅简单二值图像的游程长度编码.

如果用第二种方法来表示图像每行的游程长度,并用k i r ,代表图像第i 行的第k 个游程长度,则全部1的游程长度之和就是所求物体的面积.

∑-=??

?

???-=+=10210

12,n i m k k i i r A (3.20)

其中i m 是第i 行游程个数,2/)1(-i m 取整,表示1的游程个数.

由游程长度编码能很容易地计算水平投影而无需变成原来的图像.使用更巧妙的方法也能从游程长度编码计算出垂直和对角线投影.

3.5 二值图像算法

从背景中分离出物体是一个困难的问题,在此将不讨论这个问题.这里假设物体可以从背景中分离,并且使用某一谓词,可以对图像中属于物体的点进行标记.因此,问题就变为如何将一幅图像中所有被标记的点组合成物体图像.这里还假设物体点在空间上是非常接近的.利用空间接近概念可以严格定义,利用此定义研究的算法可以把空间上非常接近的点聚合在一起,构成图像的一个成分(component ).下面首先引进一些定义,然后讨论有关算法.

3.5.1 定义

(1) 近邻

在数字图像中,一个像素在空间上可能非常接近其它一些像素.在用方格表示的数字图像中,一个像素与其它四个像素有公共边界,并与另外四个像素共享顶角.如果两个像素有公共边界,则把它们称为4-近邻(4-neighbors).同样,如果两个像素至少共享一个顶角,则称它们为8-近邻.例如,位于],[j i 的像素有四个4-近邻:],1[j i -,],1[j i +,]1,[-j i ,]1,[+j i .它的8-近邻包括这四个4-近邻,再加上]1,1[--j i ,]1,1[-+j i ,]1,1[+-j i ,

]1,1[++j i .一个像素被认为与它的4-近邻是4-连通(4-connected)关系,与它的8-近

邻是8-连通关系(如图3.7).

图3.7 矩形像素网格的4-近邻和8-近邻示意图.像素],[j i 位于图的中心.

(2) 路径

从像素],[00j i 到像素],[n n j i 的路径(path)是指一个像素序列],[00j i ,],[11j i ,...,

],[n n j i ,其中像素],[k k j i 是像素],[11++k k j i 的近邻像素,10-≤≤n k .如果近邻关系是4

-连通的,则路径是4-路径;如果是8-连通的,则称为8-路径.图3.8即为路径的两个简单例子.

[i-1, j ]

[i, j-1] [i, j ] [i, j+1] [i+1, j ]

[i-1,j-1] [i-1,j ] [i-1,j+1] [i,j-1] [i, j ] [i,j+1] [i+1,j-1] [i+1,j ] [i+1,j+1]

图3.8 4-路径和8—路径示意图

(3) 前景

图像中值为1的全部像素的集合称为前景(foreground),用S 表示.

(4) 连通性

已知像素S q p ∈,,如果存在一条从p 到q 的路径,且路径上的全部像素都包含在S 中,则称p 与q 是连通的.

注意,连通性(connectivity)是等价关系.对属于S 的任意三个像素p 、q 和r ,有下列性质:

1.像素p 与p 本身连通(自反性).

2.如果p 与q 连通,则q 与p 连通(互换性).

3.如果p 与q 连通且q 与r 连通,则p 与r 连通(传递性).

(5) 连通成份 一个像素集合,如果集合内的每一个像素与集合内其它像素连通,则称该集合为一个连通成份(connected component).

(6) 背景

?S (S 的补集)中包含图像边界点的所有连通成份的集合称为背景(background).?S 中所有其它元称为洞.考虑下面的两个图像.

首先看左图中有几个洞和几个物体.如果从前景和背景来考虑4-连通,有四个大小为-个像素的物体和一个洞.如果考虑8-连通,那么有一个物体而没有洞.直观地,在这两种情况下出现了不确定性情况.右图为另一个类似的不确定问题.其中如果1是连通的,那么0就应该是不连通的.

为了避免这种难以处理的情况,对物体和背景应使用不同的连通.如果我们对S 使用8-连通,那么对?S 就应使用4-连通.

