滤波器的设计

滤波器的设计
滤波器的设计

现代电路理论

滤波器的设计

姓名:高振新

指导老师:孙建红

滤波器的设计

一.滤波器简介

1. 对输入信号中不同频率分量,实施不同的处理(增益、相移),就叫滤波器。

2. 高通、低通、带通、带阻、陷波器等,不同频率增益不同,相移不同。

3. 全通滤波器,对不同频率增益相同,但是相移不同。

二.低通滤波器

现代滤波器设计,多是采用滤波器变换的方法加以实现。主要是通过对低通原型滤波器进行频率变换与阻抗变换,来得到新的目标滤波器。理想的低通滤波器应该能使所有低于截止频率的信号无损通过,而所有高于截止频率的信号都应该被无限的衰减,从而在幅频特性曲线上呈现矩形,故而也称为矩形滤波器。遗憾的是,如此理想的特性是无法实现的,所有的设计只不过是力图逼近矩形滤波器的特性而已。根据所选的逼近函数的不同,可以得到不同的响应。

滤波器的通用表达公式为:

其中分母中的n为阶数,

三.低通滤波器的设计

设计之前需要确定什么?

a.高通还是低通?

b.阶数

c.截止频率fc,-3dB带宽

d.Q值

e.每级的a ,b

f.同相还是反相,是否需要增益?

一阶低通滤波器:

反相结构

下面用Multisim设计一个一阶滤波器

设计参数,a=1,fc=1/2piR6C2=1590Hz

根据上面反相结构的求解过程,设计出此滤波器,并用仿真,其仿真电路和波形如下:

仿真电路

一阶低通仿真波形

二阶低通滤波器

Sallen-Key结构

二阶sk低通滤波器有俩个重要的功能,一是改变RC的数值可以调节滤波的截止频率:二是改变Ra和Rb的比值可调整电路的增益大小。

结构如下:

C

1

C

2

1) 有4个独立的阻容器件。

2)低频段增益为1

3)可以实现任意Q值。

4)对电容选择没有必要性要求,容易选择

设计一个二阶贝塞尔Q=,截止频率为1000Hz的低通滤波器,低频增益=1. 解:可知,频率为1000时,增益为,特征频率处,增益为.

设计如下:

确定电路结构为单位增益sallen-key,fc=1000.

经查表获得Q=时,a=,b=;

C2=10/1000uF=10nF,电容系数为^2=;取C1

计算得R1=,R2=,取E96系列,。

仿真电路如下:

用波特测试仪测得幅值和相位波形如下:

MFB二阶滤低通波器

MFB二阶低通设计要点:

已知fc,Q,A0,设计满足要求的滤波器。

1.根据Q,查表确定a,b

2.选取C2=10/fc(uF)附近的E6系列电容。

3.选取附近的E6系列电容。

?下面设计一个二阶MFB低通

仿真电路和波形如下:

3.4 高阶低通滤波器设计

1.实现高阶滤波的基本方法;

一阶滤波器和二阶滤波器是组成高阶滤波器的基本单元。

其公式如下:

2. 5阶贝塞尔滤波器设计,要求A0=10,fc=500Hz贝塞尔滤波器

1)首先确定电路结果为如下结构:

2)查表确定各级系数

3)第一级10倍增益a=

4)第二级1倍增益

5)第三极1倍增益

6)全部电路和仿真波形:

四.结论

通过各阶滤波器的比较,阶数越高,滤波器的效果越接近于窗口滤波器,但是结构响应更加复杂。

一阶低通滤波电路由简单RC网络和运放构成,该电路具有滤波功能还有放大作用,带负载能力较强,但一阶有源低通滤波电路简单,幅频特性衰减斜率只有-20dB/十倍频程,因此,在fo处附近选择性差,希望衰减斜率越陡越好,只有增加滤波器的阶数来实现。阶数越高,幅频特性曲线越接近理想滤波器。

不同阶数滤波器的效果如下所示:

经典滤波器与现代滤波器

经典滤波器与现代滤波器 经典滤波器就是我们熟知的FIR和IIR,经典滤波器要求对输入信号的频率范围已知,从功能上可划分为: ?低通滤波器(LPF) ?高通滤波器(HPF)

带通滤波器(BPF)

?带阻滤波器(BSF) ?陷波滤波器(Notch Filter)

上面的图示是滤波器的增益曲线(Gain Curve). 现代滤波器适用于输入信号中含有混叠干扰频率,常见的包括: ?维纳滤波器 ?卡尔曼滤波器 ?自适应滤波器 ?…… 对于现代滤波器,有时间要一个个进行研究。 滤波器的技术指标通常是以频率响应的幅值特性(或者说上面提到的增益曲线)来表征,IIR很难实现线性相位,因此一般不考虑相位特性,若要求相位特性,则可使用FIR设计。 滤波器设计指标定义图

