塔线体系在覆冰荷载作用下的力学性能

塔线体系在覆冰荷载作用下的力学性能
塔线体系在覆冰荷载作用下的力学性能

第30卷第6期2 0 1 

2年6月水 电 能 源 科 学

Water Resources and PowerVol.30No.6

Jun.2 0 1 

2文章编号:1000-7709(2012)06-0166-

04塔线体系在覆冰荷载作用下的力学性能研究

刘春城,刘法栋,毛绪坤,李霞辉

(东北电力大学建筑工程学院,吉林吉林132012

)摘要:以500kV典型设计中的5B-ZB1直线酒杯塔为原型,采用空间桁梁混合结构来分析输电塔和索结构,并基于有限元方法分析导地线,构建了输电塔及塔线体系模型,通过逐级增加覆冰厚度的方法进行静力计算,分析了输电塔和塔线体系在覆冰荷载、风荷载、自重荷载及导线张力共同作用下的力学性能,对比分析了计算结果。结果表明,在覆冰荷载作用下杆塔的主要破坏是达到钢材的屈服强度而发生失稳破坏,输电单塔比塔线体系更偏于安全,

而塔线体系更符合实际情况。关键词:输电塔;塔线体系;ANSYS;覆冰;力学性能中图分类号:TM753;TM726.3

文献标志码:A

收稿日期:2011-10-10,修回日期:2011-11-18基金项目:吉林省自然科学基金资助项目(20101554

)作者简介:刘春城(1969-),男,教授,研究方向为输电线路工程防灾减灾和碳纤维复合芯导线的开发与应用,E-mail:lccheng

@mail.nedu.edu.cn 输电线路覆冰是一种严重的自然灾害,

低温、冻雨、湿雪、冰冻等恶劣天气会造成输电线路严重覆冰,引起覆冰闪络、断线、倒塔等电网灾害,严重威胁电网安全运行,给社会造成了巨大的经济损

失[1]

。因此,研究覆冰荷载作用下输电线路的力

学性能具有重要的理论意义和工程价值。目前,输电线路覆冰研究已取得重大进展。Jones K 

F等[2]

在导地线径向均匀覆冰模型的基础上,提出

了角钢铁塔的均匀覆冰数学模型,给出了计算公式,

计算了不同截面形状的一致均匀覆冰厚度;刘纯等[3]以湖南500kV复沙线倒塔段为原型建立

有限元模型,通过计算分析得出了输电塔随导线

覆冰厚度变化的极限承载力;李雪等[4]以湖南

220kV挂靖线倒塔段为原型建立塔线体系有限元模型,对覆冰和风荷载作用下输电塔线体系进行非线性屈曲分析,计算出覆冰荷载及风荷载与覆冰共同作用下输电塔结构的极限承载能力,分析了倒塔的主要原因。鉴此,本文以500kV典型设计中的5B-ZB1直线酒杯塔为原型建立输电塔及塔线体系模型,通过逐级增加覆冰厚度的方法进行不同覆冰厚度下的静力计算,对输电塔和塔线体系的力学性能进行分析。

1 构建模型

输电塔的原型采用500kV典型设计中的5B-

ZB1直线酒杯塔。该输电塔地处5B模块,为海拔1 000m以内、设计风速32m/s、覆冰厚度10mm、导线为4×LGJ-

400/35的单回路酒杯塔。塔高47.5m,呼高42.0m,根开7.76m,塔身的平面形状为正方形,水平档距为420.0m,垂直档距550.0m,代

表档距350.0m。输电塔塔材选用Q345和Q235角钢。将输电塔结构作为空间桁梁模型建模,所有梁单元均选用BEAM188单元模拟,杆单元均选用LINK8单元模拟。输电塔的有限元模型见图1。

图1 输电塔有限元模型

Fig.

1 Transmission tower finite element model根据500kV典型设计中关于绝缘子串规

范[5]

要求,本模型采用28片XWP-

160,总长4.34m,其中相绝缘子串采用“V”型布置。用ANSYS建模时采用LINK8单元,绝缘子串与输电导线之间的连接及与输电塔横担处的连接都认为是铰接。

架空输电线路的档距比输电导线的截面尺寸大得多,

同时输电导线多采用多股细金属线构成的绞合线,因此导线的刚性对其悬挂空间曲线形

输电线路的覆冰与主要危害

输电线路的覆冰与主要危害 [摘要]输电线路覆冰严重威胁了电力系统的运行安全,在总结输电线路典型覆冰事故的基础上,对输电线路覆冰事故原因及危害进行了总结分析。 【关键词】输电线路;覆冰;危害 输电线路覆冰的微气象条件是指某一个大区域内的局部地段,由于地形、位置、坡向、温度和湿度等出现特殊变化,造成局部区域形成有别于大区域的更为严重的覆冰条件。这种微气象条件覆冰具有范围小、隐蔽性强等特点,使得输电线路设计、运行维护人员难以采取防冰抗冰措施。 一、线路覆冰的分类和成因 1.气象条件影响导线覆冰的气象因素主要有4种:空气温度、风速风向、空气中或云中过冷却水滴的直径、空气中液态水的含量。随着空气温度的升高,雾粒直径变大,相应液态水的含量增加。当气温在—5—0℃之间,空气或云中过冷却水滴的直径在10—40?m之间,风速较大时形成雨淞;当气温在—16——10℃之间,过冷却水滴的直径在1—20?m之间,风速较小时形成雾淞;混合成的形成介于雨淞和雾淞之间,此时的温度在—9——3℃之间,过冷却水滴的直径在5—35?m之间:严格地说,雨淞—混合淞之间及混合淞-雾淞之间没有严格界限、如气温太低,则过冷却水滴都变成雪花,导线也行不成覆冰了。 2.季节的影响导线覆冰主要发生在前1年的11月到次年的3月之间,尤其是入冬和倒春寒时覆冰发生的概率较高。 3.地形及地理条件的影响东西走向山脉的迎风坡比背风坡严重,山体部位的分水岭、风口处线路覆冰比其他地形严重,线路紧靠江湖水体比线路附近无水源时覆冰严重。总之,受风条件较好的突出地形和空气水分较充足的地区,覆冰程度比较严重。 4.海拔高度的影响就同一地区来讲,一般海拔高度越高,越易覆冰,覆冰也越厚巳多为雾淞,海拔高度较低处多为雨淞和混合淞。 5.线路走向的影响导线的覆冰程度与线路的走向有关,东西走向的导线覆冰普遍比南北走向的导线覆冰严重。冬季覆冰天气大多为北风和西北风.线路南北走向时,风向与导线的轴向基本平行,单位时间内与单位面积内输送到导线上的水滴及雾粒较东西走向的导线少得多;线路东西走向时,风与导线约成90°的夹角,使得导线覆冰最为严重。在严重覆冰地段选择线路走廊时,如条件许可,应尽量避免线路成东西走向。 6.导线悬挂点的影响导线悬挂点越高覆冰越严重,因为空气中的液态水含量随高度的增加而增高,风速越大,液态水含量越高,单位时间内向导线吹送的水滴越多,覆冰越严重。 7.导线本身的影响导线覆冰往往总是在迎风面上先出现扇形或新月牙形积冰,产生偏心荷重,对导线施加扭矩,迫使导线扭转,对未覆冰或覆冰较少的表面对准风向,继续覆冰。导线的刚度越小,扭转越大,覆冰速度越快。 8.电场和负荷电流的影响导线的电场会使其周围的水滴粒子产生电离,并对其有吸引力,因此电场的吸引力会使更多的水滴移向导体表面,增加导线的覆冰量。 9.负荷电流影响导线表面温度当电流较小时,导线产生的焦耳热不能使导

