福利 12V开关电源适配器常见故障检修案例汇总

福利 12V开关电源适配器常见故障检修案例汇总

福利12V开关电源适配器常见故障检修案例汇总

开关电源适配器作为电子产品正常工作中的重要组成部分,是电子产品得到充电的保证。但是,常用的12V开关电源适配器一旦出现了故障问题,应该如何解决呢?本文在这里为大家总结了两种常见的故障检修案例,与各位工程师一同分享。

?在进行12V开关电源适配器的检修案例分享前,首先我们需要弄清楚这种适配器的内部结构。下图是该种类型适配器的内部电路图简图:

?

?

?12V开关电源适配器内部电路图

?开关电源适配器常见故障检修案例:加电后适配器的指示灯不亮,检测后发现无电压输出。

?在该案例中,电源适配器在通电后指示灯不亮,且无电压输出,怀疑是内部线路出现问题。首先打开适配器的外壳,发现其线路内部无异常焦味,直观检查中也没有发现元件烧焦的痕迹,在不加电状况下,测量保险丝完好,整流滤波部分未见异常,测易损元件Q01、R06、R02、R04正常,U2电源端脚对地也未见短路。以上故障均被排除后,在输出端接一只汽车用

12V/1OOW的灯泡作为负载,加电后测得C02两端电压为304V,QOlD极也是304V正常。测u2脚为20V左右,⑧脚498V基准电压正常,再测U2⑥脚电压为0V异常,怀疑U2损坏。

?接下来需要针对可疑元件U2进行详细审查。在观察中发现,可疑元件U2没有出现变色或裂纹,在翻转电路板时偶尔灯泡闪亮一下叉熄灭,这一现象说明U2未损坏,显然是某元件接触不良所致,但仔细观察各焊点都很好,

最全的网络故障案例分析及解决方案

第一部:网络经脉篇2 [故事之一]三类线仿冒5类线,加上网卡出错,升级后比升级前速度反而慢2 [故事之二]UPS电源滤波质量下降,接地通路故障,谐波大量涌入系统,导致网络变慢、数据出错4 [故事之三]光纤链路造侵蚀损坏6 [故事之四]水晶头损坏引起大型网络故障7 [故事之五] 雏菊链效应引起得网络不能进行数据交换9 [故事之六]网线制作不标准,引起干扰,发生错误11 [故事之七]插头故障13 [故事之八]5类线Cat5勉强运行千兆以太网15 [故事之九]电缆超长,LAN可用,WAN不可用17 [故事之十]线缆连接错误,误用3类插头,致使网络升级到100BaseTX网络后无法上网18 [故事之十一]网线共用,升级100Mbps后干扰服务器21 [故事之十二]电梯动力线干扰,占用带宽,整个楼层速度降低24 [故事之十三]“水漫金山”,始发现用错光纤接头类型,网络不能联通27 [故事之十四]千兆网升级工程,主服务器不可用,自制跳线RL参数不合格29 [故事之十五]用错链路器件,超五类线系统工程验收,合格率仅76%32 [故事之十六]六类线作跳线,打线错误造成100M链路高额碰撞,速度缓慢,验收余量达不到合同规定的40%;34 [故事之十七]六类线工艺要求高,一次验收合格率仅80%36 第二部:网络脏腑篇39 [故事之一] 服务器网卡损坏引起广播风暴39 [故事之二]交换机软故障:电路板接触不良41 [故事之三]防火墙设置错误,合法用户进入受限44 [故事之四]路由器工作不稳定,自生垃圾太多,通道受阻47 [故事之五]PC机开关电源故障,导致网卡工作不正常,干扰系统运行49 [故事之六]私自运行Proxy发生冲突,服务器响应速度“变慢”,网虫太“勤快” 52 [故事之七]供电质量差,路由器工作不稳定,造成路由漂移和备份路由器拥塞54 [故事之八]中心DNS服务器主板“失常”,占用带宽资源并攻击其它子网的服务器57 [故事之九]网卡故障,用户变“狂人”,网络运行速度变慢60 [故事之十]PC机网卡故障,攻击服务器,速度下降62 [故事之十一]多协议使用,设置不良,服务器超流量工作65 [故事之十二]交换机设置不良,加之雏菊链效应和接头问题,100M升级失败67 [故事之十三]交换机端口低效,不能全部识别数据包,访问速度慢70 [故事之十四]服务器、交换机、工作站工作状态不匹配,访问速度慢72 第三部:网络免疫篇75 [故事之一]网络黑客程序激活,内部服务器攻击路由器,封闭网络75 [故事之二]局域网最常见十大错误及解决(转载)78 [故事之三] 浅谈局域网故障排除81 网络医院的故事 时间:2003/04/24 10:03am来源:sliuy0 整理人:蓝天(QQ:) [引言]网络正以空前的速度走进我们每个人的生活。网络的规模越来越大,结构越来越复杂,新的设备越来越多。一个正常工作的网络给人们带来方便和快捷是不言而喻的,但一个带病

