同位素的特点

同位素的特点
同位素的特点

X A Z ——元素符号

质量数——

核电荷数——

(核内质子数)

表示原子组成的一种方法

a b

+d

X c+--

a——代表质量数;

b——代表核电荷数;

c——代表离子电荷数

d——代表化合价

a b c d各代

表什么?

请看下列表示

决定元素种类

同位素的特点

1、同种元素的各种同位素化学性质几乎完全相同,物理性质有差异。

2、同种元素的不同核素也可组成不同的单质或化合物的分子。

如:单质:H2、O2、T2、H-D、H-T、D-T、D2、T2;

化合物:H2O、D2O、T2O、HDO、DTO

注意:①质量数是原子的质量数,不是元素的质

量数.一种元素可以有多种不同的原子,每种

原子都有自己的质量数(如14C、13C、12C)。

②原子的质量数与原子的相对原子质量的近似

整数值相等。

③元素的种类由质子数决定,与中子数、核外

电子数无关

④核素种类由质子数和中子数共同决定,与核

外电子数无关;

⑤同一元素的各种核素虽然中子数(质量数)

不同,但它们的化学性质基本相同

03 第三章(氢氧同位素)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 03 第三章(氢氧同位素) Theory, Technique and Application of Environmental Isotopes第三章氢氧稳定同位素Theory, Technique and Application of Environmental Isotopes 1/ 49

轻元素稳定同位素的基本特点1.原子量低,一般小于36。 2.同位素相对质量差大。 3.形成共价键,键性与同位素分馏有很大关系。 4.化学价可变,在化合价变化过程中会发生大的同位素分馏 5.小丰度同位素的相对丰度为千分之几到百分之几,便于精确测定。 研究稳定同位素的组成特征、变化机理、分馏原理并应用它们作为地球化学示踪剂研究各种地质过程Theory, Technique and Application of Environmental Isotopes

---------------------------------------------------------------最新资料推荐------------------------------------------------------ Outline1.氢氧同位素概述 2.天然水的氢氧同位素组成及分布特征3.氢氧稳定同位素的应用Theory, Technique and Application of Environmental Isotopes 3/ 49

环境同位素在地下水中的研究进展及应用

环境同位素在地下水中的研究进展及应用 王永森 河海大学水资源环境学院,南京(210098) E-mail :wangyongsen@https://www.360docs.net/doc/c617510975.html, 摘 要:本文介绍了环境同位素在地下水研究的一些研究和应用以及发展动态,阐述了其在地下水中应用的一些问题和前景。地下水来源于大气降水,同位素分馏效应导致了不同水体具有不同的同位素含量,大气降水中的同位素组成影响着地下水的同位素比值,环境同位素可以有效进行地下水年龄的测定,估计地下水的补给源、以及定量估计不同水源对地下水的补给量。 关键词:环境同位素;地下水;地下水示踪;同位素测年 1. 引言 大气过程改变了水的稳定同位素的组成,在特定的环境下,补给水就会产生一个特征性的同位素信息,根据这个信号可以示踪地下水的起源,放射性同位素的衰减提供了地下水滞留时间的测量,特别是1951-1962年期间的一系列核试验提供了放射性同位素的输入信号,同时根据同位素的差异指示地下水的来源、补给过程、地球化学演化、及地下水水质以及污染过程。科学家已经逐渐认识导他们在生物化学循环和土壤水大气过程研究的重要性。 2. 环境同位素的概念、原理 自然界中,环境同位素又分为稳定同位素和放射性同位素,由于同为素间地物理化学性质不同,引起同位素地变化,又称为同位素分馏。用稳定同位素研究地下水,主要利用的同位素之间的微小差异,一般我们同位素比值或δ值来表示,δ值定义为一种物质相对于标准参照物的同位素比率,如下式 1R R δ=?样品标准 × 103 (‰) (1) R 表示重同位素相对于轻同位素的比值,一个正的δ值表示样品的同位素比值高于标准样品的,负值表示样品的同位素比率低于标准样品。 放射性同位测地下水年龄是根据放射性同位素的衰变速率来测量的,不同于稳定同位素,氚浓度用绝对浓度氚单位(TU )表示,不需要参照标准, 14C 含量通常用样品的放射比度表示,即每克碳的放射性活度(Bq/gC)。实际中常使用相对浓度单位(A)表示,即现代碳百分含量(pmc 或%mod)。放射性同位素,诸如36Cl ,129I,39Ar 以及铀系列都可以用来测地下水年龄。下式是测龄原理: A t = A 0e ?λt A 0为母核的初始放射性活度,A t 为经过t 时间后的放射性,λ为衰变常数,时间可以表示为T = (1/λ)ln(A/A 0),通常放射性同位素的的不稳定性用半衰期来表示,T 1/2 = (?1/λ)ln(1/2) 则,1/21/2ln 20.693T T λ= =,14C 半衰期为5730年,氚的半衰期为12.43年,他们都可以测量地下水年龄,有时两个结合起来会更能解释地下水的动态。 稳定同位素可以用来测年的校正像13C ,放射性同位素也产生分馏,为了维持测年的普遍性,14C 的放射性必须用-25‰δ13C 归一化。才具有可比性。

同位素(名词解释填空)