浅析输电线路覆冰舞动及防治

浅析输电线路覆冰舞动及防治 发表时间:2016-03-10T15:41:49.440Z 来源:《电力设备》2015年8期供稿作者:袁洪凯 [导读] 国网山东省电力公司滨州供电公司在实际操作中更应该从覆冰导线的舞动预防开始,做好地域数据分析、做好前期防舞动装置,这样才能从根本上最便捷的避免舞动的产生。 (国网山东省电力公司滨州供电公司山东滨州 256600) 摘要:本文就覆冰导线产生舞动的原因以及防止输电导线产生舞动的措施两个方面进行探讨,但是探讨的结果发现,输电导线不仅仅是关系着电力系统的运行,更关系到整个民生,因此对于输电导线中存在的严重问题就必须解决。在实际操作中更应该从覆冰导线的舞动预防开始,做好地域数据分析、做好前期防舞动装置,这样才能从根本上最便捷的避免舞动的产生。 关键词:输电线路;覆冰舞动;防治 一、破坏输电导线运行的主要因素 我国经济社会飞速的发展,国家对于经济发展的主力部门——电力部门充分重视,根据国家的相关规定,我们必须不断完善电网的网架结构。由于电力的发展主要依靠于输电导线对电力的输送,输电导线对电力的输送直接影响了人们的生活与工作,而破坏输电导线运行的主要因素之一就是导线的覆冰,其中又有三种情况的覆冰导线来破坏导线的运输工作,①本文将要探讨的覆冰导线舞动而导致的破坏; ②覆冰过多而大量脱落产生的晃动和弹跳;③覆冰过重产生破坏。 二、覆冰导线舞动原因探析 由于我国疆域辽阔,南北、东西地形、气候等条件差异大,因此产生覆冰的原因不同,覆冰导线舞动产生的原因也有所不同。就目前而言,人们所认同的覆冰导线舞动的起因分析主要为形成覆冰、线路的结构参数与风激励的原因。 2.1覆冰的原因 覆冰厚度一般为2.5~48mm,覆冰导线的形成主要分为三类,其一是雨凇,其二是雾凇,其三是霜凇。 ①雨凇。根据相关的数据分析和研究发现,覆冰导线舞动中导线上覆冰的产生原因主要是雨凇。在风速很大且气温在零度上下时,尤其在低海拔地区的冻雨时节雨凇产生的情况较大。雨凇产生的这种自然条件是冰体在粘性最强的情况,不容易小部分脱落,会呈块状的黏附在导线上,容易在有风的情况下产生舞动,对导线的安全性造成威胁。 ②雾凇。雾凇主要形成于山区,其形成条件主要是气温相对较低且风速也相对较小的情况下。由于气温较低因此低空云的水汽温度也很低,在水汽遇到同样处于低温的输电导线时,凝结成冰附着于导线上。或者是由于山间昼夜温差大,清晨产生的雾气遇冷在输电导线上凝结成冰,因此雾凇所形成的冰体密度相对较小,主要是通过不断凝结的过程来形成覆冰,雾凇作为一种覆冰导线,其舞动时产生的破坏性最小。 ③霜凇。霜凇的产生条件与雨凇的产生条件相似,都为零度左右且风速较大的情况下,霜凇作为不断累积的冰体之一,其密度大大的高于雨凇与雾凇所产生的冰体。因此只要在有湿云的情况下,就容易产生雾凇,雾凇通过其晶体的不断累积不断的增加质量。 2.2线路的结构参数 除了覆冰的原因外还有线路的结构参数来影响覆冰导线的舞动,而线路的结构参数还包括了分裂导线、张力、弧度与垂直度等参数。线路的结构参数对覆冰导线舞动的影响主要是通过大量的数据以及相关工作人员日积月累的工作经验得出的。 ①分裂导线。在线路的结构参数中,分裂导线产生舞动的因素最大,由于分裂导线是由不同的子导线构成的,而各个子导线的扭转刚度比单独存在的单导线又大很多。因此在同等结冰的情况下,单导线因为扭转刚度比较低,因此容易发生扭转,这样冰体在上面不容易大面积的附着。而分裂导线中的各个子导线由于刚度较强且扭转度不强,就会使得冰体增大,发生舞动。 ②弧度。不同弧度的导线也会产生不同幅度的舞动,一般的输电导线都具有一定的弧度,这个弧度范围是国家规定的标准,因此在这样一定的弧度范围内可以保证输电导线能够有效的进行输电且不受到影响。如果导线的弧度小于标准弧度,那么就会造成导线过于紧绷,虽然这样的导线不易发生舞动,但是热胀冷缩容易让导线很容易的受到损坏。如果导线弧度大于标准弧度,那么导线在覆冰的情况下舞动更大。 三、防舞动措施 就目前的舞动现象分析而言,我国的电网管理者和工作根据已有的经验和得到的数据在防舞动方面有了一定的成就。防舞动措施主要根据各地的气候、地形等自然条件来采取避舞——避免产生舞动、抗舞——对抗会产生的舞动进行改进以及抑舞——抑制舞动的产生。 3.1避舞 避免舞动的产生就是企业的规避措施,对于电力企业来说,其防治出现经济和安全损失的措施之一就是避免覆冰输电导线出现舞动。既然要避免就要对于该地所处的自然条件和社会条件两个方面出发,对于自然条件来说,应当了解当地的气候、地貌和地形,从而选择适合当地的导线;对于社会条件来说,应当对当地的工作人员进行经验传授和防舞动措施的讲解,从而保证在舞动发生时有对应的措施来解决。 3.2抗舞 由于避舞是对自然条件和社会条件的一种预估,对其无法进行改变,因此就出现了抗舞这一措施。抗舞就是在无法更改的地形、气候条件下,通过更改输电导线的原料、材质以及其他方面来保证输电的安全运行。抗舞主要是通过检测该地地形之后,选择更适宜该地的材质,选择高强度的机械来防止出现覆冰导线舞动的情况。 3.3抑舞 抑舞即通过相应的装置和器械来抑制舞动的产生,同之前的避舞措施来对有可能产生舞动的区域进行具体勘测,然后安装防舞动装置。 ①改变导线系统的结构。通过改变导线的系统结构可以防治舞动的产生,其主要原因是通过在系统结构中加入防舞动装置,其中防舞