交换机维修方法

交换机维修方法 一、整机方框图 二、开关电源的维修步骤及注意事项 1、维修开关电源时应先对+300V 进行放电,因+300V 滤波电容容量较大储存电荷较多,未放电进行电路板的维修可能会对维修设备及人员造成伤害(其方法是可以用大功率电阻进行放电) 2、维修电源应选好参考点,因开关电源有冷热地得区分测量,一次电源时应选热地,二次电源时则选择冷地。若参考点选择不当则可能造成测量结果的不准确以及测试仪器的损坏。 3、部分电源受 CPU 控制,当主板没正常工作能输出异常,维修时应区分判别,以免引起误判。维修开关电源时应先不通电的情况排除短路故障(其方法是用万用表测量无短路即可),测量+300V 电压是否正常,确定整流有无问题。

电源维修流程图 注:维修开关电源时,如果开关管损坏,一般前面电源 IC 都已损坏,在维修更换时,把前面 IC 与开关管一并更换,包括反馈电容。 在实际维修中,如 UC3842 组成的开关电源时,两个元件通常一并坏掉 确认开关电源是否起振可能万用表测开关管基极有负电压。 开关电源维修实例一 接修一台交换机设备,故障现象为通电所有灯闪,电源指示灯暗,设备不能正常工作。 根据故障现象,初步判断为电源故障引起的。拆开测量+12V、+3V 等各组电压均偏低,拔除负载,电压可升高,但仍比正常电压低,判断为电源带负载能力差。原理图如下: 检查电源稳压取样电路,测量各元件正常,更换稳压光耦故障依旧,怀疑 U1及 Q 不良,更换两元件,故障依旧,依据相关原理图分析该电容 C2 为振荡定时电容,苦 C2 元件性能不良可能引起该故障,试找同样型号元件更换、测量各输出电压。电压均恢复正常工作,接上负载后,设备恢复正常。

开关电源的维修-通俗易懂篇很实用

开关电源维修 开关电源在工业自动化时代,已经被用于到所有行业,其精密电路板和对电流电源的严格要求,使得开关电源电路板维修成为PCB维修行业中难度比较大的一中常见故障设备。 在开关电源维修之前,我们必须了解开关电源的工作原理,电源先将高电压交流电通过全桥二极管整流以后成为高电压的波动直流电,再经过电容滤波以后成为较为平滑的高压直流电。这时,控制电路控制大功率开关管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使负载工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关管发出信号控制电压上下调整的幅度。在开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏,再就是脉宽调制器的反馈和保护部分。 一、在断电情况下 首先,在开关电源没通电前,先用万用表测一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放掉,此电压有300多伏,如果不小心被阁下玉手摸到,一定让你留下难忘的记忆! 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的

PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关管击穿。然后检查直流输出部分脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 二、加电检测 在通过以上检测后,就可以进行加电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友需要小心操作。 三、常见故障 1.保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流