(7) 边界

《机器视觉及其应用》习题

第一章机器视觉系统构成与关键技术 1、机器视觉系统一般由哪几部分组成?机器视觉系统应用的核心目标是什么?主要的分 成几部分实现? 用机器来延伸或代替人眼对事物做测量、定位和判断的装置。组成:光源、场景、摄像机、图像卡、计算机。用机器来延伸或代替人眼对事物做测量、定位和判断。三部分:图像的获取、图像的处理和分析、输出或显示。 2、图像是什么?有那些方法可以得到图像? 图像是人对视觉感知的物质再现。光学设备获取或人为创作。 3、采样和量化是什么含义? 数字化坐标值称为取样,数字化幅度值称为量化。采样指空间上或时域上连续的图像(模拟图像)变换成离散采样点(像素)集合的操作;量化指把采样后所得的各像素的灰度值从模拟量到离散量的转换。采样和量化实现了图像的数字化。 4、图像的灰度变换是什么含义?请阐述图像反色算法原理? 灰度变换指根据某种目标条件按照一定变换关系逐点改变原图像中每一个像素灰度值,从而改善画质,使图像的显示效果更加清晰的方法。对于彩色图像的R、G、B各彩色分量取反。 第二章数字图像处理技术基础 1、对人类而言,颜色是什么?一幅彩色图像使用RGB色彩空间是如何定义的?24位真彩 色,有多少种颜色? 对人类而言,在人类的可见光范围内,人眼对不同波长或频率的光的主观感知称为颜色。 一幅图像的每个像素点由24位编码的RGB 值表示:使用三个8位无符号整数(0 到255)表示红色、绿色和蓝色的强度。256*256*256=16,777,216种颜色。 2、红、绿、蓝三种颜色为互补色,光照在物体上,物体只反射与本身颜色相同的色光而吸 收互补色的光。一束白光照到绿色物体上,人类看到绿色是因为? 该物体吸收了其他颜色的可见光,而主要反射绿光,所以看到绿色。 3、成像系统的动态范围是什么含义? 动态范围最早是信号系统的概念,一个信号系统的动态范围被定义成最大不失真电平和噪声电平的差。而在实际用途中,多用对数和比值来表示一个信号系统的动态范围,比如在音频工程中,一个放大器的动态范围可以表示为: D = lg(Power_max / Power_min)×20; 对于一个底片扫描仪,动态范围是扫描仪能记录原稿的灰度调范围。即原稿最暗点的密度(Dmax)和最亮处密度值(Dmin)的差值。 我们已经知道对于一个胶片的密度公式为D = lg(Io/I)。那么假设有一张胶片,扫描仪向其投射了1000单位的光,最后在共有96%的光通过胶片的明亮(银盐较薄)部分,而在胶片的较厚的部分只通过了大约4%的光。那么前者的密度为: Dmin=lg(1000/960)= 0.02; 后者的密度为: Dmax=lg(1000/40)= 1.40 那么我们说动态范围为:D=Dmax-Dmin=1.40-0.02=1.38。

机器视觉测量技术

机器视觉测量技术 杨永跃 合肥工业大学 2007.3

目录第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD相机类 2.4 彩色数码相机 2.5 常用的图像文件格式 2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征 4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像

5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从x恢复形状的方法 5.6 测距成像 第六章标定 6.1 传统标定 6.2 Tsais万能摄像机标定法 6.3 Weng’s标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术 第八章图像测量软件 (多媒体介绍) 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性,因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观)视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、X射线、CCD、数字扫描仪、 超声成像、CT等 数字化设备 2 低层视觉(预处理):对输入的原始图像进行处理(滤波、增强、边缘检测),提取角 点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理 分析。系统标定 4 高层视觉:在以物体为中心的坐标系中,恢复物体的完整三维图,识别三维物体,并 确定物体的位置和方向。 5 体系结构:根据系统模型(非具体的事例)来研究系统的结构。(某时期的建筑风格— 据此风格设计的具体建筑) 1.3 机器视觉的应用 工业检测—文件处理,毫微米技术—多媒体数据库。 许多人类视觉无法感知的场合,精确定量感知,危险场景,不可见物感知等机器视觉更显其优越十足。 1 零件识别与定位

机器视觉检测系统简述及系统构成

机器视觉检测系统简述及系统构成 1机器视觉检测的一般模式 机器视觉检测的目标千差万别,检测的方式也不尽相同。农产品如苹果、玉米等通常是检测其成熟度,大小,形态等,工业产品如工业零件,印刷电路板通常是检测其几何尺寸,表面缺陷等。不同的应用场合,就需要采用不同的检测设备和检测方法。如有的检测对精度要求高,就需要选择高分辨率的影像采集装置;有的检测需要产品的彩色信息,就需要采用彩色的工业相机装置。正是由于不同检测环境的特殊性,目前世界上还没有一个适用于所有产品的通用机器视觉检测系统。虽然各个检测系统采用的检测设备和检测方法差异很大,但其检测的一般模式却是相同的。机器视觉检测的一般模式是首先通过光学成像和图像采集装置获得产品的数字化图像,再用计算机进行图像处理得到相关检测信息,形成对被测产品的判断决策,最后将该决策信息发送到分拣装置,完成被测产品的分拣。 机器视觉检测的一般模式如图1所示: 图1机器视觉检测的一般模式 1.1图像获取 图像获取是机器视觉检测的第一步,它影响到系统应用的稳定性和可靠性。图像的获取实际上就是将被测物体的可视化图像和内在特征转换成能被计算机处理的图像数据。机器视觉检测系统一般利用光源,光学镜头,相机,图像采集卡等设备获取被测物体的数字化图像。 1.2视觉检测 视觉检测通过图像处理的方法从产品图像中提取需要的信息,做出结果处理并发送相应消息到分拣机构。通常这部分功能由机器视觉软件来完成。优秀的机器视觉软件可对图像中的目标特征进行快速准确地检测,并最大限度地减少对硬件系统的依赖性,而算法设计不够成熟的机器视觉软件则存在检测速度慢,误判率高,对硬件依赖性强等特点。在机器视觉检测系统中视觉信息的处理主要依赖于图像处理方法,它包括图像增强,数据编码和传输,平滑,边缘锐化,分割,特征提取,目标识别与理解等内容。 1.3分拣 对于一个检测系统而言,最终是要实现次品(含不同种类的次品)与合格品的分离即分拣,这部分功能由分拣机构来完成。分拣是机器视觉检测的最后一个也是最为关键的一个环节"对于不同的应用场合,分拣机构可以是机电系统!液压系统!气动系统中的某一种。但无论是哪一种,除了其加工制造和装配精度要严格保证以外,其动态特性,特别是快速性和稳定性也十分重要,必须在设计时予以足够的重视。 2机器视觉检测系统的构成 一个典型的机器视觉检测系统主要包括光源、光学镜头、数字相机、图像采集卡、图像处理模块、分拣机构等部份。其构成如图2所示。 图2典型的机器视觉检测系统 3光源

