压装机整机液压系统设计介绍

压装机整机液压系统设计介绍
压装机整机液压系统设计介绍

超高压液压技术与应用

超高压液压技术与应用 发表时间:2017-11-06T11:36:55.797Z 来源:《基层建设》2017年第19期作者:马建国[导读] 摘要:超高压液压技术对工作环境、液压元件、介质、密封性等指标都提出了较高的要求,通常情况下只有在环境压力超过32MPa 时才能称之为超高压,需要应用特殊的液压元件和介质,同时确保液压系统具有良好的密封性,才能保证超高压系统的安全、可靠运行,否则将会削弱系统性能,甚至引发严重的安全事故,造成的经济损失也将不可估量。 山东奥邦机械设备制造有限公司山东省德州市 251100 摘要:超高压液压技术对工作环境、液压元件、介质、密封性等指标都提出了较高的要求,通常情况下只有在环境压力超过32MPa时才能称之为超高压,需要应用特殊的液压元件和介质,同时确保液压系统具有良好的密封性,才能保证超高压系统的安全、可靠运行,否则将会削弱系统性能,甚至引发严重的安全事故,造成的经济损失也将不可估量。本文将对超高压液压技术的具体应用策略加以分析,以期增加对该技术的了解和掌握,进而实现超高压液压技术的推广应用。 关键词:超高压液压技术;流量;介质;密封 近年来,超高压液压技术被广泛的应用于各类生产和实践中,为我国冶金、建筑、交通运输行业的发展提供了强有力的支持和保障。然而超高压液压技术需要在特殊的环境下才能有效发挥作用,同时对液压介质和液压元件有着特殊的要求,所以需要对超高压液压技术的相关指标进行探索和研究,为超高压液压系统创建良好的运行环境,确保超高压液压技术的优势得到最大化的展现,从而更好的为相关领域的发展提供服务。 一、超高压小流量 一般来说,超高压液压技术主要应用于压力达到特定标准以上的环境中,由于超高压液压系统的运行压力较高,导致其流量非常小,无法在大流量液压系统中运行,因此当前使用的超高压液压系统流量普遍较小,每分钟仅为1L左右。而且超高压液压系统的压力和介质状态也有着密切的关系,如果超高压液压系统的介质为流动状态,那么最小压力值为1.4kMPa;如果超高压液压系统的介质为静止状态,那么压力值则在2.4kMPa以上。 二、采用柱塞副结构 在超高压液压系统中,通过对介质施加较强的作用力,可以营造出较高的压力环境,这就需要液压系统的构件具有较大的强度和刚度,才能在超高压环境下始终保持形态和性能不发生变化。柱塞副的结构形式能够很好的满足这一要求,具有抗冲击、噪声低、寿命长、密封性好等优点,因而在超高压液压系统中应用的十分广泛。 三、要求专用液压介质 一般液压油在超高压力下流动性锐减,体积压缩量不可忽略,后者在极大程度上影响着系统的容积效率。所以一般液压油在超高压力下难以正常工作,应该选用在超高压力下具有良好流动性和最小体积压缩量的特殊专用介质。超高压力下液体介质稠化与否取决于它的超高压黏度特性;超高压力下液体介质的压缩量和弹性则取决于它的体积弹性模量。体积弹性模量越高则介质体积压缩量和弹性越小。 大多数矿物油在高于400MPa压力下呈稠脂状,但60%的煤油和40%的变压器油混合,在1000MPa压力时仍能很好工作。