输电线路铁塔

输电线路铁塔 输电线路塔是支持高压或超高压架空送电线路的导线和避雷线的构筑物。 类型根据在线路上的位置、作用及受力情况分类如表: 还可根据不同的电压等级、线路回路数、导线及避雷线的布置方式、材料及结构形式来确定塔的名称,例如:220千伏单回路导线水平排列的门型耐张跨越塔。常见的悬垂型塔或耐张型塔如图。500千伏台山电厂至香山输变电工程的崖门大跨越钢管塔,该塔位于新会区西江崖门边,在两岸各建一高塔,两座高塔跨越距离2.5公里,塔高215.5米,所用钢管直径达1.58米,单塔重1650吨。常见的悬垂型塔或耐张型塔, 崖门大跨越钢管塔 塔的尺寸和档距须满足电路要求:导线与地面、建筑物、树木、铁路、公路、河流以及其他架空线路之间,导线与导线、导线与避雷线之间,均应保持必要的最小安全距离。避雷线对导线的保护角及使用双避雷线时两根避雷线之间的水平最小距离应满足有关规定。 荷载输电线路塔主要承受风荷载、冰荷载、线拉力、恒荷载、 安装或检修时的人员及工具重以及断线、地震作用等荷载。设计时应考虑这些荷载在不同气象条件下的合理组合,恒荷载包括塔、线、金具、绝缘子的重量及线的角度合力、顺线不平衡张力等。断线荷载在考虑断线根数(一般不考虑同时断导线及避雷线)、断线张力的大小及断线时的气象条件等方面,各国均有不同的规定。 结构计算 塔一般均简化为静态进行分析,对于风、断线、地震等动荷载,通常在静力分析的基础上,分别乘以风振系数、断线冲击系数、地震力反应系数来考虑动力作用。 输电线路塔的内力计算,与塔式结构和桅式结构相同,但须考虑下列两个问题: ①导线风荷载对塔的作用。由于导线的支点间距较大(一般为200~800米)而横向摆动的周期较长(一般为5秒左右),故应考虑风沿导线的不均匀分布及导线对塔的动力效应。20世纪60年代初,许多国家的电力部门曾用实际的试验线路来测定导线在大风作用下的最大响应,并据此制订了实用计算法,其中有的已纳入本国的规程,但是由于受地形、测量仪器的精度、分析水平等各种因素的限制,这些实用计算方法还不能精确反映出真实情况。70年代中期,开始应用随机振动理论分析阵风作用于导线对塔引起的动力响应,这种建立在实测资料基础上并用统计概念及谱分析估计结构响应的概率峰值的方法,比较符合风的特点。 ②断线力对塔的作用。导线突断时对塔的冲击荷载在极短的时间内达到峰值,并且各个部位的相对值大小不一,是一种复杂的瞬态强迫振动,要作理论计算比较困难。一般是根据现场试验实测数据获得冲击力的峰值,并据此制定出实用的“断线冲击系数”,其值为1.0~1.3,视电压的高低、塔的类型、不同的部位而定。 基础 输电线路塔基础的种类很多,并随塔的类型、地形、地质、施工及运输的条件而异,常见的有:①整体式刚性基础;②整体式柔性基础;③独立式刚性基础; ④独立式柔性基础;⑤独立式金属基础;⑥拉线地锚;⑦卡盘及底盘;⑧桩基础。上述①、②类基础主要用于窄塔身用地小的情况,③、④、⑧类基础用于软土地

板式塔的流体力学性能的测定

板式塔的流体力学性能的测定 一、实验名称:板式塔的流体力学性能的测定 二、实验目的: 1、对板式塔的结构、立体传质塔板有一个初步认识; 2、对塔板上流体流动状态有初步认识; 3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。 4、观察流体在塔板上的流动状态。 三、实验原理与流程: 实验流程见图1,来自储槽的水经过转子流量计自塔顶送入板式塔,由鼓风机送来的气体,经过孔板流量计送入塔的底部。塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状态。 四、实验步骤: 1、测定干板压降 将液封管内充满水,启动风机,根据孔板流量计连接的压差计调节气流流量大小,测定塔的干板压降,气体流量由小至大调节。由《化工原理》查询孔流系数,并计算气体流量。测定的压降值与干板压降计算公式进行验证,并计算误差。 干板压降经验式:?d=0.051w0 C02γ v γL (1?φ2) φ-----开孔率(开孔面积/开孔区域,此处取0.2);γv-----气相密度;γL-----液相密度;