在以上的指标中,往往使用衰减指标,滤波器衰减是指信号经过滤波器后信号强度的减少,专指信号功率幅度损失,等于20*log(输出功率/输入功率,单位为分贝(dB). ?通带衰减 由图可知,越小滤波器性能越好,即越小越好。 ?阻带衰减 由图可知,越小滤波器性能越好,即越大越好。

若在处幅值H=0.707时,=3dB,则称为3dB截止频率。我们常说的带宽就是指3dB点间的频率宽度。 滤波器设计中的其它概念: ?中心频率(Center Frequency) 滤波器中心频率是指一个滤波器高低3dB频率间的中心频率,该中心频率可以是高低3dB频率的几何平均数或算术平均数。 算术平均数 几何平均数 ?品质因数(Qaulity Factor) 品质因数通常是用来衡量电感或电容品质的参数,等于相应的电抗与电阻之比。在带通滤波器中,负载Q(Loaded Q)等于该带通滤波器的中心频率与3dB带宽之比。 滤波器衰减纹波示意图

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

滤波器的设计与实现

滤波器的设计与实现 一、设计简介 自已设计电路系统,构成低通滤波器、高通滤波器和带通滤波器。利用Matlab或PSPICE或PROTEL或其他软件仿真。 二、设计要求 完成电路设计;学习用计算机画电路图;学会利用Matlab或PSPICE或其他软件仿真。 三、设计路线 滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率次(通常是某个频率范围)的信号通过,而其他频率的信号幅值均要受到衰减或抑制。这些网络可以由RLC元件或RC元件构成的无缘滤波器,也可以由RC元件和有源器件构成的有源滤波器。 根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF),高通滤波器(HPF),带通滤波器(BPF),和带阻滤波器(BEF)四种。从实现方法上可分为FIR,IIR滤波器。从设计方法上可分为切比雪夫滤波器,巴特沃思滤波器。从处理信号方面可分为经典滤波器和现代滤波器。 在这里介绍两种具体的滤波器设计方法: (1)切比雪夫滤波器:是在通带或阻带上频率响应幅度等波纹

波动的滤波器。在通带波动的为“I型切比雪夫滤波器”,在阻带波动的为“II型切比雪夫滤波器”。切比雪夫滤波器在过渡带比巴特沃斯滤波器的衰减快,但频率响应的幅频特性不如后者平坦。切比雪夫滤波器和理想滤波器的频率响应曲线之间的误差最小,但是在通频带内存在幅度波动。这种滤波器来自切比雪夫多项式,因此得名,用以记念俄罗斯数学家巴夫尼提·列波维其·切比雪夫(Пафнутий Львович Чебышёв)。 (2)巴特沃斯滤波器的特点是通频带的频率响应曲线最平滑。这种滤波器最先由英国工程师斯替芬·巴特沃斯(Stephen Butterworth)在1930年发表在英国《无线电工程》期刊的一篇论文中提出的。 巴特沃斯滤波器的特性 巴特沃斯滤波器的特点是通频带内的频率响应曲线最大限度平坦,没有起伏,而在阻频带则逐渐下降为零。在振幅的对数对角频率的波得图上,从某一边界角频率开始,振幅随着角频率的增加而逐步减少,趋向负无穷大。 无源滤波器与有源滤波器的比较 无源滤波器:这种电路主要有无源元件R、L和C组成有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。

数字梳状滤波器讲解

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

FilterSolutions滤波器设计教程

F i l t e r S o l u t i o n s滤波器 设计教程 The latest revision on November 22, 2020

一、F i l t e r S o l u t i o n s滤波器设计软件中的英文注解 Lowpassnotchfilters:低通陷波滤波器 Order:阶 filtercircuits:滤波电路frequencyresponse:幅频响应Passband:通频带、传输带宽repeatedlycycle:重复周期maximumsignaltonoiseratio:最大信噪比 gainconstants:增益系数,放大常数 circuittopologies:电路拓扑结构gainshortfall:增益不足maximumoutput:最大输出功率laststage:末级precedingstage:前级 stagefilter:分级过滤器GainStage:增益级voltageamplitude:电压振幅Componentvalues:元件值maximumvalued:最大值minimumvalued:最小值standardvalue:标准值 resistors:电阻器 capacitors:电容器operationalamplifiers:运算放大器(OA) circuitboard:(实验用)电路板activefilters:有源滤波器supplycurrents:源电流powersupplies:电源bypassingcapacitors:旁路电容optimal:最佳的;最理想的GainBandwidth:带宽增益passivecomponent:无源元件activecomponent:有源元件overallspread:全局;总范围Componentcharacteristics:组件特性 Modification:修改;更改databook:数据手册 typicalvalues:标准值;典型值defaultvalues:省略补充programexecution:程序执行Resetbutton:复原按钮positivetemperaturecoefficient:正温度系数 variableresistors:可变电阻器cermetresistor:金属陶瓷电阻器outputresistance:输出电阻distortion:失真 singleamplifier:单级放大器voltagefollower:电压输出跟随器troubleshooting:发现并修理故障controlpanel,:控制面板 二、FilterSolutions滤波器设计的基本步骤 1、打开crack的软件后,根据滤波器的设计要求,在filtertype中选择滤波器的类型(Gaussian:高斯滤波器、Bessel:贝塞尔滤波器、butterworth:巴特沃斯;Chebyshev1切比雪夫1;Chebyshev2切比雪夫2;Hourglass:对三角滤波器、Elliptic:椭圆滤波器、Custom:自定义滤波器、RaisedCos:升余弦滤波器、Matche:匹配滤波器、Delay:延迟滤波器); 2、在filterclass中选择滤波器的种类(低通、高通、带通、带阻); 3、在filterAttributes中设置滤波器的阶数(Order)、通频带频率(Passband frequency); 4、在Implementation中选择有源滤波器(active)、无源滤波器(passive)和数字滤波器(Digital);