丙三醇(即甘油)是一种良好的超高压液压用介质,它在1400MPa压力下也能保持良好的流动性,并且还具有很高的体积弹性模量。通常它以水—甘醇混合液的形式实际应用,水虽然具有很高的体积弹性模量,但由于水会锈蚀金属,并且不易密封,故主要用于耐压试验。能用于超高压系统的介质还有蓖麻油、凡士林油等。除此之外,混合介质的应用常能获得较理想的效果,如蓖麻油-酒精、蓖麻油-矿物油混合液在700~1000MPa压力下仍能保持良好的流动性。 四、要求严格的密封 在超高压力下要求所有的密封环节和元件都具有很高的强度,否则极易击穿。由于液压介质在升压过程中会释放热量,致使密封环节和密封部位瞬时升温,所以超高压力下的密封也必须具有良好的耐热性。超高压液压技术对密封的要求极为严格。一方面由于间隙相同时超高压力下的泄漏量比常用压力下大几倍甚至几十倍;另一方面由于超高压液压装置的流量较小,因此即便是微量的泄漏也会产生很大影响,特别是对超高压液压系统的升压和保压性能的影响尤为突出。 超高压密封虽然有它独特的要求,但与一般的液压密封还是大同小异,因此传统的密封方式是可以参考的。需要特别指出的是,由于超高压液压技术常用于尖端科学技术的研究、试验和生产中,其密封型式具有很强的针对性和局限性,所以密封常常是特殊设计的,可供选用的超高压密封元件很少。对大多数超高压系统来说,参考已有的传统密封形式,结合超高压系统功能的独特要求,进行专用密封形式的设计和制造是解决超高压密封的主要途径和方法。 1、密封材料 在超高压力下密封材质受到强烈的压挤,易于产生塑性流变。升压过程中液体介质会放热,由于超高压升压压差大,瞬时温升高,促使塑性流变加剧,造成密封变形量大甚至击穿。而超高压力下密封材质的弹性丧失也将使密封性能急剧下降。所以一般的密封材料是难以承受苛刻的超高压条件的。当压力在100MPa以下时,塑性材质如橡胶、皮革,氟塑料尚可使用。当压力高于100MPa时则需采用具有一定韧性的硬质材料,如铝、紫铜、铅和铍青铜等。 2.密封结构 超高压静密封通常采用借助于螺纹力强制密封件与被密封件之间产生一定的接触压力而达到密封的结构型式。通过螺纹可调节接触压力,对密封进行调整和补偿,常用于100MPa压力以下、要求不高的场合。另外带挡圈的O形圈可耐压200MPa左右。金属O形密封则可承受350MPa,甚至700MPa的压力。 由于超高压技术在应用上的多样性,所以在超高压静密封的选用和设计中还要考虑实际的工作条件,诸如高温、酸蚀、易燃等因素。如果合适地选用密封材料、设计密封结构可以取得1kMPa以上压力的密封效果。例如,根据螺纹力强制密封结构的原理,选用淬硬球面钢垫(材质为45号钢或35CrMoA等)作密封件的结构可密封1kMPa左右的压力。超高压动密封主要是指往复式动密封,主要依靠间隙密封和密封填料实现。间隙密封多采用弹性圆筒衬套结构,由于液体介质的黏性流动,在弹性圆筒衬套两端产生压降,衬套就局部地抱紧在轴上。这种结构可达到700MPa的超高压动密封效果。除此之外,密封填料结构型式的V形密封填料在螺纹力作用下受压强制密封,当填料采用铍青铜等制作时,可达到1kMPa左右的超高压动密封效果。