?d-----干板压降,米液柱;C0-----孔流系数;w0-----空气速;(单位如不说明均为国际单位制)(假设矩形孔和导向孔气速一致) 2、测定湿板压降和夹带、漏液 调节气体流量为一定值,打开转子流量计。固定液体流量,将气体流量由小至大调节,每次增加200Pa,直到1600Pa。每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常的操作范围。 3、观察塔板上气液接触状态 随着气速的增大,塔板之上的气液接触状态由鼓泡状态,改为泡沫状态,最终达到喷射状态。塔板之上的清液层逐渐减小,泡沫层逐渐升高,甚至达到液泛状态。如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。观察漏液过程中周期性漏液。观察泡沫层上升和夹带量的关系。 四、数据处理 计算所需参数:孔板流量计计算公式:q v=C0A02?P ρ ,气体管径d1=200mm; 孔板孔径d2=125mm;孔板流量系数C0查询《化工原理》;孔流系数C0=0.76; 立体喷射式塔板:气体为连续相,液体为分散相;矩形帽罩结构,喷射区有圆形喷射孔,上部装有填料板波纹250Y。 开孔区域面积A=0.14㎡;矩形开孔180*60mm(3个);导向孔24*3mm(78个);底隙25mm;堰高50mm;堰长350mm;塔径476mm。 数据表格: 干板压降表格 液体流量L=4m3/h 流体力学记录表格

常见输电线路覆冰类型及防控措施分析

常见输电线路覆冰类型及防控措施分析 【摘要】本文就覆冰形成的原因及类型作简要介绍,并对其危害进行深入剖析,在此基础上将应对输电线路覆冰的技术措施进行了分析,供专业人员参考。 【关键词】输电线路覆冰抗冰措施 前言 在现代化社会高速发展的今天,随着电力需求的不断上升和增加,输电线路中的故障问题也越来越复杂,越来越明显。就一般情况而言,在工程项目中需要针对各种常见问题和隐患进行全面的分析和总结,使得这些现象能够得到及时有效的预防和处理,进而为社会发展做出应有的贡献。由于天气的影响而造成输电线路冰闪跳闸现象、导线舞动和线路中断的事故不断涌现,不但造成了严重的输电设备损坏,更是影响了区域经济的正常发展。因此在目前的输电线路管理工作中,做好冰害事故管理和预防已成为一项不容忽视的工作流程,是提高电网抗击自然灾害能力中不可忽视的一环。 一、覆冰的形成 覆冰是一种物理现象,是由多种气象因素综合决定的,其中包括气温、湿度、空气流速以及大气环流等。当气温在冰点以下时,雪或雨等水性物质与输电线表面接触产生冻结并层层裹覆,此时覆冰现象就产生了。 1、五种覆冰类型 白霜——当气温处于冰点以下且湿度较高时,空气中的水分与低温物体接触,粘着在其表面即形成白霜。一般来说白霜不会对输电线路的安全构成威胁,这主要是因为这种覆冰与输电线的粘连强度不高,低幅度的振动就可使其脱离线路表面。 湿雪——当空气湿度较低时雪花不容易与输电线表面粘着,但如果空气湿度较高,雪花飘落过程中聚结了未形成晶体的水分,就很容易附着在输电线表面,层层包裹形成积雪。即使出现积雪也不一定会出现覆雪危情,因为此种覆冰受风力强度影响较大,强风很容易就把积覆的雪吹散了。常发生覆雪危情的地方,往往是海拔不高风强较低的区域。 雨凇——当气温在零度以下风力较强时,在海拔相对较低的区域,覆冰常常呈现高密度、强附着力、高透光性等特点,一般在冻雨期较常见但持续时间较短。随着时间的推移此种覆冰会向另一种覆冰类型( 混合凇) 发展,所以输电线覆冰为单一雨凇的情况较为罕见。 软雾凇——在高海拔山区气温极低的条件下,环境湿度较大,如果风力不强则会形成此种覆冰。其特征恰好与雨凇相反,呈现低密度、弱附着力、低透光性

填料塔的基本特点

填料塔的基本特点 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要; 填料抗污堵性能强,拆装、检修方便。 (2)填料规格的选择

输电线路覆冰检测技术(修改版)

输电线路覆冰在线检测 覆冰引起的输电线路导线舞动、杆塔倾斜倒塌、断线及绝缘子闪络等生产事故,严重影响了电网的正常运行。目前,检测线路覆冰的方法主要有人工巡视检测、观冰站等,这些方法存在着人工巡视劳动强度大、时间长,检测结果准确度不高等问题。因此探讨更为完善的检测技术对输电线路的运行及提高整个电力系统的安全可靠性具有重要的实际意义和指导作用。 1 相关标准 (1)Q/GDW 554-2010 《输电线路等值覆冰厚度监测装置技术规范》 (2)Q/GDW182-2008《中重冰区架空输电线路设计技术》 (3)DL/T 5440-2009 《重冰区架空输电线路设计技术规程》 2 覆冰在线检测技术 导线上的覆冰一般可分为4类:雨淞、混合淞、雾淞和积雪,其中雨淞和混合淞对导线的危害最为严重。输电线路设计时,以雨凇为基准折算拟定覆冰允许厚度。线路覆冰检测最基本的是对覆冰厚度的检测,然后和设计值比较。除了检测实际运行输电线路的覆冰厚度外,也常通过模拟导线法进行检测。 输电线路覆冰在线监测技术是通过在易覆冰区域的铁塔上安装覆冰自动检测站,运用在线检测的传感器、装置电源、通讯网络等关键技术,随时掌握线路的覆冰情况,并可实现预、报警,达到降低电网覆冰事故损失的目的。在线检测系统既减轻了个人劳动强度、降低事故的发生概率,又能及时地了解线路的覆冰情况,故而得到广泛推广运用。 3 输电线路覆冰在线检测方法 在线检测技术的机理是利用传感器(安装位置如图1示)获得导线的重力变化、杆塔绝缘子的倾斜角、导线舞动频率以及线路现场的温度、湿度、风速、风向、雨量等数据信息通过无线通讯网络传往监控中心,然后再通过建立数学模型近似计算出当前的导线等效覆冰厚度,最后经专家分析软件得到结论。 应用于覆冰的在线检测法有很多,从覆冰检测原理及分析方法来说,可分为称重法、导线倾角-弧垂法、图像法。 3.1 称重法 称重法包括冰样称重检测法和荷重增量法,目前荷重增量法的应用较广泛。其工作原理是线路覆冰后,导线上的荷重产生一个增量,这个增量即为覆冰的质量。 先称取一段导线上的覆冰质量(将拉力传感器测量在一个垂直档距内导线的质量), 折算出单位长度导线上的覆冰质量G (利用风速、风向和倾角传感器计算出风阻系数和绝缘子的倾斜分量,最终得出覆冰质量),再用设计时所用计算公式(1)算出导线的平均等值覆冰厚度: 图1 拉力传感器现场安装示意图