FIR滤波器设计

数字信号与处理FIR滤波器设计 院系:机电工程学院 专业(班级):电子信息工程2班 姓名: 学号: 2010408 指导教师: 职称:副教授、助教 完成日期:2013 年11 月18 日

目录 1 引言 (1) 2 滤波器的简介 (2) 2.1 数字滤波器的发展 (2) 2.2数字滤波器的实现方法 (2) 2.3数字滤波器的分类 (2) 3.1 设计方法 (4) 3.2有限冲击响应滤波原理 (4) 3.3 FIR滤波器的结构图 (5) 3.3 FIR数字滤波器阶数计算 (5) 3.3 在matlab中算出滤波系数 (6) 3.4 FIR数字滤波器设计方法 (6) 3.5 程序功能顺序图 (8) 4 调试的步骤及调试过程中出现的问题以及解决方法 (10) 4.1 调试步骤 (10) 4.2调试结果 (13) 4.3调试问题解决 (14) 5 结论 (16) 6 设计心得体会 (17) 附录A 程序 (19)

FIR滤波器设计 1 引言 数字滤波器是数字信号处理中最重要的组成部分之一,数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置,可作为应用系统对信号的前期处理。用DSP芯片实现的数字滤波器具有稳定性好、精确度高、灵活性强及不受外界影响等特性。因此基于DSP实现的数字滤波器广泛应用于语音图像处理、数字通信、频谱分析、模式识别、自动控制等领域,具有广阔的发展空间。 随着计算机和信息技术的飞速发展,数字信号处理已经成为高速实时处理的一项关键技术,广泛应用在语音识别、智能检测、工业控制等各个领域。数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。 DSP数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。传感器数字信号处理是利用传感器对模拟信号或数字信号进行采集并把其转换成计算机可识别的电信号,并利用计算机对信号进行处理以达到计算机辅助控制或是计算机自动控制的目的。 DSP 芯片是一种特别适合数字信号处理运算的微处理器,主要用来实时、快速地实现各种数字信号处理算法。用DSP 芯片实现FIR数字滤波器,不仅具有精确度高、不受环境影响等优点,而且因DSP 芯片的可编程性,可方便地修改滤波器参数,从而改变滤波器的特性,设计十分灵活。

滤波器设计

实验四十二 电力电子电路滤波器设计 (信号与系统—电力电子学综合实验) 一、实验原理 1. 滤波器及种类 滤波器是由集中参数或分布参数的电阻、电感和电容构成的网络,把叠加在有用信号上的噪声分离出来。采用滤波的方法,就是不阻止具有有用频率的工作信号通过,而衰减非工作信号的干扰的频率成分。从信号频谱分析的原理上说,滤波器就是压缩或降低干扰信号的频谱(通常远高于信号频谱),使传导出去的干扰值不超过规范要求的限值。滤波技术是抑制电气、电子设备传导电磁干扰的重要措施之一。 用无损耗的电抗元件构成的滤波器能阻止噪声通过,并把它反射回信号线;用有损耗元件构成的滤波器能将不期望的频率成分吸收掉。在抗干扰和滤除高频信号的情况下常用低通滤波器。 滤波器对抑制感性负载瞬变噪声有很好的效果;电源输入端接入一定结构形式的滤波器后能降低来自电网的干扰和谐波,或抑制来自电力电子装置的干扰和谐波对电网的侵害。 设计滤波器时,必须注意电容、电感等元器件的寄生特性(如电感的寄生电容和电容的寄生电感等),以避免滤波特性偏离预期值。在滤波电路中,通常还采用很多专用的滤波元件,如穿心电容、铁氧体磁环等(特别适合于高频滤波场合),它们能改善滤波器的高频特性。适当地设计或选择滤波器,并正确安装和使用滤波器,是电力电子技术和抗干扰技术的重要组成部分。 滤波器分有源和无源两种。本实验主要研究无源滤波器的设计和应用。 滤波器按类型一般分为低通滤波器、高通滤波器、带通滤波器、带阻滤波器、吸收滤波器、有源滤波器和专用通滤波器。滤波器按电路一般分为单容型(C型)、单电感型(L 型)、Γ型、反Γ型、T型和 p 型。不同结构的电路合适于不同的源阻抗和负载阻抗。 选择滤波器的原则,一般根据干扰源的特性、频率范围、电压和阻抗等参数及负载特性的要求综合考虑: (1). 要求电磁干扰滤波器在相应工作频段范围内,能满足负载要求的衰减特性,若一种滤波器衰减量不能满足要求时,则可采用多级联,可以获得比单级更高的衰减,不同的滤波器级联,可以获得在宽频带内良好衰减特性。 (2).要满足负载电路工作频率和需抑制频率的要求,如果要抑制的频率和有用信号频率非常接近时,则需要频率特性非常陡峭的滤波器,才能满足把抑制的干扰频率滤掉,只允许通过有用频率信号的要求。