矿用液压支架设计

摘要 本论文主要阐述了一般掩护式液压支架的设计过程。设计内容包括:选架型、总体设计、主要零部件的设计、主要零部件的校核和液压系统的设计。 由于该煤层厚度适中,选用掩护式液压支架。煤层厚度介于m ~ 5.2之 8.3 间,煤层厚度变化较大,选用调高范围大且抗水平推力强且带护帮装置的掩护式支架。支架采用正四连杆机构,以改善支架受力状况。顶梁、掩护梁、底座均做成箱体结构;立柱采用双伸缩作用液压缸,以增加工作行程来满足支架调高范围的需要。推移千斤顶采用框架结构,以减少推溜力和增大移架力。为了提高移架速度,确保对顶板的及时支护,采用锥阀液压系统。 关键词:液压支架液压四连杆机构采煤支架选型推溜移架

Abstract The article mainly elaborated the general shield type hydraulic pressure support design process. The design content includes: Chooses, the system design, the main spare part design, the main spare part examination and the hydraulic system design. Because this coal bed thickness is moderate, selects the shield type hydraulic pressure support. Coal bed thickness is situated between between the 2.5~3.8 rice, coal bed thickness change bigger, selects adjusts the high scope big also the anti- horizontal thrust is strong also the belt protects helps the equipment the shield type support. The support uses the four link motion gear, improves the support stress condition. The top-beam, caving shield, the foundation makes the packed in a box body structure; The column uses the double expansion and contraction function hydraulic cylinder, increases the power stroke to satisfy the support to adjust the high scope the need. Passes the hoisting jack to use the portal frame construction, reduces pushes slides the strength and increases moves a strength. In order to enhance

泄压口设计与安装

关于气体灭火系统防护区泄压口(自动泄压装置) 设计与安装使用 1、概述 气体灭火系统防护区泄压口,简称泄压口,也称自动泄压装置,是与气体灭火系统配套的必备设备,一般安装在气体灭火系统保护区外墙或墙的泄压孔上。 气体灭火系统灭火药剂具有洁净、绝缘性能好、灭火速度快等特点,在灭火中和灭火后对保护对象及环境无二次污染。因而广泛应用于电子计算机房、电讯中心、通讯机房、图书馆、档案馆、珍品库、博物馆、配电室等洁净场所。由于GB50370-2005《气体灭火系统设计规》国家标准的颁布,消防监督部门加大了实施检查力度,2007年后自动泄压装置的市场需求也随之明显增多。因该产品是新产品,产品目前无国家、行业标准,通过从百度、谷歌等搜索检索来看,全面介绍自动泄压装置产品应用、设计、使用与安装的资料和文章很少,给正确设计、选择、安装、使用自动泄压装置带来了许多问题,不利于该泄压口(自动泄压装置)在气体灭火中正确发挥其实际功能和作用。本人经过两年多对该泄压口(自动泄压装置)国外各厂家资料、样品的收集、研究和对该产品研发并进行了大量的试验。现特写此篇文章,其目的是为了使自动泄压装置产品得到正确的使用和不断发展。 2、设置泄压口的必要性和作用 2.1 旧的标准和规中要求使用泄压口的用词模棱两可,使设计和监督部门无确设计和监督。 本人从事气体灭火系统产品设计和研究近十年,市场上对泄压口产品生产、销售的需求于2007年1月后明显的增多。2007年1月前制定的GBJ110-87《卤代烷1211灭火系统设计规》、GB50193-93《二氧化碳灭火系统设计规》和DBJ15-23-1999《七氟丙烷(HFC-227ea)洁净气体灭火系统设计规》、DG/TJ08-306-2001《惰性气体IG-541灭火系统技术规程》等国家、地方标准中对气体灭火系统中防护区泄压口的设计应用要求条款用词模棱两可,从而造成和消防监督部门无确设计和监督。2007年以前的气体灭火系统中采用的泄压口装置产品的项目很少。 GB50193-93《二氧化碳灭火系统设计规》国家标准条文说明第3.2.6条中阐

仪表壳自动化压装机的设计

摘要: 本课题旨在解决仪表生产中的锥形薄片压入的工序自动化问题,既要保证压入的位置,同时必须保证锥形薄片在同一位置产生精度相同的变形。完成了压装机构的运动分析、工序设计、主要依靠三个凸轮的运动实现。第一个凸轮通过其摆动从动件控制夹紧轴的水平移动,第二个与第三个凸轮通过其摆动从动件分别控制内轴与外轴垂直移动,使其定位和冲压。 进行了结构设计及关键零部件设计。其中有仪表壳的尺寸,装配夹具形状及尺寸,从动件的位移线图的设计,凸轮的设计,其中为了压装机的运作设计了减速箱,减速箱里包括电机的选择,V带的设计和齿轮的设计,最后选择了连接压装机和减速箱的联轴器。 关键词:凸轮,弹簧,齿轮,齿轮轴,电机。