机器视觉课后心得体会

. ;.. 经过机器视觉技术及应用这门课程的学习,我觉得受益匪浅。可以说这门课 程更偏重于实践,也很好的锻炼了我们,老师讲课很认真,ppT准备的很详细,对于一些关键问题的讲解更是深入浅出。机器视觉技术,即采用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品即图像摄取装置,分CMOS 和CCD两种把图像抓取到,然后将该图像传送至处理单元,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别,进而根据判别的结果来控制现场的设备动作。机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。 机器视觉不同于计算机视觉,它涉及图像处理、人工智能和模式识别,机器视觉是将计算机视觉应用于工业自动化。 目前在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。机器视觉伴随计算机技术、现场总线技术的发展,技术日臻成熟,已是现代加工制造业不可或缺的产品,广泛应用于食品和饮料、化妆品、制药、建材和化工、金属加工、电子制造、包装、汽车制造等行业。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。加之机器视觉的介入,自动化将朝着更智能、更快速的方向发展。 通过本课程的学习,我们掌握了一些机器视觉方面的基本知识。这门课对于我们生活方面有很大的实用性,可以让我们了解到机器视觉的基本构造,对成为技术应用型人才,适应社会和培养实践能力与技能都起到了很大的作用。这样的学习让我们将知识更灵活的运用,更好的将知识和实践结合在一起并转化为技能。 通过这门课程的学习,我们懂得更多,收获更多,提升了自身操作能力的同时又学到了很多东西,我相信在以后的课堂学习和实践学习中可以掌握更多更深入的知识,不断的提高自身的学习与应用能力。

机器视觉在自动化生产中的应用

机器视觉在自动化生产中的应用 如今,自动化技术在我国发展迅猛,人们对于机器视觉的认识更加深刻,对于它的看法也发生了很大的转变。机器视觉系统提高了生产的自动化程度,让不适合人工作业的危险工作环境变成了可能,让大批量、持续生产变成了现实,大大提高了生产效率和产品精度。快速获取信息并自动处理的性能,也同时为工业生产的信息集成提供了方便。随着机器视觉技术成熟与发展,我们不难发现其应用范围越加的广泛,根据这些领域,我们大致可以概括出机器视觉的五大典型应用,这五大典型应用也基本可以概括出机器视觉技术在工业生产中能够起到的作用。 一、图像识别应用 图像识别,是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。图像识别在机器视觉工业领域中最典型的应用就是二维码的识别了,二维码就是我们平时常见的条形码中最为普遍的一种。将大量的数据信息存储在这小小的二维码中,通过条码对产品进行跟踪管理。通过机器视觉系统,可以方便的对各种材质表面的条码进行识别读取,大大提高了现代化生产的效率。 二、图像检测应用 检测是机器视觉工业领域最主要的应用之一,几乎所有产品都需要检测,而人工检测存在着较多的弊端,人工检测准确性低,长时间工作的话,准确性更是无法保证,而且检测速度慢,容易影响整个生产过程的效率。因此,机器视觉在图像检测的应用方面也非常的广泛,例如:硬币边缘字符的检测。2000年10月新发行的第五套人民币中,壹圆硬币的侧边增强了防伪功能,鉴于生产过程的严格控制要求,在造币的最后一道工序上安装了视觉检测系统。另外,其还可应用于印刷过程中的套色定位以及较色检查、包装过程中的饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别,玻璃瓶的缺陷检测等。其中,机器视觉系统对玻璃瓶的缺陷检测,也包括了药用玻璃瓶范畴,也就是说机器视觉也涉及到了医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。 三、视觉定位应用 视觉定位要求机器视觉系统能够快速准确的找到被测零件并确认其位置。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。 四、物体测量应用 机器视觉工业应用最大的特点就是其非接触测量技术,同样具有高精度和高速度的性能,但非接触无磨损,消除了接触测量可能造成的二次损伤隐患。常见的测量应用包括,齿轮,接插件,汽车零部件,IC元件管脚,麻花钻,罗定螺纹检测等。 五、物体分拣应用 实际上,物体分拣应用是建立在识别、检测之后一个环节,通过机器视觉系统将图像进行处理,实现分拣。在机器视觉工业应用中常用于食品分拣、零件表面瑕疵自动分拣、棉花纤维分拣等。