开关电源常见四大故障及检修方法

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险

烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析 一.开关电源不启振,出现这种情况,我们首先要查看开关频率是否正确、保护电路是否封锁、电压反馈电路、电流反馈电路又没问题以及开关管是否击穿等。

开关电源的常见故障和维修技巧

开关电源的常见故障和维修技巧 目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性 价比高等优点,很快取代了以往传统的那种既笨重效率又低的‘线性电源’,很快被人们所接受。本文就着重介绍了开关电源的常见故障、注意事项以及维修技巧。 A. 开关电源常见故障 1,保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开路、损坏等。如果确实是保险丝 熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。需要特别注意的是:切不可在查出某元件损坏时,更换后直接开机,这样很有可能由于其它高压元件仍有故障又将更换的元件损坏,一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断的故障。, 2,无直流电压输出或电压输出不稳定 如果保险丝是完好的,在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整 流二极管被击穿,滤波电容漏电等。在用万用表测量次级元件,排除了高频整流二极管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。高频滤波电路主要由整流二极管及低压滤波电容组成直流电压输出, 其中整流二极管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。用万用表静态测量对应元件即可检查出其损坏的元件。 3,电源负载能力差 电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。 应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏等。 B. 开关电源注意事项 1,选择开关电源时应注意事项

华为OLT3个故障案例分析

与华为OLT有关的三个故障案例分析 案例一、门楼张5616增加宽带板 故障现象:门楼张需扩一块32线宽带用户板,管理不通,业务正常。 处理过程: 1、管理不通排查 登录到门楼张需扩板子的设备不通,登录到另一台设备正常。登录到OLT上: Int epon 0/1 Disp ont info 2 1 查看,ONU正常在线 Disp ont snmp-profile 2 0 Disp ont snmp-profile 2 1 比较两个ONU管理模版,一致 Disp ont ipconfig 2 1 查看管理地址 地址 121.7.134.37,掩码 255.255.255.0,网管121.7.134.36 正常情况下网关应该为123.7.139.254,查资料确认为123.7.139.254 Ont ipconfig 2 1 ip-address 121.7.134.37 mask 255.255.255.0 gateway 121.7.134.254 mange-vlan 199 priority 0 下发管理地址 查看该ONU所在PON口以前的定义 PDS-PingDong-MA5680T(config)#display service-port port 0/1/2 ---------------------------------------------------------------------------- INDEX VLAN VLAN PORT F/ S/ P VPI VCI FLOW FLOW RX TX STATE ID ATTR TYPE TYPE PARA ---------------------------------------------------------------------------- 3 2372 QinQ epon 0/1 /2 0 - vlan 199 - - up 4 2372 QinQ epon 0/1 /2 - - vlan 256-512 - - up 5 1307 common epon 0/1 /2 0 - vlan 1307 - - up 166 1307 common epon 0/1 /2 1 - vlan 1307 - - up 167 2372 QinQ epon 0/1 /2 1 - vlan 199 - - up ---------------------------------------------------------------------------- 再次登录ONU,正常。 2、增加宽带用户板 在ONU上 Disp board 0 显示第3块为宽带板,待确认 Board confirm 3 确认板卡 Disp cur 查看以前的配置,用户vlan 320 to 383 共64个,够用 multi-service-port from-vlan 352 board 3 vpi 0 vci 35 single-service rx-cttr 6 tx-cttr 6 Inter adsl 0/3 进入单板 Deact all 激活所有端口 Act all profile-index 3 绑定6M模板 Qui 退出 pppoe sim sta (宽带虚拟拨号测试) disp pppoe sim in pppoe sim stop (测试结束一定要关掉) save