1.同位素地球化学:研究地壳和地球中核素的形成丰度及其在地质作用中分馏和衰变规律,并利用这些规律解决有关地质地球化学问题的学科。 2.核素:具有一定数目质子和一定数目中子的一种原子。 3.同量异位数:质子数不同而质量数相同的一组核素。 4.稳定同位素:目前技术条件下无可测放射性的元素。 5.放射性同位素:能自发的放出粒子并衰变为另一种核素的同位素。 6.重稳定同位素:质子数大于20的稳定同位素。 7.亲稳定同位素:质子数小于20的稳定同位素。 8.同位素效应:由同位素质量引起的物理和化学性质的差异。 9.同位素分馏:在同一系统中某些元素的同位素以不同的比值分配到两种物质或相态中的现象。 10.同位素热力学分馏:系统稳定时,导致轻重同位素在各化合物或物相中的分配差异。 11.同位素动力学分馏:不同的元素组成的分子具有不同的质量,由此而引起扩散速度、化学反应速度上的差异,由这种差异所产生的分馏效应称为同位素动力学分馏。 12.纬度效应:温度效应,随纬度升高,大气降水中的δD,δ18O降低。 13.大陆效应:海岸线效应,从海岸线到大陆内部,大气降水的δD,δ18O降低。14.高度效应:岁地形增高,大气降水δD,δ18O降低。 15.季节效应:夏季,大气降水δD,δ18O比冬季高。 16.岩浆水:与高温岩浆处于热力学平衡的水,其中来自地幔,与铁、镁超基性平衡的水称为原生水。 17.半衰期:母核衰变为其原子核数一半,所经历的时间。 18.原生铅:指地球物质形成之前,在宇宙原子核合成过程中,与其他元素同时形成的铅。 19.原始铅:地球形成最初时期的铅。 20.初始铅:(普通铅、正常铅)U/Pb、Th/Pb比值低的矿物和岩石中任何形式的铅。 21.异常铅:一种放射性成因铅含量升高的铅。 22.矿石铅:一般是指硫化物矿中所含的铅。 23.岩石铅:火成岩和其他岩石中所含的铅。 24.BABI:目前公认玄武质无球粒陨石的(87Sr/86Sr)。代表地球形成时的初始比值,其值为0.69897+-0.00003

室外水体蒸发氢氧同位素日变化特征

室外水体蒸发氢氧同位素日变化特征 为研究室外水体蒸发氢氧同位素变化特征,连续12个小时采集四川大学听荷池的水样,获得了水体蒸发氢氧稳定同位素与温度的关系。实验结果表明,水体蒸发实验中,温度越高,蒸发速度越快,在同样的蒸发时间内水体重同位素富集程度越大;室外水体自由蒸发实验中得出的蒸发线方程斜率较大地偏离了当地降水线,表明实验期间水体蒸发分馏作用较明显。该研究为进一步揭示水体蒸发分馏规律提供了可靠的实验依据。 标签:水体蒸发;氢氧同位素;日变化;实验研究 1 实验区概况 取样点位于成都市武侯区四川大学听荷池,北纬30°38’3.64〃,东经104°05’12.38〃,海拔大约为490m,池面积为1.2hm2,降水是听荷池水量的主要来源。成都市属于中亚热带湿润季风气候区,常年最多风向是静风,冬湿冷、春早、无霜期较长,四季分明,热量丰富,年平均气温16°C,最高气温38.6°C,最低气温-5.9°C,无霜期为287d,初霜期出现的时候大约为11月底,终霜期一般在2月,冬季的平均气温大概为5°C,平均气温比同纬度的长江中下游地区高1~2°C。冬春雨少,夏秋多雨,雨量充沛,多年平均降雨量约为900~1300mm,多集中在7~9月份。光、热、水基本同季,气候资源的组合合理,很有利于生物繁衍。风速小,风速为1~1.5m/s,晴天少,日照率在24~32%之间,年平均日照时数为1042~1412小时。 2 样品收集与分析 2.1 样品收集 2016年12月4日,在听荷池采集水样,气象数据为当时现场测量记录。 取样品之前,需要把塑料瓶放入7N的HNO3浸泡一整天,然后用超纯水清洗多次,接着放入烘箱将塑料瓶的水烘干,为了保证取样工具的洁净与干燥,以免污染样品。采取样品时,尽量将水样装满瓶子,这是因为考虑到液态水分子之间存在着范德华力,它会使水分子的运动速度远远小于气态情形,这样可以降低蒸发时的分馏作用。 取样采集:2016年12月4日,8:00至20:00,每个小时分别在听荷池东南西北角采集水样,每次取样的地点以及取样的深度基本上都没有变化。每次将取好的水样装入50ml的塑料瓶中,现场记录日期和温度等,用封口膜将瓶口封住,以免造成分馏。最后把装好的样品带回实验室进行分析。 2.2 样品处理及分析

杞麓湖水质参数及水体稳定同位素特征研究

杞麓湖水质参数及水体稳定同位素特征研究湖泊对区域气候调节及地区社会经济发展发挥着至关重要的作用。杞麓湖作为通海县的“母亲湖”,近年来在自然与人类活动的双重影响下,生态环境面临着诸多威胁。 基于此,本文首先利用2016年11月至2017年10月时段内对杞麓湖水质参数水温(Temp)、溶解氧(DO)、叶绿素a(Chl-a)、p H及总磷(TP)、总氮(TN)的逐月监测,对湖泊生态环境状况和水质月际变化作进一步探讨。同时,结合已有气象数据,利用杞麓湖流域各水体稳定氢氧同位素组成特征对湖泊水动力、水汽来源及季节变化进行研究,探讨各水质参数对湖水同位素的影响,通过对各水体稳定氢氧同位素的组成及季节变化特征分析,深入讨论分析流域水循环过程,进一步分析探讨杞麓湖水更换过程及周期。 本文主要的研究结论如下:(1)杞麓湖对流域气候环境有着显著的调节作用,维持流域气温较为恒定,同时减少极端天气对区域气候带来的影响。湖水在不同深度热量分布较为均衡。 水温受风力作用及湖泊动力影响较大。同时,温度是影响湖泊水循环、水生生物活动强度的控制因素。 (2)杞麓湖受流域人类活动的强烈影响,外源输入的影响成为引起湖泊水体理化性质(溶解氧、叶绿素a浓度、p H)的主要因素。营养盐的输入引起的藻类活动的增强,以及污染物的排放与分解,使不同湖区水体酸碱度出现较明显的差异。 有机污染物的分解同时消耗了水体中的溶解氧,因而在湖滨处及入湖河流较为集中的西南部出现较低的溶解氧浓度及p H值,这一现象在雨季尤为明显。不