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

机器视觉测量技术

机器视觉测量技术杨永跃合肥工业大学 2007.3 目录 第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD 相机类 2.4 彩色数码相机 2.5 常用的图像文件格式

2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像 2 5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从 x 恢复形状的方法 5.6 测距成像

第六章标定 6.1 传统标定 6.2 Tsais 万能摄像机标定法 6.3 Weng ’ s 标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术第八章图像测量软件 (多媒体介绍 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

3 第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性, 因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、 X 射线、 CCD 、数字扫描仪、超声成像、 CT 等 数字化设备 2 低层视觉(预处理 :对输入的原始图像进行处理(滤波、增强、边缘检测 ,提取角点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理分析。系统标定

机器视觉的现状及其应用

河北工业大学 院系:河北工业大学机械工程学院 班级:机研155班 姓名:翟云飞 学号: 201531204037 题目:机器视觉技术及其应用

目录 1.机器视觉的发展现状 2.机器视觉系统组成 2.1机器视觉系统的工作原理 3.机器视觉的应用 3.1基于机器视觉的FPC嵌入式检测系统检测系统 3.2基于机器视觉的柔性制造岛在线零件识别系统 3.3基于机器视觉的PCB光板缺陷检测技术 3.4新兴行业 4.机器视觉发展趋势 5.中国机器视觉产业的发展现状 5.1、随着产业化的发展对机器视觉的需求将呈上升趋势 5.2、统一开放的标准是机器视觉发展的原动力 5.3、基于嵌入式的产品将取代板卡式产品 5.4、标准化、一体化解决方案也将是机器视觉的必经之路 6.参考文献

1.中国机器视觉的发展趋势 近年来,机器视觉已经发展成为光电子的一个应用分支,广泛应用于微电子、PCB生产、自动驾驶、印刷、科学研究和军事等领域。机器视觉在中国的蓬勃发展,使从事机器视觉的公司和人员大量涌现。首先概述了机器视觉技术的基本原理并分析了机器视觉系统的构建;接着论述了机器视觉技术的当前主要应用领域与情况;最后分析了现阶段机器视觉技术存在的问题。 2.机器视觉系统组成及其工作原理 简言之,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 从原理上机器视觉系统主要由三部分组成:图像的采集、图像的处理和分析、输出或显示。—个典型的机器视觉系统应该包括光源、光学系统、图像捕捉系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块,如图1所示。

机器视觉在医疗器械行业的运用

机器视觉在医疗器械行业的应用 摘要一次性注射针的外观缺陷是影响产品质量的主要因素。为了实现对注射针的外观缺陷检测自动化,本文研究了用西门子机器视觉[1]技术结合西门子自动化[2]设备在线检测注射针的外观缺陷并自动剔除不合格产品的方法。在实际生产过程的运用中,注射针检测系统得到了多家医疗器械厂商的好评。 关键词一次性注射针缺陷检测西门子机器视觉自动化 Abstract The defect on the appearance of the one-off injector pin is the main influencing factor to it’s quality. To realize defect inspection automatically for the defect on the appearance of the one-off injector pin, some defect inspecting methods for the one-off injector pin by SIMATIC machine vision combine with SIMATIC automatic equipment are studied in this article. In actual project, the equipment of Hang zhou Huafeng automatic company that inspects the appearance of the one-off injector pin obtained good effect from many medical instrument manufacturers. Key Words one-off injector pin, defect inspection, SIMATIC machine vision, automation 1 引言 随着医疗水平和医疗器械的不断提高和更新,一次性注射针以其方便、卫生的特点深受用户的喜爱,其需求量也迅速增大,而针头外观的好坏直接影响到一次性注射针的质量。所以为了减少不合格品的数量,需要增加检测工序。手工外观检验和产品标记昂贵和不可靠。同时又意味着不近人情的单调工作。这里,自动化机器视觉系统提供了解决这些问题的方案。 2 一次性注射针的缺陷 一次性注射针可以分为针座和针头两个部分。针座的缺陷对产品的质量影响可以不计。而针头就存在着两种缺陷情况:首先针头在制作过程中针尖部位可能会产生毛刺;其次针头在自动装配过程中可能会产生倒插现象(针尖部位被插入针座)。影响针头的几个缺陷为:针尖毛刺、倒插。其中倒插不仅会对产品的质量产生直接的影响,而且严重的会危害到人的