高压输电线路覆冰及处理措施

浅谈高压输电线路覆冰及处理措施 【摘要】高压输电线路覆冰是一种与地域相关的自然现象,由于气候的原因,在同一地区的不同的地图,微观层面的气候是不完全相同,而使得覆冰因素各不相同。本文主要探讨高压输电线路覆冰及处理措施。 【关键词】高压;高压输电线路;覆冰;处理措施 一般情况下,年平均雨凇日数的影响较年平均雾凇日数更为严重。测定一个地区的年平均雨凇日数和雾凇日数是项长期而艰巨的工作。我国气象部门和电力系统各有关运行单位对此作出了重要贡献。 1、高压输电线路覆冰的事故分析 高压输电线路冰害事故按产生的直接原因分析可分几类: 1.1过负载事故 当前人们已经充分认识到,管理是制约节水高压输电线路覆冰及处理技术发展的重要环节。许多新的灌水技术(如喷灌技术、滴灌技术、微喷灌技术、渗灌技术)在实际运用中由于缺乏良好的技术管理措施,其高压输电线路覆冰及处理技术效益不能得到充分发挥或者根本无法大面积推广。目前园林喷灌系统除高尔夫球场采用自动控制外,大多数高压输电线路覆冰及处理技术系统还是凭管理人员的经验操作[1]。而草坪是最近10多来年才大面积发展起来的,草坪需水的科学规律和管理人员的实践经验往往得不到有效结合。

随着经济全球化进程的不断加快以及科学技术特别是信息技术的迅猛发展,信息传播的方式正在发生质变,广播电视与通信、高压输电线路覆冰及处理等行业正处在融合、汇聚、转型过程中,技术与媒体的不断融合导致传统的行业界限正在模糊,新兴产业群不断出现,开放与融合已成为当今技术发展的主流。作为信息社会三大基石的通信技术、计算机技术、电视技术日益进步与成熟,通信、计算机、广播电视三大行业之间的界限正在逐步消失。逻辑编程使用schneider的tlxcdpl7pp41m pl7 pro逻辑编程软件;触摸屏hmi 人机接口使用xbtl1003e magelis终端软件;中空室上位机操作站使用intellution 的fix监控软件。[2] 1.2不均匀覆冰或不同期脱冰引起的机械和电气方面的事故(1)导线和地线。机器或装置在无人干预的情况下按规定的程序或指令自动进行操作或控制的过程叫自动化,而所谓自动控制就是在没有人直接参与的情况下,通过控制器使生产过程自动地按照预定的规律运行。用来完成这种控制的设备称为控制器,被控制的机器或设备称为被控对象;被控对象和控制器一起,称为自动控制系统。各种自动控制装置的具体任务虽然不同,但其实质不外乎是对受控对象的某些物理参量进行控制,自动保持其应有的规律。要用自动控制代替人工控制,则自动控制系统中必须有3种代替操作人员在人工控制的机构。这3种机构是:①测量机构,用来测量被控量。②比较机构,用来比较被控量与给定值,得出误差。按照误差

KH-BLY板式塔流体力学演示实验装置

KH-BLY板式塔流体力学演示实验装置 一、装置特点: 1、整个装置美观大方,结构设计合理,整体感强,具备强烈的工程化气息,能够充分体现现代化实验室的概念。 2、设备整体为自行式框架结构,并安装有禁锢脚,便于系统的拆卸检修和搬运。 3、本实验装置塔体部分采用全透明优质有机玻璃制作,实验现象清晰,方便学生观察。 4、分别采用三种(筛板、浮阀、泡罩)不同的经典塔板,有助于开阔学生视野。 5、塔体进气位置可调,可验证不同塔板的泛塔气速。 6、装置设计可360度观察,实现全方位教学与实验。 二、装置功能: 1、了解板式塔的基本构造,观察板式塔工作时塔板上的水力状况。 2、学会识别板式塔内出现的几种操作状态,并分析这些操作状态对塔性能的影响。 3、测定不同类型板式塔(筛板、浮阀、泡罩)的水力学特性,并了解其特点。 三、设计参数: 1、常压、常温操作。

2、板式塔:筛板、浮阀、泡罩。 3、筛板、浮阀、泡罩塔板压降:1-5KPa。 4、液体流量:25-250L/h。 5、气体流量:4-40 m3/h。 四、公用设施: 1、水:装置自带水箱循环使用。 2、电:电压AC220V,功率1.0KW,标准单相三线制。每个实验室需配置1~2个接地点(安全地及信号地)。 3、气:空气来自风机(自带气源)。 4、实验物料:水---空气,外配设备:无。 五、主要设备: 1、有机玻璃塔体(筛板、浮阀、泡罩):φ200×2000mm ,板间距300mm。 2、塔底水封槽:500×400×400 mm,304不锈钢材质,水可自动放净。 3、液体转子流量计:LZB-15, 25—250 L/h。 4、气体转子流量计:LZB-40, 4—40 m3/h。 5、筛孔板:φ3mm孔,等腰三角形排列,开孔率 5.5%。 6、泡罩板:φ50 泡罩3个。 7、浮阀板:φ39标准F型浮阀3个,最小开度2.5,最大开度8.5。 8、U型型管压差计,±3000Pa。 9、鼓风机:旋涡气泵,功率 750W,最大流量72m3/h。 10、接触器、开关、漏电保护空气开关。 11、304不锈钢管路、水箱、管件及阀门。 12、304不锈钢仪表柜:测控、电器设备在实验架上。 13、304不锈钢材质框架1300*550*2200mm(长×宽×高),带脚轮及禁锢脚。

北京化工大学实验报告——板式塔的流体力学性能的测定

实验五板式塔的流体力学性能的测定 一、实验名称:板式塔的流体力学性能的测定 二、实验目的: 1、对板式塔的结构、普通筛板、导向筛板有一个初步认识; 2、对塔板上流体流动状态有初步认识; 3、测定塔板的流体力学性能,包括塔的干板压降、湿板压降、漏液点、雾沫夹带点等。 4、观察流体在塔板上的流动状态。 三、实验原理与流程: 实验流程见图1,来自储槽的水经过转子流量计自塔顶送入塔顶,由鼓风机送来的气体,经孔板流量计送入塔的底部。塔内共装有三层塔板,从下至上分别是气体分布板、实验塔板、雾沫补集板。实验塔板采用U型压差计测定其压降,漏液和夹带量采用质量测量法。通过风机闸阀和玻璃转子流量计调节气体流量和液体流量,测定不同状态下塔板的流体力学参数,观察塔板上液体流动状况。 图1 实验装置流程图 四、实验步骤: 1、测定干板压降