《现代微波滤波器的结构与设计》读书笔记

第一章微波滤波器的地位、发展和选用 1.1概述 本章的目的是: (1)对微波滤波器提供一个纲要性的介绍,以便从品种繁多、性能各异的微波滤波器选用所需的结构和设计方法。 (2)简要地讨论微波滤波器的在微波工程中的地位、发展和应用,以使读者明确,本书的对象不仅是微波滤波器的研制人员,而且可能为更广大的读者服务,例如需要宽频带天线馈电设备的天线研制人员;需要宽频带阻抗匹配装置的微波电子器件的研制人员;需要微波时延网络的总体工程技术人员,以及其他特殊微波电路设计的广大工程技术人员等等。 1.2微波滤波器的进展 这里只对近年来的主要进展和发展趋势作一简单的概括。 (1)从个别应用到一般应用 随着微波理论和技术的发展,微波波段中电子设备的增多、频谱的拥挤,加之电子对抗技术的普遍应用,促使微波滤波器在应用的广度和深度上都进展极大。 (2)设计方法从繁到简、从粗糙到精确 (3)形式多样和元件化、标准化 由于应用广泛和设计制造工艺的进展,微波滤波器已从极少的几个品种发展到数以十记的结构类型。一些常用的结构已元件化和标准化。印刷电路式或微波集成电路式的微波滤波器亦开始广泛研制。 (4)与其他有源或无源的微博元件和器件的结合日益密切 现在,微波滤波器已成为无源微波元件的主角之一,它不仅能完成本身的任务,而且还代替其他一些微波元件的功能,或者把另外一些微波元件看成微波滤波器结构来设计。 半导体器件工艺飞跃进步及其向更高频的发展,已使得微波滤波器技术也用于各种半导体器件中,例如倍频器、变频器、放大器以及二极管相移器、开关和调制器等等,在微波集成电路中它们结合成一个整体。 (5)各种新型材料用于微波滤波器 微波材料的进步及其在微波滤波器中的应用,大大地提高了滤波器的性能。例如微波铁氧体、铁电体、等离子体、超导体都已开始成功地用于微波滤波器中。 (6)调谐的高速和自动化 众所周知,当初微波单腔谐振器的调谐已相当困难,更不用说多个谐振器组合成的滤波器了。但现在已可对微波滤波器进行快速电调,例如钇铁石榴石磁调滤波器和变容管电调滤波器就是最好的范例。 (7)向新波段进军 人们对毫米波和亚毫米波滤波器的兴趣正在日益增长,研制这一新波段的滤波器除发展厘米波波段已有的技术外,还广泛引用光学上的成果。可以预料,随着新型功率源和传输线的研制,这些新波段滤波器的研制工作将更加活跃。 1.3微波滤波器的流程图

滤波器设计步骤

滤波器设计步骤: 1、确定滤波器阶数n; 2、电路实现形式选择,传递函数的确定; 3、电路中元器件的选择,包括运算放大器的选择、阻容值设置等,最后形成电路原理图; 4、仿真结果(幅频特性图)及优化设计; 5、调试注意事项,确定影响滤波器参数实现的关键元件。 每一种电路按照以上步骤完成设计,本周内完成!

1、有源低通滤波器f c =50kHz 一、最低阶数的选取 主要功能参数为: 1) 带内不平坦度α1=0.5dB 2) 阻带衰减α2≥40dB ,这里取45dB 3) 增益G=10 4) 通带范围50kHz 使用滤波器设计软件,计算得出:若选取巴特沃斯滤波器,最低阶数为n=9;若选取切比雪夫滤波器,得到同样满足要求的切比雪夫滤波器的最低阶数为n=6。由于高阶滤波器电路复杂,造价较高,所以在同样满足技术指标的情况下,选取滤波器的最低阶数,即n=6。 二、电路实现形式选择及传递函数的确定 实现切比雪夫低通滤波器的电路有许多种,这里选择无限增益多端反馈电路(MFB ),见图1。MFB 滤波器是一种常用的反相增益滤波器,它具有稳定好和输出阻抗低等优点。 图1 二阶MFB 低通滤波电路 图2滤波器的级联 如图2所示,电路由三个二阶MFB 低通滤波电路串联实现,在图1所示电路中,当f=0时,C 1和C 2均开路,所以M 点的电压为 1 21R R U U M -= M 点的电流方程 C I I I I ++=321 M I 2 I 3 I 1 I C V 2 V 1 N 4