同湖区营养盐的差异引起藻类空间分布的不同,在工农业排放较集中的东部、西南部湖区,水体叶绿素a浓度远高于其他湖区。 夏季水温及光照的增强、外源输入的增加、以及生物活性的加强,加重了不同湖区水体理化性质的空间差异性。进而引起湖泊底质释放增加、水生物种结构单一化、水体自净能力下降等诸多环境问题。 (3)杞麓湖富营养化程度较高,监测时期内处于中度—重度富营养化状态,水体氮磷浓度全年处于较高水平。磷是湖泊藻类生长繁殖的限制因子。 湖泊总磷浓度季节波动较大,夏季相较冬季总磷浓度增加了近40%,总氮季 节变化相对较小,夏季高于冬季。湖滨化工业排放使湖泊氮磷含量(特别是总磷)大幅上升,农业排放对水体总氮影响较大,对总磷影响则相对较小。 流域河水、地下水营养盐浓度也很高,当地的水资源及水安全问题较为突出。 (4)湖水同位素组成随深度变化不明显,蒸发和河水补给的作用决定了湖泊水同位素的空间分布特征。 水温对表层湖水同位素分馏有一定的影响,对其空间分布的作用也存在,但整体影响不大。其他水质参数与湖泊水同位素组成之间没有必然的联系,在空间分布变化上也没有明显的规律。 (5)杞麓湖无论是全年还是各季节湖水蒸发线方程的斜率、截距相较全球大气水线有着明显的偏离,湖水受到了长时期蒸发分馏作用的影响。杞麓湖流域内河水、地下水的同位素组成相对湖水偏负,蒸发水线的偏离程度也小于湖水,地下水受到的非平衡分馏作用更弱一些。 海洋水汽是当地降水主要来源,入湖河流补给是湖泊水主要补给方式。(6)根据雨季前后湖水同位素组成的差异,利用降水数据我们模拟得出湖水换水周期

稳定同位素应用

高精度稳定同位素技术 同位素指质子数相同而中子数不同的同种化学元素,最常用的稳定同位素有碳-13 (13C)、氮-15(15N)、氢-2 (2H即氘) 和氧(18O)等。因为这些同位素比普通元素重1到2个原子量单位,所以也叫作重元素。稳定同位素(stable isotope) 就是天然同位素或非放射性同位素(non-radioactive isotope),即无辐射衰变,质量保持永恒不变。稳定同位素在自然界无处不在,包括所有化合物、水和大气,所以也就自然地存在于动植物和人体内。其物理化学性质与普通元素相同,所以可用作示踪剂来标记化合物用于科学研究、临床医学和药物生产等几乎所有自然领域。由于没有辐射污染,稳定同位素示踪剂可以用于任何对象,包括孕妇、婴儿和疾病患者,无论是口服还是注射,都绝对安全。 稳定同位素技术的另一特点是其测试定量的高精度和超高精度,达到PPM级(即百万分之一精度),而且同时也测定了化合物的浓度,事半功倍,且降低了测试误差。现在,利用同位素技术人们可以同时测定多个不同的样品,从而提高测定效率。这些高效率、高精度的特点是放射性同位素等技术所不可比拟的。 稳定同位素技术的第三个特点是其示踪能力的微观性和灵活多变性。微观性是指它可以用来标记、追踪化合物分子内部某个或多个特定原子,比如葡萄糖分子中各个原子在人体内的不同代谢途径, 哪些原子进入三羧酸循环产生能量,而哪些原子进入脂肪代谢途径参与脂肪合成。多变性是指通过对同位素标记位点的合理选择和巧妙设计来追踪、定性定量测定化合物的不同代谢途径或者生成过程。 由于以上特性,自上世纪中叶特别是70年代以来稳定同位素技术在科技先行国家被广泛应用于医学、营养、代谢、食品、农业、生态和地质等研究和生产领域。近年来在药物研发生产以及新兴的基因工程、蛋白质组学(proteomics)、代谢组学(metabolomics) 和代谢工程(metabolic engineering) 等前沿领域,稳定同位素技术已成为一种应用广泛、独特高效甚至必须的技术,显著地提高了解决科学问题的能力和生产效率。最新近的例子是德国科学家用碳13氨基酸通过三代喂养成功地标记了动物全身的所有蛋白质而获得了细胞代谢的重要发现。这一崭新的技术堪比当年的聚合酶连锁反应技术(PCR), 必将迅速得到广泛的推广和应用,有力地推动生命科学的发展。稳定同位素在自然界的无所不在意味着该技术应用的普遍性,有大自然显微镜的独特功能,将揭开越来越多的大自然和人体的奥秘。