金河田ATX_320WB开关电源故障检修三例

电子报/2008年/2月/24日/第004版 电脑通讯维修 金河田ATX-320WB开关电源故障检修三例 河北张文清 [例1]启动电脑无反应,电源指示灯不亮。 测量20针排线的+5VSB、PS-ON电压OV,表明电源未工作,拆开电源外壳,发现保险管F1熔断,说明开关电路存在严重短路故障。检查整流、滤波电路完好。测量辅助电源开关管0100击穿、R106开路,管脚附近印刷电路板颜色发黄,散热片中间绝缘塑料变形,分析应是过热引起。检查辅助电源外围电路,均正常。更换0100、R106,通电一分钟左右,开关管0100再次击穿。怀疑脉冲变压器T10有问题,拆下测量,初级①-③绕组阻值为3.2Ω,①-②绕组为1.9Ω左右。 ②-③绕组为2.5Ω,表明初级①-②绕组电阻不正常,其他绕组正常。 此开关变压器采用铁氧体磁芯,不易拆卸,先将脉冲变压器放入酒精中,浸泡1小时,待磁芯上绝缘漆融化后,可轻松拆开,初级线圈①-②绕组绕在最里层,②-③绕组绕在最外层,将其它绕组拆下,在拆到①-②绕组第43圈时,发现绕组上下间绝缘漆有轻微破损和击穿痕迹,重新做绝缘处理(也可用直径0.15mm的优质漆包线绕制97圈),其余绕组按原样绕回。注意各绕组必须紧密绕制并加装绝缘层,绝缘层不应过厚,否则铁氧体磁芯不能装入骨架中,最后放入绝缘漆中浸泡2分钟左右,拿出烘干后,按原样安装即可。 由于T10初级绕组匝间绝缘损坏击穿,使流过初级绕组和开关管Q100、限流电阻R106的电流增大,输出电压降低。输出的低电压又经R108取样,再经IC4光电耦合器反馈到开关管Q100控制极使其导通时间加长,这样又造成了一种恶性循环,导致了开关管Q100发热损坏。 [例2]启动电脑无反应,电源指示灯不亮。 测量20针排线的+5VSB、PS-ON电压OV,拆开电源外壳检查发现保险管F1熔断,整流二极管BD2、BD3,开关管Q1、Q2击穿,检查其他元件未发现异常。先更换保险管F1、整流二极管BD2、BD3(1N5406),加电测量+5VSB正常,IC1(TL494)④脚电源启动后跳变为0V,表明启动控制电路无问题。测量IC1的脚有窄脉冲2V输出,⑧脚只有0.4V,重新更换一块TL494检测正常后,再将新开关管Q1、Q2安装到电路上,通电故障排除。 [例3]启动电脑无反应,电源指示灯不亮。 检查发现保险管F1熔断,辅助电源开关管Q100击穿,R5、R2开路,检查辅助电源外围电路,均正常。更换Q100、R5、R2通电,两个电源风扇转速过快,发出很大的“呜呜”声,断开电源,触摸辅助电源开关管0100散热片烫手。仔细检查反馈电路,发现IC4光电耦合器、IC5(KA431)损坏,使得输出取样控制信号反馈到Q100控制电流,不能及时缩短开关管的导通时间,导致Q100导通时间长,输出电压升高。更换上述元件后电源恢复正常。 注意:KA431是一个三端可调分流基准源IC电路,与普通小功率塑封三极管封装形式一样。但是绝对不能使用普通小功率塑封三极管代替,它的引脚分别为:R参考端、K阴极、A阳极。正常阻值参考端接红表笔正,阳极接黑表笔负为48kΩ,反向为33kΩ;阴极接红表笔正,阳极接黑表笔负为7.4kΩ,反向无穷大。 第1页共1页