2 3 22111sC U R U R U U R U U M M M M ++-=- (式1) 其中 M U R sC U 3 121-= (式2) 解式1和式2组成的联立方程,得到每个二阶MFB 低通滤波器的传递函数为 3 2212 321 3211 21 2 1111R R C C s R R R R R sC R R U U +???? ??+++- = 最后得出六阶切比雪夫低通滤波器的传递函数为 ? +???? ??+++- ? +???? ??+++-=6 5432 654 6534 5322123213211 21 4 11111111R R C C s R R R R R sC R R R R C C s R R R R R sC R R U U 9 8652 987 9857 8 1111R R C C s R R R R R sC R R +???? ??+++- 三、电路中元器件的选择 使用滤波器设计软件,计算得出每节电路的阻值容值,如图2所示。 图2 六阶切比雪夫低通滤波器 器件的选择: 选择运放时,应适应满足特定增益的要求和频率范围的运放。并且,为了达到最佳运用,还要考虑运放的上升速率。

梳状滤波器工作原理

梳状滤波器工作原理 梳状滤波器对于画面质量是非常重要的一个技术。一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite VideoSignal,即混合视频信号(也称复合信号)。因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器。 图2-6-1 梳状滤波器框图 梳状滤波器主要由延迟线和相加电路、相减电路构成的,用以分离FU 和±FV。一个实际的梳状滤波器电路如图2-6-1所示。其中V1为延时激励放大器,DL为延迟线,T1为裂相变压器、L1为调谐电感,C2为耦合电容。 色度信号F经电容C1耦合加于V1基极,经放大后由集极输出,再经延迟线由A点加至裂相变压器T1上端,取自Rw的直通信号经C2耦合加至T1中点,这样可在输出端分别得到相加和相减输出。将直通信号和延迟信号分别以un和un-1表示,其输出电压的合成原理图如图4-32等效电路所示。调节Rw可保证两信号幅度严格相等,输出分离更彻底。 延迟线DL多为超声延迟线,它由输入、输出压电换能器和延迟介质组成。压电换能器由多晶压电陶瓷薄片制成,当信号加到输入压电换能器两端面的电极上时,输入信号在延迟介质中激起机械振动,形成超声波。延

迟介质多为熔融石英或玻璃,超声波在玻璃中传播速度较低,再将其制作 成如图4-33形式,经多次反射超声波方到达输出换能器还原为电信号,这 样使可大大地缩小延迟线体积。为使超声波按规定的路径传播,减少不规 则反射引起的干扰杂波,在延迟线表面涂有若干吸声点,吸声点所涂吸声 材料为橡胶、环氧树脂和钨粉配制而成。最后用塑料外壳封装,以减小外 界的影响。 2.6.2 PAL 解码器的梳状滤波器 PAL 的特殊电路是梳状滤波器.为使它 能够有效的分离两个色度分量,延时线的 延时时间要有准确的数值. 延时线延迟时 间τd 应选择得既非常接近行周期(64μ s),以便相加、减时是相邻行相应像素间 的加或减;而又必须为副载波半周期的整 数倍,以保证延时前、后色度信号副载波相位相同(0°)或相反(180°)。由 fSC=283.75fH+25Hz 的关系,则行周期TH 与副载波TSC 之间的关系为: τd 可选为副载波半周期TSC/2的567倍或568倍。通常为567, τd 略小于行周期,若为568则略大于行周期 梳状滤波器:作用是将色度信号分离出两个色差分量FU 、FV ,组成包 括一行延时线、加法器和减法器。 传统的色度延时电路采用64μs 超声波玻璃延时线,其原理是利用输 入、输出换能器实现电—超声波—电信号间的转换。 在梳状滤波器中,延时线的精确延时时间为63.943μs ,延时后的信号 与直通信号在加法器和减法器中运算,完成色度分量的分离任务。 设输入到梳状滤波器的第n 行色度信号为 F(n)=Usin ωSCt+Vcos ωSCt=FU+FV (2―35) 则第n+1行色度信号必然为

现代通信系统中的微波滤波器研究.