西南地区大气降水中氢氧稳定同位素特征与水汽来源_朱磊

第26卷第5期2014年10月 云南地理环境研究 YUNNAN GEOGRAPHIC ENVIRONMENT RESEARCH Vol.26,No.5Oct.,2014 收稿日期:2014-09-03;修订日期:2014-10-08. 基金项目:国家自然科学基金“滇东岩溶高原峰林湖盆水源枯竭机制研究”(41261007);云南省自然科学基金“基于稳定同位素的滇东 岩溶区云南松水分策略研究”(2011FZ077)共同资助. 作者简介:朱磊(1989-),女,云南省曲靖市宣威人,硕士研究生,主要研究方向为资源环境与区域发展.*通信作者. 西南地区大气降水中氢氧稳定同位素特征与水汽来源 朱磊,范弢* ,郭欢(云南师范大学旅游与地理科学学院,云南昆明650500) 摘要:为阐明西南地区稳定同位素与大气降水的关系,对GNIP 昆明、贵阳、桂林、成都站点δD 和δ18 O 进行分 析,初步建立当地大气降水线方程,并与中国及全国降水线方程进行对比,揭示该降水线方程的特征。研究表明:大气降水稳定同位素组成受到温度、蒸发、水汽源地等多种因素的相互影响,在不同时间有很大差异。西南 地区降水中的δ18 O 值表现出“夏高冬低”的季节特点。d 值呈现出降水中过量氘水汽来源不同的特点,贵阳和 桂林地区d 值表现为“冬高夏低”的季节特点,而昆明和成都地区却与此相反,d 值则表现为“夏高冬低”独特的季节性特征。 关键词:大气降雨;同位素;西南地区中图分类号:P426.612 文献标识码:A 文章编号:1001-7852(2014)05-0061-07 0引言 大气降水作为自然界中水气循环的一个重要的 环节,在各种时空间尺度下发生着变化[1] 。降水中同位素中各元素丰度的变化与水汽源区的初始状态、大尺度的天气系统变化,以及产生降水的气象 过程存在密切的联系 [2,3] ,并随着时间和空间的变化而异。因此,对于降水的研究显得极其重要[4] 。 降水中氢氧稳定同位素可以作为水汽源区理想的自然示踪剂或利用其变化来反演大气过程,能在一定程度上反映区域的地理因素及气候特征[5] 。近年 来,国内不少学者对四川地区 [6,7]、昆明[8,9] 、桂林地区 [10,11] 、南方地区[12]等区域降水稳定氢氧同位素都进行了深入探讨,大多数对局部(或某些站 点)进行研究,但对西南地区降水同位素的研究相对较少。西南地区地处温带季风、亚热带季风相互作用的区域,地形地貌复杂多样,垂直气候差异明 显,属于典型的气候区。因此,本文试图利用全球降水同位素监测网(GNIP )西南地区的昆明站、贵阳站、桂林站、成都站的数据为基础资料,研究西南地区主要气象要素与大气降水中氢氧同位素的变化特征的相关关系,并探讨年际变化的特征及其水汽来源的关系,对西南地区的旱涝灾害有一定的指示作用,也对西南地区近几年来气候异常变化提供科学的依据,有助于对中国西南地区水汽循环有更深入的理解。 1研究区概况 昆明位于云贵高原中部(24?23' 26?22'N , 102?10' 103?40'E ),海拔约1900m ,属于低纬度亚热带高原山地季风气候,由于受印度洋西南暖湿气流的影响,年均温和年降雨量分别为15?、1035mm 。贵阳地处云贵高原东部(26?11' 26?55'N ,106?27' 107?03'E ),海拔约1070m ,常年

水化学及同位素特征在矿井水源判别中的应用

水化学及同位素特征在矿井水源判别中的应用 摘要:毛坪铅锌矿未采矿体均处当地最低侵蚀基准面洛泽河以下,为研究矿区 洛泽河水与矿坑充水之间的相互关系,进一步查清矿坑充水来源,对矿区地表河 水以及矿坑不同出水点采取水样,进行环境同位素测试和水质全分析。分析结果 表明:矿区浅层水和深层承压水在不同深度获得大气降水补给的速度有快有慢, 相差悬殊;河水对矿床充水不强,矿坑水主要补给源为不同标高补给区的非定水 头补给。研究成果为进一步判定矿坑充水水源、分析矿山水文地质条件以及矿山 防治水设计提供了科学的依据。 关键词:矿山防治水;水源判别;水化学特征;氢氧同位素 1 矿区水文地质概况 毛坪铅锌矿为已采矿山,主要矿体位于当地最低侵蚀基准面洛泽河之下[1-3]。区内龙潭河、铜厂沟溪、锈水沟溪等其它河、沟均为洛泽河支流[4]。洛泽河总体 上控制了区内的地下水流动系统。域内地下水接受降水补给后,依地势向洛泽河 汇聚,然后从南往北迳流,部分地下水在沟谷等地形切割强烈地带形成下降泉排泄,补给河水[5,6];部分地下水仍以地下迳流形式运动,于矿区北部遇峨嵋山 组玄武岩隔水层,地下水径流受阻,沿东西向顺层裂隙溢出成泉,排泄地下水。 区内构造发育,地下水对构造裂隙长期溶蚀拓宽,岩溶裂隙水含水层具有一 定库容空间,大气降水对岩溶裂隙地下水补给在时间上把年内或年际不连续的降 水调整为连续的地下迳流,维持泉群长期排泄[7,8];在空间上将较弱的区域裂 隙水汇聚成脉状迳流,最后,汇集于排泄区以泉水形式溢出排泄地下水,本区为 泉排型岩溶地下水系统[9]。 图1 矿区地下水矿化度等值线 2 水化学水源判别 2.1水质全分析特征 本次研究工作水质全分析采样在矿坑、泉水、河水等重要水体采集水样20件。矿床地下水水化学成份及矿化度值自北部、北东部二迭系栖霞茅口组岩溶裂隙水 含水层、石炭系威宁丰宁统岩溶裂隙水含水层、泥盆系宰格组岩溶裂隙水含水层 逐渐升高(见图1),表明矿床地下水接受二迭系栖霞茅口组岩溶裂隙水含水层 地下水补给,经矿床运移至洛泽河即F1弱透水断层一带,地下水迳流滞缓,溶 滤作用增强,水中盐分及矿化度值明显增高,特别是SO42-离子增加明显,同时 说明矿床地下水受洛泽河水淡化不明显,河水对矿床充水不强的特征。 3水体环境同位素水源判别 3.1水体环境同位素特征 本次研究工作环境同位素水样采集雨水1件、泉水4件、河水3件、矿坑水 7件,钻孔涌水5件。 以昆明市雨水线为研究标准。矿区雨水、河水、泉水和坑下水δD与δ18O关 系见图2。 图2 毛坪矿雨水、泉水、河水、坑下水δD与δ18O关系 本地区构造活动剧烈,岩溶裂隙发育,雨季矿床深部承压水涌水孔水头上涨 明显,氚进入水中仅按衰变规律变化,衰变公式如下:

碳稳定性同位素分析食物网中能量流动审批稿

碳稳定性同位素分析食物网中能量流动 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

碳稳定性同位素分析食物网中能量流动 摘要:随着科学技术发展,稳定性同位素已经广泛应用在生态学研究的诸多领域。在研究食物网中能量流动关系时,稳定性同位素能提供更迅速、客观的分析。此次实验利用碳稳定性同位素技术对受到人类破坏或其他因素影响的选定区域分析其食物网中的能量流动,旨在研究该区域生物之间的能量流动关系,从而对该区域采取合理的保护措施。 关键词:碳稳定性同位素;食物网;能量流动;δ13C值 Carbon Stable Isotopeanalyzes Studies Energy Flux in Food Web ABSTRACT: Stable isotopehas been widely used in various fields in ecology studieswith the development of science and isotope can provide rapider and more objective analysis when researching energy flux relationship in the food web. In the process of this experiment, we analyze the energy flux relationship in the food web of the chosen areas that are destroyed by human beings or affected by other factors by means of carbon stable isotope technology, with the aim of researching the energy flux relationship among population in this area, consequently we can adopt reasonable protective measures in this areas. KEY WORDS: Carbon stable isotope;food web;energy flux;δ13C 一.研究背景 随着世界人口的持续增长和人类活动范围与强度的扩展和增加,地球上的生物多样性逐渐降低。例如,持续不断地砍伐树木已经导致世界上大量树木物种面临灭种的危险;环境污染使得动植物的栖息地环境遭到严重的破坏,致使物种数量锐减[1]。在某一区域中,动植物数量的减少还有一个很重要的原因,即某些因素(例如栖息地减少和改变、滥捕乱猎、外来物种的引入、污染等[2])导致该区域部分动植物数量的减少,而这进一步通过该区域的食物网影响到区域中其他动植物的种类和数量,进而对整个区域各种生物体造成影响。 食物网是在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,直接反映生态系统的结构和功能[3]。生产者制造有机物,各级消费者消耗这些有机物,生产者和消费者之间相互矛盾,又相互依存。不论是生产者还是消费者,其中某一种群数量突然发生变化,必然牵动整个食物网。食物网是生态系统长期发展的进化过程中形成的。人类活动使生态系统中某一生物体种群数量遭到破坏,将使生态平衡失调,甚至是生态系统崩溃[2]。因此,研究食物网中生物的能量流动关系,对于维持生态系统的稳定、利用动物间的相互制约来减缓人类活动对生态系统的破坏具有重要的意义。

氧同位素古温计

氧同位素古温计 古海洋学 12.740 2004年春季讲义2 氧同位素古温计 I .1940年代,Kullenberg 发明活塞取样法。 众所周知,获得深海岩芯使用的是重力取样法:一条软管,上端固定在船上,下端挂载一个“岩芯捕手”(柔韧的多分叉金属指状物),扔到洋底,取得样品。但是软管壁的摩擦系数限制了获取岩芯的能力,现代的重力取样装置能够得到大约5m 的岩芯,老一点的也就能拿到1~2m的岩芯。Kullenberg 向软管中引进了一个活塞装置,其作用在于当管道逐渐向沉积物中进入时,活塞制造的吸力能够帮助获取更多的样品。现代的活塞取样法最多能够一次采得约50m 长的岩芯(一般在 20m 左右)。 Ⅱ.1950年代,Emiliani A .Emiliani 利用Urey 的质谱分析仪(该实验法一般要求5mg 碳酸盐样品,约等价于100~200个有孔虫个体),对采自加勒比海的大量多种属的浮游有孔虫进行分析。研究发现明显的深度分层:有些种属的有孔虫记录的同位素古水温接近于表层水温水平,而其余种属的古水温则相对较低。 B .Emiliani 分析了大西洋岩芯中浮游有孔虫记录的古水温数据,并参照表层海水的同位素成分变化做出修正,计算出冰期时热带海域表层海水有6~8Co 的降温量(也就是约1. 5‰18;找到了过去50万年来数次冰期/间冰期旋回的证据;首创同位素期次地层体系的δO增量) (现在一般称为“MIS ”,Marine Isotope Stages);讨论了这些数据支持米兰克维奇旋回影响气候变化的观点。 1.Emiliani 发展了一种同位素记数方法,将暖记作奇数,冷记作偶数,基于此就能可 靠地发觉所记录数据中微小的变化。