Abstract: The subject aimets at solving the process automation problem of tapered chip in production of instrument. Not only ensure the position of pressure, but also must ensure tapered chip in the same location have the deformation. Completed pressing institutions kinematic analysis,process desin,mainly rely on the movement o achieve the three cam, the first cam though the swinging clamping axis control axis level migration, the second and the third cam through swinging clamping axis to distinction control inner axis and outer axis vertical migration to fix position and hurtle press. Carrying on the structure design and the key partses design. Which have size of instrument shell, assemble fixture shape and size, driven document moves the line diagram, the design of cam, among them for the sake of operation to designing the reducer casing. Reducer casing include the electrical motor choice, the V take design and the wheel gear design, finally chose shaft couping to connect pressure institutions and reducer casing . Key words:CAM, spring, gear, same dethegear motor shaft.

超高压油缸的设计与应用

文章编号:!"#!—$%&’(&$$&)$&—$$’%—$’ 超高压油缸的设计与应用 ! 黄 维 亚 (重庆工业职业技术学院,重庆’$$$($ """"""""""""""""""""""""""""""""""""""""""" """" """""""""""""""""""""""""""""""""""""""" """""# ###)摘要:介绍了在大型变压器的装配生产中所使用的装配工具———超高压油缸)*+,"-及其液压系统的设计。同时就设计中一些技术问题和如何提高产品的可靠性、准确性、经济性等方面进行了探讨。 关键词:超高压油缸;结构设计;液压系统;密封;保压系统 中图分类号:./!-#0%文献标识码:1$引言 为了解决大型变压器生产中硅钢片装配难的问题,特设计了这种超高压油缸,以便支撑起整个变压器进行装配。一台变压器重约’2吨。单台变压器的装配同时需要’个油缸支撑。要求单只油缸的工作压力34’$56 ,属于超高压,也就是每个油缸的推力应为!&吨,即活塞杆推力74!&吨,由于装配平台与变压器的最底面的高度不能超过%-88,即所设计的油缸高度/加上最大行程*不能大于%-88,/9*$%-88。根据现场测试,活塞杆的最大行程*不能超过&$88,即*4&$88。由于安装现场位置的局限,要求油缸体积越小越好,但同时又要满足有足够的强度和刚性。这些客观条件给设计带来了一定的难度。 笔者重点就设计中一些技术问题和如何提高产品的可靠性、准确性、经济性等方面作一些探讨。 !液压系统的设计特点 在工程应用中,液压系统的高压是指在-(56以下,超过这个压力系统,称为超高压系统。设计时要特别注意。 由于用户要求执行器的功率密度大(指出力与允许的体积之比)。所以我们采用了超高压技术。 液压系统的特点如图!液压系统原理图所示,该液压 系统由电机启动,双泵供油。大、小油泵采用通轴式结构。电机轴联接大泵轴,大泵轴联接小泵轴。 大泵溢流阀采用遥控溢流阀,其压力的设定由小泵的压力油控制。当小泵压力高于某一值时,控制大泵的溢流阀开启,大泵卸荷,以低压流回油箱。大泵压力设定为(56 。压力继续升高以后,小泵的溢流阀,其控制压力为"$56。该液压系统大泵采用的是:),)’高压齿轮泵, 小泵采用的是阀配流式轴向柱塞泵。 系统能达到的压力:小泵2$56 大泵&$56 根据需要,调定压力为:小泵"$56 大泵(56 流量:低压$(56 ,;4’02</8=>高压(,"$56时,;4$02</8=> 。图!中,两支单向阀是为了防止液压冲击损坏泵而设置。由于外负载的变化,系统有可能在某个时候,超过泵的压力而导致高压油回流而损坏泵。这种负载外力,往往时间很短或瞬间,故也称之为“冲击”。时间之短,溢流阀反应滞后,所以泵的出口往往设有单向阀。这种液压系统,一般只设左边!个,保护大泵;本系统由于是超高压,有必要保护贵重的小泵,所以设计了两个单向阀。有时,为了更保险,在换向阀前再设!个,若有-个单向阀进行泵及油路的超压保护,这也是超高压技术的特点。 !收稿日期:&$$&?$!?!! 作者简介:黄维亚(!%"-? ),男(汉族),云南昆明人,讲师,主要从事机械制造工艺及设备研究0