文献综述 题目现代通信系统中 的微波滤波器研究学生姓名周杨 专业班级通信工程 学号541007040154 院(系)计算机与通信工程学院指导教师(职称)李素萍 完成时间2014年4月30日

现代通信系统中的微波滤波器研究 1 前言 随着科技不断进步,无线通信前所未有地融入到生活中,尤其以贴近日常应用的短距离无线数据业务更是迅速发展。例如GPS、WLAN、WiFi、UWB、Bluetooth等短距离无线通信等广泛应用,极大地推动了滤波器技术的快速发展,也对滤波器的性能提出了更高的要求。同时,对应多频通信、宽带通信的多通带和宽带滤波器技术成为近年来的研究热点。 微波滤波器是现代微波中继通信、微波卫星通信、电子对抗等系统中必不可少的组成部分。本文对各类微波滤波器的用途和发展过程作了分析,微波滤波器及多工器在通信系统中占有十分重要的地位,并且也是大量使用的部件。微波滤波技术广泛应用于卫星通信移动通信雷达系统导航系统电子对抗等,可谓无处不在,无时不有。微波滤波技术的发展经历了多半个世纪,它可谓品种繁多,性能各异。按频率响应特性,分低通高通带通带阻;按网络函数可分为最大平坦型、切比雪夫型、线性相位型、椭圆函数型;按加载方式分单终端滤波器形式双终端滤波器形式;按传输能量的形式分电磁波和声波形式;按工作模式分单模双模三模至多模;按频段分集总参数滤波器微波毫米波滤波器光波滤波器。还有按功率按频带划分等等。面对现代通信对滤波器性能要求日趋严格,微波滤波技术的发展朝着小体积(表面安装集成)、重量轻、低损耗、高可靠性、高温补性能、高隔离特殊函数(主要是椭圆函数、线性相位)及大功率综合特性滤波器。 目前,各个国家都在利用新型材料和新技术来提高器件的性能和集成度,但是就滤波器的小型化还存在很多问题。 2 通信系统中的微波滤波器 2.1 研究背景及意义 无线通信是一双无形的大手,它拉近了人与人之间的距离!通信行业一直是最具活力的行业之一。信息传递方式的进步,改变了人们的工作和生活方式,企业的生产方式,极大地促进了经济与社会的发展。 无线通信的产生,与人们对电磁波的认识和运用密不可分。早在1901 年,

滤波器设计—简明教程

引言 滤波器是一种二端口网络。它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦,目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高;所以需用大量的滤波器。再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。更何况,随着集成电路的迅速发展,近几年来,电子电路的构成完全改变了,电子设备日趋小型化。原来为处理模拟信号所不可缺少的LC型滤波器,在低频部分,将逐渐为有源滤波器和陶瓷滤波器所替代。在高频部分也出现了许多新型的滤波器,例如:螺旋振子滤波器、微带滤波器、交指型滤波器等等。虽然它们的设计方法各有自己的特殊之点,但是这些设计方法仍是以低频“综合法滤波器设计”为基础,再从中演变而成,我们要讲的波导滤波器就是一例。 通过这部分内容的学习,希望大家对复变函数在滤波器综合中的应用有所了解。同时也向大家说明:即使初看起来一件简单事情或一个简单的器件,当你深入地去研究它时,就会有许多意想不到的问题出现,解决这些问题并把它用数学形式来表示,这就是我们的任务。谁对事物研究得越深,谁能提出的问题就越多,或者也可以说谁能解决的问题就越多,微波滤波器的实例就能很好的说明这个情况。我们把整个问题不断地“化整为零”,然后逐个地加以解决,最后再把它们合在一起,也就解决了大问题。这讲义还没有对各个问题都进行详细分析,由此可知提出问题的重要性。希望大家都来试试。 第一部分滤波器设计 §1-1滤波器的基本概念 图1 图1的虚线方框里面是一个由电抗元件L和C组成的两端口。它的输入端1-1'与电源相接,其电动势为E g,内阻为R1。二端口网络的输出端2-2'与负载R2相接,当电源的频率为零(直流)或较低时,感抗jωL很小,负载R2两端的电压降E2比较大(当然这也就是说负载R2可以得到比较大的功率)。 但是,当电流的频率很高时,一方面感抗jωL变得很大,另一方面容抗-j/ωC 却很小,电感L上有一个很大的压降,电容C又几乎把R2短路,所以,纵然电源的电动势E g保持不变,负载R两端的压降E2也接近于零。换句话说,R2不能从电源取得多少功率。网络会让低频信号顺利通过,到达R2,但阻拦了高频信号,使R2不受它们的作用,那些被网络A(或其他滤波器)顺利通过的频率构成一个“通带”,而那些受网络A 阻拦的频率构成一个“止带”,通带和止带相接频率称为截止频率。 什么机理使网络A具有阻止高频功率通过的能力呢?网络A是由电抗元件组成的,而电抗元件是不消耗功率的,所以,高频功率并没有被网络A吸收,在图一所示的具体情况中,它有时贮存于电感L的周围,作为磁能;在另一些时间,它又由电感L交

梳状滤波器的设计

NANHUA University 课程设计(论文) 题目梳状滤波器 学院名称电气工程学院 指导教师陈忠泽 班级电子091班 学号 20094470128 学生姓名周后景 2013年 1 月