开关电源维修步骤及常见故障分析 - 电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

开关电源故障分析与维修

开关电源故障分析与维修 UC3843控制芯片介绍 UC3842是电流模式八脚单端PWIVI控制芯片,其内部电路框图如图所示,主要由基准电压发生器、欠电压保护电路、振荡器、PWM闭锁保护、推挽放大电路、误差放大器及电流比较器等电路组成。该控制芯片与外围振荡定时器件、开关管、开关变压器可构成功能完善的他励式开关电源。 UC3842是UC384×系列中的一种,它是一种电流模式类开关电源控制电路。此类开关电源控制电路采用了电压和电流两种负反馈控制信号进行稳压控制。电压控制信号,即通常所说的误差(电压)取样信号。电流控制信号是在开关管源极(或发射极)接人取样电阻,对开关管源极(或发射极)的电流进行取样而得到的,开关管电流取样信号送入UC3842,既参与稳压控制又具有过电流保护功能。因为电流取样是在开关管的每个开关周期内都要进行的,因此这种控制又称为逐周(期)控制。 UC384×主要包括UC3842、UC3843、UC3844、UC3845等芯片,它们的功能基本一致,不同的是:①集成电路的启动电压(7脚)和启动后的最低工作电压(即欠电压保护动作电压)不同;②输出驱动脉冲占空比不同;③允许工作环境温度不同。另外,集成电路型号末尾字母不同还表示封装形式不同。

对于采用UC3843的电源,当其损坏后,可考虑用易购的UC3842进行代换。但由于UC3842的启动电压不得低于16V,因此,代换后应使UC3842的启动电压达到16V以上,否则,电源将不能启动。UC3842是UC384×系列中的一种,它是一种电流模式类开关电源控制电路。 UC384×系列芯片的主要不同点 与UC384×系列类似的还有UC388×系列,其中,UC3882与UC3842、UC3883与UC3843、UC3884与UC3844、UC3885与UC3845相对应。主要区别是第6脚驱动脉冲占空比最大值略有不同。另外,还有一些采用了KA384×/KA388×,此类芯片与UC384×/UC388×的相应类型完全一致。 常见故障及维修方法: 1. 烧保险或炸管 主要检查300V上的大滤波电容、整流桥各二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。 需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻、整流桥也会和保险一起被烧坏。

用示波器维修开关电源技法

(1)维修开关电源需要测试的波形 液晶显示器开关电源属大电流、高电压电路,也是故障率最高的电路,对于诸如无电压输出、输出电压过高等常见故障,用万用表查找故障不但方便,而且十分快捷,没有必要动用示波器。但是,对于一些开关电源的疑难故障,如屡损开关管及一些软故障等,示波器则可大显身手。通过测试一些关键点的波形,可快速圈定故障范围,查找到故障点。开关电源部分要检查的波形比较少,以图1所示的电源适配器为例,主要测试的波形有以下几个:①整流滤波以后的波形(C104正极的波形);②电源控制芯片UC3842的4脚的锯齿波电压波形;③UC3842的6脚输出的驱动脉冲波形;④场效应开关管Q101的漏极(D)和源极(s)波形等,如图2所示。

图1 电源适配器电路

图2 开关电源电路主要测试波形 C104正端为整流滤波波形测试点(测试时,示波器应采用直流耦合输进方式),扫描速度开关置10ms/div挡。开关管Q101漏极波形比较高,测试时应采用10:1或100:1的测摸索头。 (2)开关电源的“热地”和“冷地”

一般而言,并联式开关电源的地有两个,即“热地”和“冷地”。以图1 所示的电路为例,图中的“◇”表示“热地”,这个地是开关电源一次侧的地,和市电地相连,与“热地”相连的底板称为“热底板”;图中的“上”表示 “冷地”,这个地是开关电源二次侧的地,和负载相连,与“冷地”相连的底 板称为“冷底板”。 “热地”与“冷地”的根本区别,在于机器底板零电位参考点与市电电网 有没有“直接的电的联系”。有直接联系的地是“热地”,机内的“热地”对 大地存在约一百多伏的电压,假如误触了机内的“热地”以及与“热地”相连 的元件,极有可能遭受电击,甚至发生生命危险;相反,“冷地”与市电电网 没有“直接的电的联系”,用手触摸“冷地”以及与“冷地”相连的元器件, 一般不会触电。 对于串联式开关电源,只有一个“热地”,也就是说,串联式开关电源的 一次侧与二次侧是同一个地,都为“热地”。由于液晶显示器通过电缆信号直 接与计算机主机相连,因此,液晶显示器的开关电源不能采用串联式开关电源,否则,会使计算机主机带电,这是不答应的。 (3)隔离变压器的应用 从以上分析可知道,液晶显示器开关电源的一次侧“热地”是带电的,因此,在用示波器维修开关电源时,为确保职员、显示器和仪器的安全,建议采 用隔离变压器。