支撑掩护式液压支架设计毕业论文

支撑掩护式液压支架设计毕业论文 前言 综合机械化采煤是煤矿技术进步的标志,是煤矿增加产量、提高劳动效率、增加经济效益的重要手段。实践证明大力发展综合机械化采煤,研制和使用液压支架是十分关键的。我国液压支架经过30多年的发展,取得显著的成果,至今已能成批制造两柱掩护式和四柱支撑掩护式液压支架,这些系列化液压支架一般用于缓倾斜中厚煤层及厚煤层分层开采。 我国煤矿中使用的支架类型很多,按照支架采煤工作面安装位置来划分有端头液压支架和中间液压支架。端头液压支架简称端头支架,专门安装在每个采煤工作面的两端。中间液压支架是安装在处工作面断头以外的采煤工作面上所有的位置的液压支架。 目前使用的液压支架分为三类。即:支撑式液压支架、掩护式液压支架、支撑掩护式液压支架。从架型的结构特点来看,由于直接类别和老顶级别的不同,所以为了在使用中合理地选择架型,要对支架的支撑力承载力的关系进行分析使支架能适应顶板载荷的要求。 此次设计是对大学所学的知识的综合应用,通过设计使所学知识融会贯通,形成较为清晰的知识构架,强化设计过程的规性以及对计算机的使用的熟练性。通过此次设计,能够更好的梳理所学的知识,基本掌握机械设计制造及其自动化专业在机械设计方面的工作方法,同时提高独立为完成工作的能力,为以后的工作打下坚实的基础。

第 2页共 2页

第1章液压支架的概述 1.1液压支架的组成和用途 1.1.1液压支架的组成 液压支架由顶梁、底座、掩护梁、立柱、推移装置、操作控制系统等主要部分组成。 1.1.2液压支架的用途 在采煤工作面的煤炭生产过程中,为了防止顶板冒落,维持一定的工作空间,保证工人安全和各项工作正常进行,必须对顶板进行支护,而液压支架是以高压液体作为动力由液压元件与金属构件组成的至呼和控制顶板的设备,它能实现支撑、切顶、移架和推移输送机等一整套工序。实践表明液压支架具有支护性能好、强度高、移架速度快、安全可靠等优点。液压支架可与弯曲输送机和采煤机组合机械化采煤设备,它的应用对增加采煤工作面产量、提高劳动生产率、降低成本、减轻工人劳动和保证安全生产是不可缺少的有效措施,因此液压支架是技术上先进、经济上合理、安全上可靠、是实现采煤综合机械化和自动化不可缺少的主要设备。 1.2液压支架的工作原理 液压支架在工作过程,必须具备升、降、推、移四个基本动作,这些动作是利用泵站提供的高压乳化液通过工作性质不同的几个液压缸来完成的,如图1-1所示。 升柱:当需要液压支架上升支护顶板时,高压乳化液进入立柱的下活塞腔,另一腔回液,推动活塞上升,是与活塞杆相连的顶梁紧紧接触顶板。