摘要 现如今随着电子设备工作频率范围的不断扩大,电磁干扰也越来也严重,接收机接收到的信号也越来越复杂。为了得到所需要频率的信号,就需要对接收到的信号进行过滤,从而得到所需频率段的信号,这就是滤波器的工作原理。对于传统的滤波器而言,如果滤波器的输入,输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这样的滤波器定义为数字滤波器。它通过对采样数据信号进行数学运算来达到频域滤波的目的。滤波器在功能上可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每种又有模拟滤波器(AF)和数字滤波器(DF)两种形式。对数字滤波器,从实现方法上,由有限长冲激响应所表示的数字滤波器被称为FIR滤波器,具有无限冲激响应的数字滤波器增称为IIR滤波器。在MATLAB工具箱中提供了几种模拟滤波器的原型产生函数,即Bessel低通模拟滤波器原型,Butterworth滤波器原型,Chebyshev(I型、II型)滤波器原型,椭圆滤波器原型等不同的滤波器原型。本实验需要产生滤除特定频率的梳状滤波器 关键字: MATLAB,,梳状滤波器

引言 随着社会的发展,各种频率的波都在被不断的开发以及利用,这 就导致了不同频率的波相互之间的干扰越来越严重,因此滤波器的市 场是庞大的。所以各种不同功能滤波器的设计就越来越重要,在此要 求上实现了用各种不同方式来实现滤波器的设计。本设计通过MATLAB 软件对IIR 型滤波器进行理论上的实现。 设计要求 设计一个梳状滤波器,其性能指标如下,要求阻带最小衰减为 dB As 40=,N=8..0=ω?8rad π 手工计算 因为梳状滤波器的转移函数公式为H(Z)=b N N eZ Z ----11 ,现已知N=8,As=40dB, 2498.0=ω?rad π, H(jw e )=b jwN jwN e e ---- 11,b=21 +因为As=60Db,故)(jw e H =0.01 H(jw e )=b jwN e e --- 11 = 21 +)sin (cos 1)sin (cos 1wN j wN wN j wN ---- =

f.i.r.滤波器设计报告

一、设计指标: ● 设计一个16阶低通线性相位FIR 滤波器; ● 要求采样频率Fs 为80KHz ; ● 截止频率Fc 为10KHz ; ● 采用函数窗法设计,且窗口类型为Kaiser ,Beta 为0.5; ● 输入序列位宽为10位的有符号数(最高位为符号位); ● 输出序列位宽为10位的有符号数(最高位为符号位)。 二、线性相位fir 滤波器理论: 有限长脉冲响应(FIR )滤波器的系统函数只有零点,除原点外,没有极点,因而FIR 滤波器总是稳定的。如果他的单位脉冲响应是非因果的,总能够方便的通过适当的移位得到因果的单位脉冲响应,所以FIR 滤波器不存在稳定性和是否可实现的问题。它的另一个突出的优点是在满足一定的对称条件时,可以实现严格的线性相位。由于线性相位滤波器不会改变输入信号的形状,而只是在时域上使信号延时,因此线性相位特性在工程实际中具有非常重要的意义,如在数据通信、图像处理等应用领域,往往要求信号在传输和处理过程中不能有明显的相位失真,因而线性相位FIR 滤波器得到了广泛的应用。 长度为M 的因果有限冲激响应滤波器由传输函数H (z )描述: 1 0()()M k k H z h k z --==∑ (1) 它是次数为M-1的z -1的一个多项式。在时域中,上述有限冲激响应滤波器的输入输出关系为: 1 0()()()M k y n h k x n k -==-∑ (2) 其中y (n )和x (n )分别是输出和输入序列。 有限冲激响应滤波器的一种直接型实现,可由式(2)生成,M=5的情况如图2-1(a )所示。其转置,如图2-1(b )所示,是第二个直接型结构。通常一个长度为M 的有限冲激响应滤波器由M 个系数描述,并且需要M 个乘法器和(M-1)个双输入加法器来实现。

滤波器设计流程

滤波器设计流程(TUMIC) 实验要求: 用 =9.6,h=0.5mm的基板设计一个微带耦合线型的带通滤 r 波器,指示如下:中心频率 f=5.5GHz; 实验步骤: 1.计算阶次: 按照教材P109的计算步骤,仍然选用0.1db波纹的切比雪夫低通原型。根据中心频率、相对带宽和要求的阻带衰减条件,我们可得出最后n=4。 2.用TUMIC画出拓扑图: 因为TUMIC里没有对称耦合微带线,所以我们采用不对称耦合微带线 将两个宽度设为相同,即实现对称耦合微带线的作用。如图所示:

在每个耦合微带线的2、4两个端口,我们端接微带开路分支,将微带部分的长度设置为很小,而宽度设置为与端接的耦合微带线相同即可,即此部分微带基本不产生作用。如图: 因为n=4,我们采用5个对称耦合微带线。可知它们是中心对称的,即1和5,2和4为相同的参数。在每两段耦合微带线连接处,因为它们的宽度都不相同,所以我们需要采用一个微带跳线来连接,如图:

注意:有小蓝点的一端为1端口,另一端为2端口。 参数设置如下图: 条件中,要我们设计两端均为50欧姆的微带线。我们用此软件本身带有的公式计算出它的设计值即可。不过要注意一点,我们需在设置好基片参数(见后面)的情况下再进行计算。如图:

最后在两端加上端口,并标注1,2端口。如图: 3.参数设置: ⑴基片设置:即按设计要求里的 和h进行设置。如图: r

⑵变量设置: 上面讲到我们实际上是使用三组耦合微带线,即有三组参数。考虑每个对称耦合微带线都有w(宽度),s(间距),l(长度)三个参数。我们进行设计的目的就是通过计算机优化得到我们需要的这些参数的值,所以在这里,我们要将这些参数设置为变量。如图:

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

梳状滤波器的设计与应用

梳状滤波器的设计与应用 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF 射频接口和AV接口),它所能接收的信号叫CompositeVideoSignal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite (混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(CombFiltering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因

有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史:梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTS C制副载波为3.58MHz),用选频电路将Y/C信号分开。内部由LC 带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4. 43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

逆变器滤波器参数设置

逆变器滤波器参数设置 Revised by Chen Zhen in 2021

1滤波特性分析 输出滤波方式通常可分为:L 型、LC 型和 LCL 型, 滤波方式的特点比较如下: (1)中的单 L 型滤波器为一阶环节,其结构简单,可以比较灵活地选择控制器且设计相对容易,并网控制策略不是很复杂,并网容易实现,是并网逆变器常用的滤波方式。缺点在于其滤波能力有限,比较依赖于控制器的性能。 (2)中的 LC 型滤波器为二阶环节, C 的引入可以兼顾逆变器独立、并网双模式运行的要求,有利于光伏系统功能的多样化。然而,滤波电容电流会对并网电流造成一定影响。 (3)中的 LCL 型滤波器在高频谐波抑制方面更具优势,在相同高频电流滤波效果下,其所需总电感值较小。但因为其为三阶环节,在系统中引入了谐振峰,必须引入适当的阻尼来削减谐振峰,这就导致了其控制策略复杂,系统稳定性容易受到影响。当三相光伏逆变器独立运行时,一般均采用 LC 型滤波方式。 并网逆变器的滤波器要在输出的低频段(工频 50Hz)时要尽量少的衰减,而要尽量衰减输出的高频段(主要是各次谐波)。 采用伯德图来分析各种滤波器的频域响应。[1] 一般并网逆变器滤波部分的电感为毫亨级,电容为微法级,这里电感值取 1m H,电容取 100u F,电感中的电阻取Ω,在研究 LCL滤波器时,取电感值为 L1=L2= H,电阻 R1=R2=Ω。

对于单电感滤波器,以输入电压和输出电流为变量,并且实际的电感中含有一定电阻,其传递函数为: 对于采用 LC 滤波器的并网逆变器,在并网运行时,电网电压直接加在滤波器中的电容两端,因此此时电容不起滤波作用,可以看作是一个负载,从滤波效果上来说,它等同于单电感滤波器。并且对于被控量选取为电感电流IL 的采用 LC滤波的并网逆变器,由于有电容的作用,其控制电流IL与实际输出电流Io 之间有如下图所示:上式中可以看出,电感电流LI 将受到电网电压gU 的变化与并网电流0I 的影响。所以在控制过程中要参照电网电压的有效值不断调整基准给定的幅值与相位。 对于 LCL 滤波电路,逆变器输出电流与输入电压之间的传递函数可以表示为: 对比可知,可以很清楚的看到,在低频时,单 L 型滤波器与 LCL 型滤波器的频域响应相同,都是以 20d B/dec 的斜率进行衰减。但在高频部分,单 L型滤波器仍然以 20d B/dec 进行衰减,但 LCL 型滤波器以 60d B/dec 的斜率进行衰减,表明相对于单 L 型滤波器,LCL 型滤波器能够更好地对高频谐波进行衰减。将式中的 s 用 jω代入后可以看出,低频时两式分母中含有ω的项都很小,特别是ω的高次方项,可以忽略不计。因此在低频时,表达式中主要起作用的是电阻部分。而随着ω的不断上升,两式分母中含有ω的项不断增大,特别是含有ω的高次方项,因此在高频段,其主要作用的是分母中含有ω的 3 次方项。因此在高频段,LCL 滤波器是以 60d B/dec 的斜率进行衰减。对单 L 型、LC 型及 LCL 型滤波器进行比较。 在低频时,三者的滤波效果相同,并且在并网运行时 LC 型滤波器中的电容只相当于负载,不起滤波作用。而 LCL 型滤波器对高频谐波的滤波效果要优于单 L 型与 LC 型滤波器。

相关文档
最新文档