机器视觉课后心得体会

经过机器视觉技术及应用这门课程的学习,我觉得受益匪浅。可以说这门课程更偏重于实践,也很好的锻炼了我们,老师讲课很认真,ppT准备的很详细,对于一些关键问题的讲解更是深入浅出。机器视觉技术,即采用机器代替人眼来做测量和判断。机器视觉系统是指通过机器视觉产品即图像摄取装置,分CMOS 和CCD两种把图像抓取到,然后将该图像传送至处理单元,通过数字化处理,根据像素分布和亮度、颜色等信息,来进行尺寸、形状、颜色等的判别,进而根据判别的结果来控制现场的设备动作。机器视觉主要用计算机来模拟人的视觉功能,但并不仅仅是人眼的简单延伸,更重要的是具有人脑的一部分功能一一从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。 机器视觉不同于计算机视觉,它涉及图像处理、人工智能和模式识别,机器视觉是将计算机视觉应用于工业自动化。 目前在机器视觉系统中;CCD 摄像机以其体积小巧、性能可靠、清晰度高等优点得到了广泛使用。机器视觉伴随计算机技术、现场总线技术的发展,技术日臻成熟,已是现代加工制造业不可或缺的产品,广泛应用于食品和饮料、化妆品、制药、建材和化工、金属加工、电子制造、包装、汽车制造等行业。在未来的几年内,随着中国加工制造业的发展,对于机器视觉的需求也逐渐增多;随着机器视觉产品的增多,技术的提高,国内机器视觉的应用状况将由初期的低端转向高端。加之机器视觉的介入,自动化将朝着更智能、更快速的方向发展。 通过本课程的学习,我们掌握了一些机器视觉方面的基本知识。这门课对于我们生活方面有很大的实用性,可以让我们了解到机器视觉的基本构造,对成为技术应用型人才,适应社会和培养实践能力与技能都起到了很大的作用。这样的学习让我们将知识更灵活的运用,更好的将知识和实践结合在一起并转化为技能。 通过这门课程的学习,我们懂得更多,收获更多,提升了自身操作能力的同时又学到了很多东西,我相信在以后的课堂学习和实践学习中可以掌握更多更深入的知识,不断的提高自身的学习与应用能力。

机器视觉检测分解

研究背景: 产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。[] 传统检测技术 (1)人工目视检测法 (2)频闪检测法 无损检测技术 (1)涡流检测法 (2)红外检测法 (3)漏磁检测法 计算机视觉检测技术 (1)激光扫描检测法 (2)CCD 检测法 采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。 优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。 基于机器视觉的缺陷检测系统优点: 集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测 由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。 机器视觉图像处理技术是视觉检测的核心技术 铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形 问题的提出: 1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。从目前发表的文献来看,对于伪缺陷的识别率较低。 2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。 国外研究发展现状: 20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。 1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。 1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。 2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经

机器视觉检测

机器视觉检测 一、概念 视觉检测是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 机器视觉检测的特点是提高生产的柔性和自动化程度。 2、典型结构 五大块:照明、镜头、相机、图像采集卡、软件 1.照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。目前没有通用的照明设备,具体应用场景选择相应的照明装置。照射方法可分为: 分类具体说明优点 背向照明被测物放在光源和摄像机之 间能获得高对比度的图像 前向照明光源和摄像机位于被测物的 同侧 便于安装 结构光将光栅或线光源等投射到被 测物上,根据它们产生的畸 变,解调出被测物的三维信 息 频闪光照明将高频率的光脉冲照射到物

体上,摄像机拍摄要求与光 源同步 2.镜头 镜头的选择应注意以下几点:焦距、目标高度、影像高度、放大倍数、影响至目标的距离、中心点/节点、畸变。 3.相机 按照不同标准可分为:标准分辨率数字相机和模拟相机等。 要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD 和面阵CCD;单色相机和彩色相机。 为优化捕捉到的图像,需要对光圈、对比度和快门速度进行调整。 4.图像采集卡 图像采集卡是图像采集部分和图像处理部分的接口。将图像信号采集到电脑中,以数据文件的形式保存在硬盘上。通过它,可以把摄像机拍摄的视频信号从摄像带上转存到计算机中。 5.软件 视觉检测系统使用软件处理图像。软件采用算法工具帮助分析图像。视觉检测解决方案使用此类工具组合来完成所需要的检测。是视觉检测的核心部分,最终形成缺陷的判断并能向后续执行机构发出指令。常用的包括,搜索工具,边界工具,特征分析工具,过程工具,视觉打印工具等。 3、关键——光源的选择 1.光源选型基本要素: 对比度机器视觉应用的照明的最重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生最大的对比度,从而易于特