将液封管内冲满水,启动风机,根据孔板流量计连接的压差计调节气体流量大小,测定 塔的干板压降,气体流量由小至大调节。 孔板流量计计算公式: 0v q C A =由《化工原理》查询孔流系数,并计算气体流量。测定的压降值与筛板塔干板压降计算公式进行验证,并计算误差。 干板压降经验式:()220' 00.051( )1v d L w h C ρ?ρ=- ?-----开孔率;v ρ-----气相密度;L ρ-----液相密度;d h -----干板压降,米液柱; '0C -----筛孔孔流系数;0w -----筛孔气速;(单位如不说明均为国际单位制) 2、测定湿板压降和夹带、漏液 调节气体流量为一定值,打开转子流量计。固定液体流量,将气体流量由小至大调节, 每次增加200Pa ,至到2000Pa 。每个测量点稳定30秒,读取压降,由质量法测量一定时间的漏液量和夹带量。计算每个点的漏液率和夹带率,寻找漏液点和夹带点,并计算出对应的孔气速,确定正常操作范围。 3.观察塔板上气液接触状态 随着气速的增大,塔板之上的气液接触状态由鼓泡状态,变为泡沫状态,最终达到喷射 状态。塔板之上的清液层逐渐消失,泡沫层逐渐升高,甚至达到液泛状态。如不及时打开回流泵,由于塔釜容量有限,将出现降液管液泛,并波及塔内正常操作。观察漏液过程中周期性漏液。观察泡沫层上升和夹带量的关系。 四、数据处理 计算所需参数:孔板流量计计算公式: 0v q C A = 气体管径 1200d mm =;孔板孔径 0137.6d mm =;孔板孔流系数0C 查询《化工原理》,按 阻力平方区取值 ;筛孔孔流系数' 00.76C =;开孔区域面积20.14A m =; 孔径 7mm ;孔间距 15mm ; 底隙 25mm ; 堰高 50mm ;堰长 350mm ;塔径 476mm ;孔数 625 个;干板压降矫正系数0.95,矫正筛板和导向筛板干板压降的差别,乘到压降公式中即可。

基于AR法的输电塔线体系风速时程模拟

万方数据

.170?水电能源科学 其中x=[zl,z2,…,zM]T Y=[y1,Y2,…,YM]T z=[2l,施,…,ZM]T 式中,(z;,y,,≈)为空间第i点坐标,i一1,2,…, M;P为AR模型阶数;At为模拟风速的时间步 长;吵。为AR模型自回归系数矩阵,k一1,2,…, P;Ⅳ(£)为独立随机过程向量。 根据风速时程假定,式(4)两边同时乘 VT(X,Y,Z。f_Jf△£),并求数学期望有: B(jz、t)=一∑%R[(歹一是)at-I (歹一1,2,…,户)(5) 式中,R为pM×pM阶自相关Toeplitz矩阵。 则AR模型的正则方程为: 脚=[尝]㈤ 其中lf,=[咖,亿,…,以]T 式中,lf,为pM×M阶矩阵,咿为M×M阶方阵; RN为M×M阶方阵;q为(p一1)M×M阶矩 阵;其元素全部为0。 AR模型阶数根据最小AIC准则确定M。 AIC函数为: AIC(p)一N19Z+2(p+1)(7) 其中Z=2R(o)一R(N) 式中,N为样本容量。从一阶模型开始求AIC(p) 的函数值,直至找到使其最小的户为止,一般取 4"-5阶即可满足要求。 3算例 3.1风速时程模型 500kV栖霞一文登(昆嵛)送电工程直线塔 为5D—SZl双回路直线塔,塔高66.4m,档距500 m,建立三塔四线模型见图1。基于Matlab软件 编制脉动风速时程模拟程序,各参数分别为:①基 本参数。根据文献E7-1求得标准高度(10m)处平 均风速为口l。=29.665m/s,地面粗糙度系数k; 0.005;②时间和频率参数。时间步长0.1s, 时程总长t=300s,初始频率0.01Hz,截止频率 图1输电塔线模型 Fig.1Transmissiontowerlinemode 10Hz;③模型参数。节点设置总数为78个,计算 模型阶数p一4,表1为模型部分节点坐标值。 表1提取风速点坐标 Tab.1Coordinateofextractedpointsm 3.2风速时程分析 (1)点l的脉动风速时程曲线见图2、风速模 拟谱与目标谱拟合曲线见图3。由图可看出,采 用AR法编制程序模拟的脉动风速谱与采用 Kaimal谱计算获得的目标谱拟合效果好。 f,s 图2点1脉动风速时程曲线 Fig.2Timehistorycurveoffluctuating windspeedofpoint1 图3点1风速模拟谱与目标谱拟合曲线 Fig.3Fittedcurveofsimulatedspectrum andtargetspectrumofpoint1 (2)点l、6、14脉动风速时程曲线比较。为便 于比较,将点6、14的脉动风速值分别加20、40 m/s,比较结果见图4。由图可看出:①不同高度 处脉动风速变化趋势相同,但各时刻的速度不同, 表明脉动风速具有随机性;②随高度增大,平均风 速变大,但脉动风的波动区间变小。表明输电塔线 图4点1、6、14脉动风速时程曲线 Fig.4Timehistorycurveoffluctuating windspeedofpoint 1-6,14万方数据