黑河流域水循环过程中地下水同位素特征及补给效应

第20卷第5期2005年5月 地球科学进展 A DVANCE S I N E AR TH S C I ENC E V o l.20 N o.5 M a y.,2005 文章编号:1001-8166(2005)05-0511-09 黑河流域水循环过程中地下水同位素特征及补给效应* 张光辉1,聂振龙1,王金哲1,程旭学2 (1.中国地质科学院水文地质环境地质研究所,河北 石家庄 050061; 2.甘肃省地勘局水文地质工程地质勘察院,甘肃 张掖 734000) 摘 要:通过环境同位素及其T a m e r s、I AE A模型应用研究表明,黑河流域水循环过程中地下水同位素特征与补给源属性和数量密切相关,具有非均一性;东部以山区降水通过出山地表径流补给为主,西部冰川雪融水和山区基岩裂隙水是主要补给源,下游区依赖中游区河水下泄状况,蒸发特征明显。东部同位素较新且地下水更新较快,西部同位素较老且地下水更新较慢;祁连山前戈壁带地下水同位素与山区河水相近,细土平原带地下水补给河水;高台一带受酒泉低氚值地下水补给影响而河水和地下水氚值都偏低;近河道带地下水年龄较新,远离河道则较老。因此,充分利用地下水与地表水之间转化规律,联合优化调控,有利于该区地下水资源可持续利用。 关 键 词:黑河流域;地下水;转化过程;同位素特征;非均一性 中图分类号:P641.2 文献标识码:A 西北内陆黑河流域平原是典型的干旱地区,其地下水主要依赖祁连山区出山地表径流补给,包括冰川雪融水、降水和基岩裂隙水(基流)补给。自祁连山区至额济纳盆地,地下水同位素特征反映了它与地表水之间相互转化和补给非均一性。这一研究对该区水资源可持续利用具有重要意义。 丁永建等[1]、张杰等[2]阐明了近40年以来黑河流域降水时空变化特征。陈仁升等[3]和蓝永超等[4]阐述了黑河流域中游区地下水和出山地表径流量变化规律。王根绪等[5]揭示了近50年以来黑河流域水文变化与生态环境之间的关系。张光辉等[6,7]开展了黑河流域水循环过程与地下水形成模式研究。武选民[8]等应用环境同位素阐述了黑河流域下游区地下水补给问题。前人研究结果显示[8],祁连山山前平原浅层地下水70%~80%来自山区地表径流补给,下游段细土平原65%~90%的地表水是山前平原地下水通过溢出带泉水排泄形成。但是,补给源的组成特征及其时空变化规律仍然是一个前沿课题[6~9]。 祁连山区各种水源成因及其在黑河流域时空再分配,受地面高程、气温和多源混合作用及流程衰变时效性等影响,各水源原固有的同位素特征在径流途径中发生变化,水的同位素变化真实地记录了它们过去的经历,包括水中放射性同位素氚的衰变[10]。由于水的同位素直接参与整个水循环过程,以致其成为示踪地表水—地下水间转化过程的较理想标记。在过去20年,同位素示踪技术广泛应用于研究水的起源、年龄和流动途径,并在利用各种测年技术确定水的年龄方面取得新进展。对于干旱区水资源问题,国际原子能机构出版了《利用同位素评价缺水地区地下水的更新性》(I AE A,2001),详细介绍了在干旱区利用同位素研究水循环更新的方法和可行性[10]。 氚是氢元素的一种放射性同位素,氚原子生成 * 收稿日期:2004-04-19;修回日期:2004-09-28. *基金项目:国土资源部重点基础研究项目“西北内流盆地水循环规律与地下水资源形成演化模式”(编号:200010301);国家自然科学基金项目“人类活动对干旱区地下水循环变异影响阈识别”(编号:40472126)资助.  作者简介:张光辉(1959-),男,辽宁沈阳人,研究员,长期从事区域水循环演化规律和地下水可持续利用问题研究.E-m a i l:h u a n j i ng @h e i n f o. n et

第十讲稳定同位素地球化学

第十讲 地质常用主要稳定同位素简介 18O Full atmospheric General Circulation Model (GCM) with water isotope fractionation included.

内容提要 ●基本特征●氢同位素●碳同位素●氧同位素●硫同位素

10.1. 传统稳定同位素基本特征 ?只有在自然过程中其同位素分馏变化为可测量范围的元素,才能应用于地质研究用途,这些元素的质量范围多<40; ?多为能形成固、气、液多相态物质的元素,其稳定同位素组成可发生较大程度变化。总体上,重同位素趋于在结合紧密的固相物质中富集;重同位素趋于在氧化价态最高的物相中富集; ?生物系统中的同位素变化常用动力效应来解释。在生物作用过程中(如光合作用、细菌反应及其它微生物过程),相对于反应初始组成,轻同位素趋于在反应生成物中富集。

10.2. 氢(hydrogen) ?直到1930年代,人们才发现H不是由1 个同位素,而是由两个同位素组成: 1H:99.9844% 2H(D):0.0156% ?在SMOW中D/H=155.8 10-6 ?氢还有一个同位素氚(3H),但为放射性核素,半衰期仅为~12.5y。

10.2.1 氢同位素基本特征 ?与多数重元素的同位素组成不同,太阳系物质具有高度不均一的氢(氧)同位素组成,尤其是内地行星与彗星之间; ?1H与D同位素间质量相对差最大,在地球样品中表现出最大的稳定同位素变化(分馏)范围; ?从大气圈、水圈直至地球深部,氢总是以H O、OH-, 2 H2、CH4等形式存在,即在各种地质过程中起着重要作用; ?氢同位素以 D表示,其同位素测量精度通常为0.5‰至2‰(相对其它稳定同位素偏低)。