机器视觉在线检测系统项目实施流程

精选文档 随着机器视觉检测技术的日益成熟,越来越多的企业选择安装机器视觉在线检测系统,企业如何做到机器视觉在线检测项目的顺利实施,企业用户对机器视觉在线检测系统设计制作流程的了解至关重要,今天创视新小编在这里整理了整个机器视觉在线检测系统从前期的产品检测评估到系统设备设计制作集成的整个过程做一个简单的介绍: 1、项目的前期评估 A、通过电话联系我们公司,我们公司将会有专业项目工程工程师跟您进行 初步的沟通,了解您的需求; B、需要您提供检测样品(0K品和各种NG品数个)以及现场环境,如果 不是做整机检测设备的还需要提供视觉设备的安装空间及外围I0通讯。如有 需要,项目工程师可以到贵公司进行现场评估; C、根据提供的样品,项目工程师会在公司进行初步的技术评估,一般在收 到样品后两个工作日内会给出测试结果; D、项目工程师会根据测试结果,向您提出专业的意见。提供合适的视觉产品 (包括工业相机、镜头、光源、电脑、机器视觉系统软件等)给您,然后在测 试结果出来后给您提供初步方案及项目费用预估。 E、如对方案存在疑问,可以随时联系项目工程师,项目工程师会对您的疑 问进行解答并完善方案,尽力满足您的需求。 2、立项 项目经过初步评估后,双方确认项目方案的可行性,项目工程师接下来会建 立一个新项目流程往下进行。 3、检测标准的明确 需要您收集0K品和限度NG品(即初步测试中认为可以检测出来的NG品 种类),需要一定数量。项目工程师会对您提供的样品进行测试,详细的检测标准跟您进行确认 精选文档

4、其他确认 明确了检测标准后,项目工程师会进一步和您确认检测设备达到安装现场,机械和电气要求;如果贵公司对设备使用有特殊要求的,请及时提出,以便我们进行评估和设计。 5、整体方案书制作、明细报价单、合同制作 项目工程师根据以上的确认制作详细的整体方案,整体包含整机图、视觉系统配置、检测标准、软件功能等。 机器视觉在线检测系统设备设计制作流程 在签完合同和各方面财务确认后就开始进一步的系统设备的设计制作。 1、客服提供相关的辅料 需要提供不同程度的良品与不良品样品、产品样品外观尺寸和设计品载具。如果需要使用专用载具,请提供专用载具的相关尺寸以提供我们的设计使用。 2、设备整机布置图和电气控制动作流程的确认 我们在收到您提供的相关辅料几个工作日后,提供设备整机布置图和电气控制动作流程给贵公司的责任人确认,如有疑问可以和公司的技术工程师沟通,技术工程师会尽快解决您的问题。 3、机器零件图设计 整机布置图确认后,接着就是进行机械零件的设计。 4、机械、电气标准件的选型 精选文档 整机布置图和电控动作流程确认后,接着就是完成机械、电气标准件的选型。

机器视觉测量实验报告

《机器视觉应用实验报告》 姓 名 黄柱汉 学 号 201341304523 院 系 机械与汽车工程学院 专 业 仪器仪表工程 指导教师 全燕鸣 教授 2015年04月16日

华南理工大学实验报告 课程名称:机器视觉应用 机械与汽车工程学院系仪器仪表工程专业姓名黄柱汉 实验名称机器视觉应用实验日期2015.4.16 指导老师全燕鸣 一、实验目的 主要目的有以下几点: 1.实际搭建工业相机、光源、被摄物体图像获取系统,自选Labview或Matlab、 Halcon、Ni Vision软件平台,用打印标定板求解相机内外参数以及进行现场 系统标定; 2.进行一个具体实物体的摄像实验,经图像预处理和后处理,获得其主要形状 尺寸的测量(二维) 3.进行一个具体实物体的摄像实验,经图像预处理和后处理,识别出其表面缺 陷和定位。 二、实验原理 “机器视觉”是用机器代替人眼来进行识别、测量、判断等。机器视觉系统是通过摄像头将拍摄对象转换成图像信号,然后再交由图像分析系统进行分析、测量等。一个典型的机器视觉系统包括照明、镜头、相机、图像采集卡和视觉处理器5个部分。 HALCON是在世界范围内广泛使用的机器视觉软件,拥有满足各类机器视觉应用的完善开发库。HALCON也包含Blob分析、形态学、模式识别、测量、三维摄像机定标、双目立体视觉等杰出的高级算法。HALCON支持Linux和Windows,并且可以通过C、C++、C#、Visual Basic和Delphi语言访问。另外HALCON与硬件无关,支持大多数图像采集卡及带有DirectShow和IEEE 1394驱动的采集设备,用户可以利用其开放式结构快速开发图像处理和机器视觉应用软件,具有良好的跨平台移植性和较快的执行速度。 本实验包括对被测工件进行尺寸测量和表面缺陷检测。尺寸测量是通过使用机器视觉来对考察对象的尺寸、形状等信息进行度量;缺陷检测是通过机器视觉手段来分析零部件信息,从而判断其是否存在缺陷。