板式塔流体力学特性的测定

化工基础实验报告 实验名称板式塔流体力学特性的测定 班级姓名学号成绩 实验时间同组成员 一、实验目的 1、观察塔板上气液两相流动状况,测量气体通过塔板的压力降与空塔气速的关系;测定雾沫夹带量、漏液量与气速的关系; 2、研究板式塔负荷性能图的影响因素,作出筛孔塔板或斜孔塔板的负荷性能图;比较筛孔塔板与斜孔塔板的性能; 二、实验原理 板式塔流体力学特性测定 塔靠自下而上的气体和自上而下的液体逆流流动时相互接触达到传质目的,因此,塔板传质性能的好坏很大程度上取决于塔板上的流体力学状态。当液体流量一定,气体空塔速度从小到大变动时,可以观察到几种正常的操作状态:鼓泡态、泡沫态和喷射态。当塔板在很低的气速下操作时,会出现漏液现象;在很高的气速下操作,又会产生过量液沫夹带;在气速和液相负荷均过大时还会产生液泛等几种不正常的操作状态。塔板的气液正常操作区通常以塔板的负荷性能图表示。负荷性能图以气体体积流量(m 3/s )为纵坐标,液体体积流量(m 3/s )为横坐标标绘而成,它由漏液线、液沫夹带线、液相负荷下限线、液相负荷上限线和液泛线五条线组成。当塔板的类型、结构尺寸以及待分离的物系确定后,负荷性能图可通过实验确定。 传质效率高、处理量大、压力降低、操作弹性大以及结构简单、加工维修方便是评价塔板性能的主要指标。为了适应不同的要求,开发了多种新型塔板。本实验装置安装的塔板可以更换,有筛板、浮阀、斜孔塔板可供实验时选用,也可将自行构思设计的塔板安装在塔上进行研究。 筛板的流体力学模型如下: 1) 压降 l c p p p ?+?=? 式中,Δp —塔板总压降,Δp c —干板压降,Δp l —板上液层高度压降, 其中 2 0)( 051.0c u g p v c ρ=? 式中ρv —气相密度,kg/m 3;g —重力加速度,m/s 2,u 0—筛孔气速,m/s ,c 0—筛孔流量系数, 筛板上因液层高度产生的压降Δp l 即液层有效阻力h l : l l l gh p ρ=? 式中ρl —液相密度,kg/m 3,g —重力加速度,m/s 2,h l —液层有效阻力,m 液柱。 2) 漏液

输电线路覆冰

浅谈输电线路覆冰故障处理技术 左亚鹏、柴冰、史宏伟 摘要:在运行输电线路中,导线覆冰现象较为普遍,特别是近几年来天气气候的变化,导线覆冰的几率日趋增大。输电线路覆冰引起的故障严重地影响了电力系统的安全正常运行,给社会经济带来巨大的损失。浅谈影响覆冰的因素、形成、类型,借鉴现有的有效方法和技术,对周口地区的输电线路覆冰故障建议防范与处理的措施。 自2005年1月以来周口地区多次遭受了50年一遇的冰雪凝冻灾害,电网因冰灾损害严重。特别是220kV川水线、薛淮线和川淮线在冰灾中多处受损,共造成导线和架空避雷线30余出损伤,187处杆塔绝缘子、金具、横担损坏等严重现象。灾情过后,也向电力企业敲响了警钟;对于天气寒冷而又多雨的中原地区来说,输电线路导线覆冰严重影响着输电线路的安全运行,覆冰也给安全生产方面带来了严重危害,并加大了输电线路运行维护的工作量,增加了企业成本;同时也反映出输电线路抗自然灾害的能力比较薄弱。因此有效地避免和防止冰灾对输电线路造成的危害,是电力企业必须面对的新的课题。只有多措并举,才能积极有效地防治输电线路导线覆冰带来的危害。 1 输电线路覆冰的危害 一般来讲,覆冰对电网输电线路的破坏有三种。第一种是少量的覆冰,它在导线上这种圆截面的覆冰不是均匀地包在上面,它可能形成一个椭圆或者形成其他形状,在大气当中构成了一个迎风面,当风的角度和冰的迎风面角度合适的时候导线就会舞动。第二种情况就是闪络,结构也不破坏,但是它的绝缘失去了,一闪络,电就送不出去了。第三种也是最普遍的,由于垂直负载过重,把结构整个压垮。 2 影响输电线路覆冰的因素 2.1 影响导线覆冰的气象条件 影响输电线路导线覆冰的气象因素主要有空气温度、风速风向、空气中或云中过冷却水滴直径、空气中液态水含量。这四种因素的不同组合确定了导线导线覆冰类型。多发生在每年1、2月份,尤其在冬季和初春季节,当气温下降至-5℃~0℃,风速在3~15m/s时,如遇大雾、毛毛雨或小雨加雪,首先将在导线上形成雨凇;如此时气温升高,天气转晴,导线上的雨凇便开始融化;如天气继续转晴,则覆冰过程终止;如天气骤然变冷或气温继续下降,冻雨和湿雪则在粘结强度很高的雨凇冰面上迅速增长,形成密度大于0.6g/cm3的较厚的冰层;如气温继续下降至-15℃~-8℃,原有冰层外侧积覆雾凇。这种过程将导致导线表面形成雨凇——混合凇——雾凇的复合冰层。如在这种过程中天气变化出现多次晴转冷的天气,融化再结冰增加了覆冰的密度,如此往复发展将形成雨凇和雾凇交替重叠的混合冻结物,即混合凇。 一般来说,最易覆冰的温度为-8℃~0℃。若气温在-20℃~-15℃或更低时,水滴将变成冰雹或雪花而不易于形成覆冰。当有了足够的温度后,覆冰的形成还必须有较高的空气湿度,一般空气湿

220KV输电线路组塔施工方案实用版

YF-ED-J3532 可按资料类型定义编号220KV输电线路组塔施工 方案实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

220KV输电线路组塔施工方案实 用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 组立抱杆 1.1组立抱杆操作步骤是: (1)按抱杆各段的配置情况在地面组装 好。15m长的抱杆采取倒落人字钢抱杆组立的方 法,人字铝抱杆头抱带上抱杆帽,用3t卸扣分 别与牵引绳及吊点绳滑车连接,现场布置见图 1.1a。23m长的抱杆采取在基础中心立1根约 5m高的钢抱杆(即组塔抱杆的两段),再利用 钢抱杆吊立组塔抱杆的方法,但注意起吊滑车 挂在抱杆拉线的上方,当起立组塔抱杆至起吊

滑车不受力时,拆除起吊滑车,现场布置见图1.1b,工器具可在组塔工器具中选用。 (2)抱杆组立好后,绑扎好各部位的晃绳及牵引绳。布置抱杆顶部的四条拉线,拉线落地端锚于在预先挖埋好的地锚上,拉线对地夹角小于60°。拉线本身要缠绕在拉线控制器(φ100×250mm钢管)上不少于5圈。调好后拉线在本体上打一背扣,用三个元宝螺栓卡在本线上收紧拉线受力后,即解除吊点,松出牵引绳及晃(3)抱杆底座用四根钢丝绳(托绳)分别与四个基墩或塔腿连接(绑扎处须垫有麻袋等保护物),再收紧钢丝绳后,把抱杆底部固定在塔中心位置。解除吊点,松出牵引绳及晃绳。 (4)根据地形在横线路或顺线路方向布置