大气降水氢氧同位素组成特征及水汽来源探讨

大气降水氢氧同位素组成特征及水汽来源探讨 1 引言 氢(δD)、氧(δ18O)稳定同位素是广泛地存在于自然水体中的环境同位素.自然水体通过蒸发、凝聚、降落、渗透和径流等形成水分的循环,且在水分循环过程中产生同位素分馏现象,即较轻的同位素(1H和16O)会先蒸发到气相中,同时较重的同位素(2D和18O)则先凝结到液相.降水是水循环过程中的一个重要环节.大气降水中氢(δD)、氧(δ18O)稳定同位素组成及分布主要受到蒸发和凝结作用的制约,当云中的水蒸汽冷凝形成雨滴时,18O和D不断由潮湿的空气中优先冷凝,当降水不断进行,降水中中重的18O和D不断被淋洗,则表现为降水中δD和δ18O逐渐贫化.大气降水中稳定同位素组成及分布与产生降水水汽来源的初始状态及水汽输送过程发生的变化密切相关,同时,降水中氢氧同位素存在着大陆效应、温度效应、降水量效应和纬度效应等.不同时间和区域大气降水的同位素发生有规律的变化,因此,国内外学者常借助降水中氢氧稳定同位素变化来研究水汽的来源地域、水循环过程的历史信息、天气气候特征等.早在1961年,世界气象组织WMO和国际原子能机构IAEA就已建立全球大气降水同位素观测网络,开始对大气降水中同位素组成进行观测,为研究全球和局地大气环流及循环的机制提供同位素资料数据.我国对降水中氢氧同位素的研究起步较早,大量的研究对大气降水稳定同位素组成与温度、降水量、蒸发等因素进行了探讨分析并建立降水线方程,如我国较干旱的东北地区、西北内陆地区及华北地区,较湿润的西南地区、华东地区和华南地区,这些基础数据为研究水循环特征提供了依据.HYSPLIT后向轨迹模型主要用于降水水汽源的模拟和分析,确定各水汽源的来源和输送路径,特别是基于聚类分析的结果具有较好的可信性,可用于确定不同水汽输送路径的权重比例. 厦门地处东南沿海地区,是典型的亚热带季风气候区.虽已有学者对厦门岛内大气降水的同位素分布特征及同位素值与温度、降水量等影响因素的关系进行了比较深入的探讨,积累了重要的原始数据基础,然而观测点主要局限于厦门岛内单个点,对于整个厦门地区的降水同位素情况了解不够全面.此外,对于降水水汽来源及输送路径缺乏模型模拟的分析,而关于水汽来源及输送路径所占的权重比例研究更是未见报道.因此,本研究同步采集厦门地区6个站点的典型月份降水来分析其降水中氢(δD)、氧(δ18O)同位素值的变化特征,同时,利用测定的降水中δD和δ18O 基础数据建立厦门地区大气降水线方程,并分析年尺度和月尺度下降水中稳定同位素值与降水量之间是否存在显著的“降水量效应”.同时,采用HYSPLIT后向模型模拟厦门地区的水汽来源及输送路径,并基于聚类分析的结果探讨不同水汽输送路径的权重比例. 2 材料与方法 2.1 监测布点 本研究在厦门地区共设立6个雨水监测点(图 1),分别为海沧新阳工业区(缩写XY)、翔安混合区(缩写XA)、洪文商住混合区(缩写HW)、鼓浪屿商住混合区(缩写GLY)、坂头水库区(缩写BT)、小坪森林公园(缩写XP).其中,坂头水库区和小坪森林公园为自然保护区,鼓浪屿作为厦门市重要的旅游区.

稳定同位素技术的发展及其应用

核技术与核安全课程作业 稳 定 同 位 素 技 术 的 发 展 及 其 应 用

原子核内质子数相同而中子数不同的一类原子称为同位素,它们处在周期表上的同一位置,可分为稳定性同位素和放射性同位素。放射性同位素的原子核是不稳定的,它通过自发的放出粒子而衰变成另一种同位素。而不具有放射性的同位素称为稳定同位素,其中一部分是由放射性同位素通过衰变后形成的稳定产物,称为放射成因同位素;另一部分是天然的稳定同位素,是核合成以来就保持稳定,迄今为止还未发现它们能够自发衰变形成其他同位素。自然界中共有1700余种同位素,其中稳定同位素有270余种。有的元素由很多的稳定同位素组成,如第50号元素锡含有10个稳定同位素;而有的稳定同位素却仅仅只有一个稳定同位素,如元素氟、钠等。 稳定同位素较放射性同位素具有安全、无污染、易控制的优点,在地质、生态、医药、农业等领域研究中得到广泛应用。 1.稳定同位素技术的发展过程 稳定同位素的发现比放射性同位素要晚一些,1912年汤姆孙用电磁分析器(近代质谱计的雏形)才第一次确定了氖-20和氖-22的存在;1927年发现了氧的稳定同位素O 17和O 18 ;1932年发现了重氢(D )。1936年尤里等用精馏法从水中富集了O 18,随后又用化学交换法富集了Li 8,C 13,N 15和S 34,不但证实了早年发表过的有关分离的计算理论,同时也发现了化学交换法对大量分离轻同位素很合适的。与此同时也采取了几种物理方法分离了若干种同位素。 在1930-1941年期间稳定同位素分离还处于探索阶段,此时尚无工业规模的生产,少量分离物只是提供研究同位素本身的核性质以及作为示踪原子用。到20世纪50年代后期,由于科学技术的进步及稳定同位素特殊性质的逐步显示,才使之得以迅速发展。我国稳定同位素的研制工作起步于50年代中,60年代首先在农业上获得应用。之后,在医药学中的应用也取得初步成果。目前,我国已有一支稳定同位素的研究、生产机应用的技术队伍,个别产品进入了国际市场。 2.稳定同位素分析技术 稳定同位素分析是分离研究、生产和应用的前提,它是稳定同位素科学技术中不可缺少的组成部分。其中最重要的方法是质谱分析,它用于同位素分析已有70年历史,是经典、常用,准确的方法,适用于各种元素同位素质量和浓度测定以及物质成分和结构分析。近来在样品引入、离子源、分析器以及检出系统等四个主要方面都有重大的改进。在样品引入部分加上气相色谱,构成色质联用仪器,可以分析复杂混合物样品而不必转化为简单气体。此外,现在又出现高压液相色谱与质谱联用的更新技术。在离子化方面出现了许多新型离子化型式,如化学离子化,在离子源中产生的离子基本上是分子离子,谱线要比普通的电子轰击离子化单纯得多,大大提高了检测灵敏度。又如场致离子化和场解吸离子化,它们都是不直接轰击样品分子,是一种软离子化技术,不出现离子碎片,基本上没有同位素效应的干扰问题,可以直接分析多成分的混合物样品,而且不必像GC-MS 那样需要引入适合于气相色谱的诱导体,所以操作更为简单。这对多重标记物的分析十分有利,能测定稀释了一百万倍的样品,最小检测量可低到fs(1510 g)。此外,还有激光离子化、大气压离子化和多点场离子化等。在分析器方面,除了磁场偏转形式外,还有一种简便的四重极质量过滤器,它是用四根圆棒电极(最好是双曲线断面型式)代替了笨重的磁铁。对角线上两根电极互成一对,分别加上高