机器视觉检测的分析简答作业及答案要点

2012研究生机器视觉课程检测及课程设计内容 一、回答下列问题: 1、什么是机器视觉,它的目标是什么?能否画出机器视觉检测系统的结构方 块图,并说出它们的工作过程原理和与人类视觉的关系? 机器视觉是机器(通常指计算机)对图像进行自动处理并报告“图像中有什么”的过程,也就是说它识别图像中的内容。图像中的内容往往是某些机器零件,而处理的目标不仅要能对机器零件定位,还要能对其进行检验。 机器视觉系统的组成框图 2、在机器视觉检测技术中:什么是点视觉技术、一维视觉技术、二维视觉技 术、三维视觉技术、运动视觉技术、彩色视觉技术、非可见光视觉技术等? 能否说出他们的应用领域病句、案例?能否描述它们的技术特点? 答:点视觉:用一个独立变量表示的视觉称之为点视觉。如应用位移传感器测量物体的移动速度。 一维视觉:普通的CCD。 两维视觉:用两个独立变量表示的视觉称之为两维视觉。比如普通的CCD。 三维视觉:用三个独立变量表示的视觉称之为三维视觉。比如用两个相机拍摄(双目视觉);或者使用一个相机和一个辅助光源。 彩色视觉:用颜色作为变量的视觉称之为彩色视觉。物体的颜色是由照 射光源的光谱成分、光线在物体上反射和吸收的情况决定的。比如,一 个蓝色物体在日光下观察呈现蓝色,是由于这个物体将日光中的蓝光 反射出来,而吸收了光谱中的其他部分的光谱,而同样的蓝色物体, 在红色的光源照射下,则呈现红紫色, 非可见光视觉技术:用非可见光作为光源的视觉技术。比如非可见光成像技术。

3、机器视觉检测技术中:光源的种类有哪些?不同光源的特点是什么?光照 方式有几种?不同光照方式的用途是什么?又和技术特点和要求? 机器视觉检测技术中光源有以下几种:荧光灯,卤素灯+光纤导管,LED 光源,激光,紫外光等。几种光源的特点如下: 光照方式有以下几种: 背景光法(背光照射)是将被测物置于相机和光源之间。这种照明方式的优点是可将被测物的边缘轮廓清晰地勾勒出来。由于在图像中,被测物所遮挡的部分为黑色,而未遮挡的部分为白色,因此形成“黑白分明”的易于系统分析的图像。此方法被应用于90%的测量系统中。 前景光法(正面照射)是将灯源置于被测物和相机之前。又可分为明场照射和暗场照射。明场照射是为了获得物体的几乎全部信息,照射物体的光在视野范围之内几乎全部反射回去;暗场照射是为了获取物体表面的凹凸,照射物体的光在视野范围之外有部分光反射回去。 同轴光法是将灯源置于被测物和相机之间。 4、机器视觉检测系统中,光学系统的作用是什么?光学器件有哪几种,它们 各自的作用是什么?光学镜头有几种类型,它们各自有何用途?光学镜头有哪些技术参数,各自对测量有什么影响? 答:机器视觉检测系统中,光学系统用来采集物体的轮廓、色彩等信息。 光学器件主要有:镜头、成像器件(CCD和CMOS)、光圈、快门等。 镜头的作用是对成像光线进行调焦等处理,使成像更清晰;成像器件的作用是将光学图像转换成模拟电信号;光圈的作用如同人得瞳孔, 控制入射光的入射量,实现曝光平衡;快门的作用是将想要获取的光学

基于机器视觉的产品检测技术研究

基于机器视觉的产品检测技术研究 1、机器视觉 1.1机器视觉的概念 机器视觉被定义为用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。一个典型的工业机器视觉应用系统包括光源、光学系统、图像采集系统、数字图像处理与智能判断决策模块和机械控制执行模块。系统首先通过CCD相机或其它图像拍摄装置将目标转换成图像信号,然后转变成数字化信号传送给专用的图像处理系统,根据像素分布!亮度和颜色等信息,进行各种运算来抽取目标的特征,根据预设的容许度和其他条件输出判断结果。 值得一提的是,广义的机器视觉的概念与计算机视觉没有多大区别,泛指使用计算机和数字图像处理技术达到对客观事物图像的识别、理解。而工业应用中的机器视觉概念与普通计算机视觉、模式识别、数字图像处理有着明显区别,其特点是: 1、机器视觉是一项综合技术,其中包括数字图像处理技术、机械工程技术、控制技术、电光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。这些技术在机器视觉中是并列关系。相互协调应用才能构成一个成功的工业机器视觉应用系统。 2、机器视觉更强调实用性,要求能够适应工业生产中恶劣的环境,要有合理的性价比,要有通用的工业接口,能够由普通工作者来操作,有较高的容错能力和安全性,不会破坏工业产品,必须有较强的通用性和可移植性。 3、对机器视觉工程师来说,不仅要具有研究数学理论和编制计算机软件的能力,更需要光、机、电一体化的综合能力。 4、机器视觉更强调实时性,要求高速度和高精度,因而计算机视觉和数字图像处理中的许多技术目前还难以应用于机器视觉,它们的发展速度远远超过其在工业生产中的实际应用速度。 1.2机器视觉的研究范畴 从应用的层面看,机器视觉研究包括工件的自动检测与识别、产品质量的自动检测、食品的自动分类、智能车的自主导航与辅助驾驶、签字的自动验证、目标跟踪与制导、交通流的监测、关键地域的保安监视等等。从处理过程看,机器视觉分为低层视觉和高层视觉两阶段。低层视觉包括边缘检测、特征提取、图像分割等,高层视觉包括特征匹配、三维建模、形状分析与识别、景物分析与理解等。从方法层面看,有被动视觉与主动视觉之,又有基于特征的方法与基于模型的方法之分。从总体上来看,也称作计算机视觉。可以说,计算机视觉侧重于学术研究方面,而机器视觉则侧重于应用方面。 机器人视觉是机器视觉研究的一个重要方向,它的任务是为机器人建立视觉系统,使得机器人能更灵活、更自主地适应所处的环境,以满足诸如航天、军事、工业生产中日益增长的需要(例如,在航天及军事领域对于局部自主性的需要,在柔性生产方式中对于自动定位与装配的需要,在微电子工业中对于显微结构的检测及精密加工的需要等)。机器视觉作为一门工程学科,正如其它工程学科一样,是建立在对基本过程的科学理解之上的。机器视觉系统的设计依赖于具体的问题,必须考虑一系列诸如噪声、照明、遮掩、背景等复杂因素,折中地处理信噪比、分辨率、精度、计算量等关键问题。 1.3机器视觉的研究现状 机器视觉研究出现于60年代初期,电视摄像技术的成熟与计算机技术的发展使得机器视觉研究成为可能。它作为早期人工智能研究的一部分,由于技术条件的限制,进展缓慢。80年代初,在D·Marr提出的计算视觉理论指导下,机器视觉研究得到了迅速发展,成为