解析开关电源电压输出低的原因和检修方法

解析开关电源电压输出 低的原因和检修方法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

解析开关电源电压输出低的原因和 检修方法 1、开关电源电压输出低的原因 (1)220V交流电压输入和整流滤波电路对开关管提供的工作电压不够,超出脉宽调整电路控制范围。 (2)负载电路存在过流引起开关电源负载加重而导致输出电压下降。 (3)开/关机切换错误,行扫描电路刚开始工作瞬间,开关电源即处于待机状态,此类故障适用于无预备电源的机器,CPu电源取自同一个电源,非副电源提供。 (4)开/关机接口电路末端因故障处于开机与待机之间的状态,从而导致开关电源输出电压低于正常值高于待机值。 (5)保护电路末端因故障进入导通状态,使电源进入弱振状态,引起开关电源输出电压下降。 (6)整流输出电路中二极管和滤波电容、限流电阻损坏引起输出电压低。 (7)脉宽调制电路故障,不能对开关电源输出电压的变化作出正确的响应,对开关管基极电压调整方向不对,从而造成开关电源输出电压低。 (8)正反馈电路中的正反馈电阻值变化,续流二极管性能变质或恒流源故障,使正反馈量不足,导致振荡周期变长,振荡频率下降,从而引起开关电源输出电压低。 (9)它激式开关电源因未得到行逆程脉冲而工作于低频状态,造成输出电压低。 2、判断故障的方法与步骤 从上述分析的原因看出,引起电压低的原因涉及到了开关电源自身的各个部分和与开关电源相关的所有电路,在检修时应先缩小故障范围。 (1)先测开关管c极电压,确认开关管供电正常。 (2)根据开关电源各个输出端电压判断故障。 开关电源有的输出端电压正常,有的低于正常值。故障在输出电压低的这个整流输出电路,应对电路中的限流电阻、整流二极管、滤波电容进行检查代换,若限流电阻发烫,说明负载过流,查负载。 开关电源各路输出均低。这种情况说明负载和整流输出电路均正常,故障在开关电源的正反馈电路、脉宽调整、开/待机电路、保护电路。 输出电压有的下降比例大,有的输出电压下降比例小。测量结果说明故障在输出电压下降比例大的电路。此时可断开此路负载,如果断开的是行电路,应接假负载。在断开负载后,再测开关电源各输出端电压,若恢复正常,可判断所断电路的负载有过流现象。若仍不正常,说明故障在该整流滤波电路。 3、断开主负载、接上灯泡,判断是否负载故障

机械故障诊断案例分析

六、诊断实例 例1:圆筒瓦油膜振荡故障的诊断 某气体压缩机运行期间,状态一直不稳定,大部分时间振值较小,但蒸汽透平时常有短时强振发生,有时透平前后两端测点在一周内发生了20余次振动报警现象,时间长者达半小时,短者仅1min左右。图1-7是透平1#轴承的频谱趋势,图1-8、图1-9分别是该测点振值较小时和强振时的时域波形和频谱图。经现场测试、数据分析,发现透平振动具有如下特点。 图1-7 1*轴承的测点频谱变化趋势 图1-8 测点振值较小时的波形与频谱