阿拉善地区降水同位素特征与水汽来源

第47卷第5期2019年9月河海大学学报(自然科学版)Journal of Hohai University(Natural Sciences)Vol.47No.5Sep.2019DOI :10.3876/j.issn.10001980.2019.05.003 基金项目:国家自然科学基金(41273015)作者简介:王帅(1992 ),男,博士研究生,主要从事水文地球化学研究三E?mail:wangshuaiw18@https://www.360docs.net/doc/c617510975.html, 通信作者:饶文波,研究员三E?mail:raowenbo@https://www.360docs.net/doc/c617510975.html, 引用本文:王帅,饶文波,金可,等.阿拉善地区降水同位素特征与水汽来源[J].河海大学学报(自然科学版),2019,47(5):411?419. WANG Shuai,RAO Wenbo,JIN Ke,et al.Hydrogen and oxygen isotopic characteristic and moisture source of precipitation of Alxa Desert Plateau[J].Journal of Hohai University(Natural Sciences),2019,47(5):411?419.阿拉善地区降水同位素特征与水汽来源 王 帅,饶文波,金 可,张文兵,陈堂清,郑芳文,王雅宁 (河海大学地球科学与工程学院,江苏南京 210100) 摘要:基于2013 2015年阿拉善高原阿右旗的降水氢氧稳定同位素组成数据,分析阿拉善高原降水δD 和δ18O 的特征与变化规律,揭示当地的水汽来源与迁移路径三结果表明:(a )阿拉善高原降水δD 和δ18O 的变化呈现明显的季节特征,即夏季偏高,冬季偏低三(b )主要气象参数(降水量二气温二大气湿度和风速)中,气温是控制阿拉善高原降水δD 和δ18O 的主导因素;通过与周边区域的比较,阿拉善高原当地大气降水线的斜率和截距较低,这是由阿拉善高原降水受到非平衡蒸发作用强烈所致;(c )HYSPLIT 气团轨迹模型模拟和降水同位素分析揭示了阿拉善高原阿右旗降水主要来自西风和极低气团三 关键词:氢氧同位素;降水;气象参数;HYSPLIT 气团轨迹模型;水汽来源;阿拉善高原;阿右旗 中图分类号:P426 文献标志码:A 文章编号:10001980(2019)05041109 Hydrogen and oxygen isotopic characteristic and moisture source of precipitation of Alxa Desert Plateau WANG Shuai ,RAO Wenbo ,JIN Ke ,ZHANG Wenbing ,CHEN Tangqing ,ZHENG Fangwen ,WANG Yaning (College of Earth Sciences and Engineering ,Hohai University ,Nanjing 210100,China )Abstract :Local precipitation is a precious water resource on the Alxa Desert Plateau of West Inner?Mongolia,Northwest China.The Hydrogen and oxygen isotope compositions in the precipitation of this region were investigated during 2013and 2015to explore the influences on precipitation isotopes and to reveal the moisture source of precipitation.The results show that:(a)δD and δ18O values in the precipitation show a distinct seasonal variation,with higher values in summer and lower values in winter,on the Alxa Desert Plateau.(b )Among main meteorological parameters (precipitation amount,air temperature,atmospheric humidity and wind speed),air temperature is the most predominant factor controlling isotopic compositions of precipitation on both daily and monthly scales.The local meteoric water line is defined by the relationship between δD and δ18O on the Alxa Desert Plateau and has lower slope and intercept than those of surrounding areas,implying stronger non?equilibrium evaporation of raindrops in this region.(c)In combination with the HYSPLT air mass trajectory model,the evidence of precipitation isotopes suggests there was a dominant control of westerly and polar air masses on the Alxa Desert Plateau,and the moisture of local precipitation mainly originated from the north and west throughout all the year.Key words :Hydrogen and oxygen;HYSPLT air mass trajectory model;precipitation;meteorological parameters;moisture source;Alxa Desert Plateau;Ayouqi

相关文档
最新文档