机器视觉技术及其应用概述

机器视觉技术及其应用概述 姓名: 班级:机械0904班学号: 摘要:近年来,机器视觉已经发展成为光电子的一个应用分支,广泛应用于微 电子、PCB生产、自动驾驶、印刷、科学研究和军事等领域。机器视觉在中国的蓬勃发展,使从事机器视觉的公司和人员大量涌现。首先概述了机器视觉技术的基本原理并分析了机器视觉系统的构建;接着论述了机器视觉技术的当前主要应用领域与情况;最后分析了现阶段机器视觉技术存在的问题。 关键词:器视觉;技术;应用 机器视觉系统组成及其工作原理 机器视觉即用机器代替人眼来做测量和判断。机器视觉系统的工作流程大致为:被摄取目标——经图像摄取装臵——图像信号——经图像处理系统——数字信号——经抽取目标特征——判断结果并控制设备。该流程的实现需相应的硬件作为基础,典型的工业机器视觉系统构成有照明、镜头、相机、图像采集卡、视觉处理器等。下面将对机器视觉系统组成和工作原理进一步具体说明。 机器视觉系统组成 从原理上机器视觉系统主要由三部分组成:图像的采集、图像的处理和分析、输出或显示。—个典型的机器视觉系统应该包括光源、光学系统、图像捕捉系统、图像数字化模块、数字图像处理模块、智能判断决策模块和机械控制执行模块,如图1所示。 从中我们可以看出机器视觉是一项综合技术。其中包括数字图像处理技术、机械工程技术、控制技术、光源照明技术、光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术、人机接口技术等。只有这些技术的相互协调应用才能构成一个完整的机器视觉应用系统。机器视觉应用系统的关键技术主要体现在光源照明、光学镜头、摄像机(CCD)、图像采集卡、图像信号处理以及执行机构等。以下分别就各方面展开论述。

机器视觉技术的发展及其应用

机器视觉技术的发展及其应用 秦亚航1,苏建欢2,余荣川1 ( 1.广西科技大学电气与信息工程学院,广西柳州545006;2.河池学院,广西宜州643006) 【摘要】机器视觉系统的特点是提高生产的柔性和自动化程度。随着信号处理理论和计算机技术的发展,该技术迅速发展。本文介绍了机器视觉的关键技术的发展现状,其中包括光源照明技术、光学镜头、摄像机及图像采集卡、图像信号处理、执行机构等,并论述了其主要的应用领域以及存在的一些问题。 【关键词】机器视觉;图像采集;图像处理 Development of Machine Vision and Applications QIN Ya-hang1,QIN Wei-nian,SU Jian-huan2,YU Rong-chuan1 (College of Electrical and Information Engineering ,Guangxi University of Science and Technology,Liuzhou 545006,China;He Chi Universiry,Yizhou643006,China) 【Abstract】The characteristics of the machine vision system is to improve the flexibility and automation of production. With the development of signal processing theory and computer technology, the technology is developing rapidly. This paper introduces the development status of the key technology of machine vision, including lighting technology, optical lens, camera and image acquisition card, image signal processing, actuators, etc,and discusses its main application field and some problems. 【Keywords】Machine vision; Image acquisition; The image processing 0前言 机器视觉可以理解为基于视觉技术的机器系统或学科。美国制造工程协会机器视觉分会 和美国机器人工业协会的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学装 置和非接触的传感器自动地接受和处理一个真实物体的图像,通过分析图像获得所需信息或 用于控制机器运动的装置”[1]。机器视觉是计算机学科的一个重要分支,它综合了光学、机 械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、 信号处理、光机电一体化等多个领域。图像处理和模式识别等技术的快速发展,也大大地推 动了机器视觉的发展。

相关文档
最新文档