图1-9 测点强振时的波形和频谱 (1)正常时,机组各测点振动均以工频成分)幅值最大,同时存在着丰富的低次谐波成分,并有幅值较小但不稳定的(相当于×)成分存在,时域波形存在单边削顶现象,呈现动静件碰磨的特征。 (2)振动异常时,工频及其他低次谐波的幅值基本保持不变,但透平前后两端测点出现很大的×成分,其幅度大大超过了工频幅值,其能量占到通频能量的75%左右。 (3)分频成分随转速的改变而改变,与转速频率保持×左右的比例关系。 (4)将同一轴承两个方向的振动进行合成,得到提纯轴心轨迹。正常时,轴心轨迹稳定,强振时,轴心轨迹的重复性明显变差,说明机组在某些随机干扰因素的激励下,运行开始失稳。 (5)随着强振的发生,机组声响明显异常,有时油温也明显升高。 诊断意见:根据现场了解到,压缩机第一临界转速为3362r/min,透平的第一临界转速为8243r/min,根据上述振动特点,判断故障原因为油膜涡动。根据机组运行情况,建议降低负荷和转速,在加强监测的情况下,维持运行等待检修机会处理。 生产验证:机组一直平稳运行至当年大检修。检修中将轴瓦形式由原先的圆筒瓦更改为椭圆瓦后,以后运行一直正常。 例2:催化气压机油膜振荡 某压缩机组配置为汽轮机十齿轮箱+压缩机,压缩机技术参数如下: 工作转速:7500r/min出口压力:轴功率:1700kW 进口流量:220m3 /min 进口压力:转子第一临界转速:2960r/min 1986年7月,气压机在运行过程中轴振动突然报警,Bently 7200系列指示仪表打满量程,轴振动值和轴承座振动值明显增大,为确保安全,决定停机检查。

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

开关电源的工作原理和维修

电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二.开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1.主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。 输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。 逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2.控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3.检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4.辅助电源 实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

三.开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

开关电源的维修和常见故障

开关电源的维修和常见故障 开关电源在工业自动化时代,已经被用于到所有行业,其精密电路板和对电流电源的严格要求,使得开关电源电路板维修成为PCB维修行业中难度比较大的一中常见故障设备。 在开关电源维修之前,我们必须了解开关电源的工作原理,电源先将高电压交流电通过全桥二极管整流以后成为高电压的波动直流电,再经过电容滤波以后成为较为平滑的高压直流电。这时,控制电路控制大功率开关管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使负载工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关管发出信号控制电压上下调整的幅度。在开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏,再就是脉宽调制器的反馈和保护部分。 一、在断电情况下,“望、闻、问、切” 首先,在开关电源没通电前,先用万用表测一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放掉,此电压有300多伏,如果不小心被阁下玉手摸到,一定让你留下难忘的记忆! 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关管击穿。然后检查直流输出部分脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 二、加电检测 在通过以上检测后,就可以进行加电测试。这时候才是关键所在,需要有一

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

3842开关电源常见故障的分析及维修

3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。3842各脚功能: 1. 误差放大输出(输出补偿)3.4伏 2. 误差放大器反相输入端(电压反馈)2.4伏 3. 电流感应放大器同相输入端(电流检测)0.1伏 4. 内接振荡器外接rc(定时)元件1.9伏 5. 接地0伏 6. 驱动信号输出端 2伏 7. 电源供电端、欠压保护端17伏 8. 5伏基准电压输出5伏 1.2开关电源的工作原理 220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行

功率转换。功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。经高频整流滤波后便可得到我们所需的各种直流电压。输出电压下降或上升时,由取样电路将取样信号通过光电耦合器 (PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。开关电源的电路原理图如下: 开关电源电路原理图 一.开关电源的常见故障分析及维修 2.1开关电源的常见故障分析及维修 由于开关电源的输入部分工作在高压,大电流的状态下,故障率最高,如高压大电流整流二极管,滤波电容,开关功率管等较易损坏。其次就是输出整流部分的整流二极管,保护二极管,滤波电容,限流电阻等较易损坏;再就是脉宽调制控制器的反馈部分和保护部分。 下面就对开关电源常见故障产生的原因作一分析及如何排除这些故障的维修方法。

相关文档
最新文档