输电线路覆冰灾害的防护

输电线路覆冰灾害的防 护 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

输电线路覆冰灾害的防护摘要:自2008年1月12日开始,贵州全省各地区遭受了五十年一遇的冰冻灾害,给输电线路带来了巨大损害,文章通过介绍覆冰形成、线路冰害的类型,着重分析绝缘子覆冰特性及对运行中的线路提出预防措施。 关键词:覆冰;冰害;冰害防护 在我国,导线覆冰主要发生在西南、西北及华中地区。贵州省按地区冬季平均气温计算,大都在0℃以上,受北方南下冷空气及西南暖湿气流共同影响下,自2008年1月12日开始,全省各地区持续低温多雨、雨夹雪天气,遭遇了50多年来最为严重的一次大范围、长时间的冰冻灾害。贵州电网被分割瓦解成7块,贵州电网累计受到冰害破坏的电力线路达5029条,占贵州全省线路总数的77%;全省50多个市县被迫停电;停运的变电站649所,占贵州全部变电站的69%;倒杆线路有416条。由此可见,由覆冰、舞动引起的输电线路倒杆(塔)、断线及跳闸事故,严重威胁到电网的安全稳定运行及供电可靠性。 1覆冰形成原因和过程 导线覆冰首先是由气象条件决定的,是受温度、湿度、冷暖空气对流、环流以及风等因素决定的综合物理现象。云中或雾中的水滴在0℃或更低时与输电线路导线表面碰撞并冻结时,覆冰现象就产生了。贵州省地处云贵高原,海拔在1500m以上,境内沟壑纵横,地势高低不平,空气潮湿,受西伯利亚寒流和太平洋暖湿气流的共同影响,2008年初贵州

大面积的遭受了覆冰危害。导线表面发生覆冰现象必须满足以下几个条件:大气中必须有足够的过冷却水滴,过冷却水滴与导线接触,过冷却水滴立即冻结在导线表面。 覆冰按形成条件及性质可分为A、B、C、D、E五种类型。 A型称雨凇覆冰,是在冻雨期发生于低海拔地区的覆冰,持续时间一般较短,环境温度接近冰点,风相当大,积冰透明,在导线上的粘合力很强,冰的密度很高,雨凇覆冰是混合凇覆冰的初级阶段,由于冻雨持续期一般较短,因此,导线覆冰为纯粹的雨凇覆冰的情况相对较少。 B型称混合凇,当温度在冰点以下,风比较猛时,则形成混合凇。在混合凇覆冰条件下,水滴冻结比较弱,积冰有时透明,有时不透明,冰在导线上粘合力很强。导线长期暴露于湿气中,便形成混合凇。混合凇是一个复合覆冰过程,密度较高,生长速度快,对导线危害特别严重。 C型称软雾凇,是由于山区低层云中含有的过冷水滴,在极低温度与风速较小情况下形成的。这种积冰呈白色、不透明、晶状结构、密度小,在导线上附着力相当弱。最初的结冰是单向的,由于导线机械失衡,逐渐围绕导线均匀分布,在此情况下,这种冰对导线一般不构成威胁。 D型和E型分别为白霜、雪,白霜是空气中湿气与0℃以下的物体接触时,湿气往冷物体表面凝合形成的,白霜在导线上的粘结力十分微弱,即使是轻轻地振动,也可以使白霜脱离所粘结导线的表面,与其他类型覆冰相比,白霜基本不对导线构成严重危害。

08填料塔流体力学特性曲线测定

实验八填料塔流体力学特性曲线测定 一、实验目的 1.了解填料吸收塔的结构和吸收操作流程; 2. 测定不同喷林密度下气体流速和压强降的关系曲线; 3. 测定不同不同喷林密度下的载点和泛点气速; 4. 观察持液和液泛现象。 二、实验装置 图1所示装置用于测定填料塔流体力学特性时,关停CO2管路即可。填料塔是一内径为90mm的塔体,塔内装填填料采用φ8×6mm瓷拉西环,水由水泵输送,流经转子流量计至塔顶,从塔顶喷林而下,最后从塔底流回水槽。空气由风机吸入,风机为旋涡风机,输入功率为250W,转速为2800/min,风压为10.5KPa,风量为26m3/h。通过转子流量计后到进口管,最后在塔顶排空。 空气和水的流量均由转子流量计测量,通过床层的压强降由差压计测定。 图1填料塔流体力学特性曲线测定工艺流程图

填料塔流体力学特性包括压强降和液泛规律。计算填料塔需用动力时,必须知道压强降的大小。而确定吸收塔的气、液负载量时,则必须了解液泛的规律,所以测量流体力学性能是吸收实验的一项内容。 实验可用空气与水进行。在各种喷淋量下,逐步增大气速,记录必要的数据直至刚出现液泛时止。测量结果经整理后标绘在双对数坐标纸上。 气体通过填料层时压降ΔP与气速u及填料特性(形状,尺寸)有关:ΔP∝u1.5~2.0(u空塔气速)。 气液两相逆流通过填料层时,气体的压降ΔP除与气速u和填料特性有关外,还取决于喷淋密度等因素。 在一定喷淋密度下,当气速较小时ΔP∝u1.5~2.0但比无喷淋时的ΔP值高。当气速增加到一定值时。气液间的摩擦力开始牵制液体向下流动。液膜增厚,气流通道变小。阻力增加较快,此时㏒ΔP~㏒u关系曲线上出现一个拐点,称为泛点。当喷淋密度增加时,压力降增加,载点与泛点的气速下降。一般填料塔的设计均应在泛点以下操作。(对于一般乱堆填料当每米高的填料层压降值为200~250mmH2o左右时即产生液泛)。如果要求压降很稳定。则宜在载点以下,但因为很多场合下没有明显载点,难以准确确定之。而泛点以后则已有较准确的关联式。因此塔的设计中一般均先计算泛点速度WF然后乘以负荷因子(一般为0.6~0.8)作为实际气速。泛点气速关联式: ㏒ 式中:W F—泛点空速气速,m/s; g —重力加速度,9.81m/s2; a/ε3—干填料因子,m-1; r G,r L —气相,液相密度,kg/m3; u L—液相粘度,CP。

相关文档
最新文档