WY型滚动轴承压装机设计说明书

目录 目录------------------------------------------------------------------------------------------------------- 1 中文摘要------------------------------------------------------------------------------------------------------- 3 Abstract --------------------------------------------------------------------------------------------------------3 第1章绪论---------------------------------------------------------------------------------------------------3 1.1概述----------------------------------------------------------------------4 1.2WY滚动轴承压装机简介------------------------------------------------------5 第2章设计内容及任务要求-----------------------------------------------------6 2.1设计内容及要求-----------------------------------------------------------6 2.2 液压系统的设计流程-------------------------------------------------------6 第3章液压系统的设计计算-----------------------------------------------------7 3.1轴承压装机液压缸的设计及计算----------------------------------------------7 3.1.1 分析工况及设计要求,绘制液压系统草图---------------------------------7 3.1.2计算液压缸的外负载---------------------------------------------------9 3.1.2.1 压装缸--------------------------------------------------------9 3.1.2.2夹紧缸--------------------------------------------------------9 3.1.2.3顶起定位缸----------------------------------------------------9 3.1.2.4 确定系统的工作压力--------------------------------------------9 3.2 确定液压缸的几何参数------------------------------------------------------9 3.2.1 压装缸尺寸计算-------------------------------------------------------9 3.2.1.1 液压缸工作压力的确定-----------------------------------------9 3.2.1.2液压缸内径D和活塞杆直径d的确定-----------------------------9 3.2.1.3液压缸壁厚和外径的计算--------------------------------------10 3.2.1.4液压缸工作行程的确定----------------------------------------11 3.2.1.5 缸盖厚度的确定----------------------------------------------11 3.2.1.6 最小导向长度的确定------------------------------------------12 3.2.1.7 缸体长度的确定----------------------------------------------13 3.2.1.8 活塞杆稳定性的验算------------------------------------------13 3.2.2 定位缸及其主要尺寸的确定-----------------------------------------------13 3.2.2.1液压缸工作压力的确定----------------------------------------13 3.2.2.2 液压缸内径D和活塞杆直径d的确定----------------------------13 3.2.2.3 液压缸壁厚和外径的计算和选取--------------------------------14 3.2.2.4 液压缸工作行程的确定---------------------------------------14 3.2.2.5缸盖厚度的确定----------------------------------------------14 3.2.2.6 最小导向长度的确定------------------------------------------15 3.2.2.7缸体长度的确定----------------------------------------------15 3.2.2.8 计算液压缸主要零件的强度和刚度------------------------------16 3.2.3夹紧缸及其主要尺寸的确定--------------------------------------------17 3.2.3.1液压缸工作压力的确定----------------------------------------17

机械机电毕业设计_液压系统设计计算实例

液压系统设计计算实例 ——250克塑料注射祝液压系统设计计算 大型塑料注射机目前都是全液压控制。其基本工作原理是:粒状塑料通过料斗进入螺旋推进器中,螺杆转动,将料向前推进,同时,因螺杆外装有电加热器,而将料熔化成粘液状态,在此之前,合模机构已将模具闭合,当物料在螺旋推进器前端形成一定压力时,注射机构开始将液状料高压快速注射到模具型腔之中,经一定时间的保压冷却后,开模将成型的塑科制品顶出,便完成了一个动作循环。 现以250克塑料注射机为例,进行液压系统设计计算。 塑料注射机的工作循环为: 合模→注射→保压→冷却→开模→顶出 │→螺杆预塑进料 其中合模的动作又分为:快速合模、慢速合模、锁模。锁模的时间较长,直到开模前这段时间都是锁模阶段。 1.250克塑料注射机液压系统设计要求及有关设计参数 1.1对液压系统的要求 ⑴合模运动要平稳,两片模具闭合时不应有冲击; ⑵当模具闭合后,合模机构应保持闭合压力,防止注射时将模具冲开。注射后,注射机构应保持注射压力,使塑料充满型腔; ⑶预塑进料时,螺杆转动,料被推到螺杆前端,这时,螺杆同注射机构一起向后退,为使螺杆前端的塑料有一定的密度,注射机构必需有一定的后退阻力; ⑷为保证安全生产,系统应设有安全联锁装置。 1.2液压系统设计参数 250克塑料注射机液压系统设计参数如下: 螺杆直径40mm 螺杆行程200mm 最大注射压力153MPa 螺杆驱动功率5kW 螺杆转速60r/min 注射座行程230mm 注射座最大推力27kN 最大合模力(锁模力) 900kN 开模力49kN 动模板最大行程350mm 快速闭模速度0.1m/s 慢速闭模速度0.02m/s 快速开模速度0.13m/s 慢速开模速度0.03m/s 注射速度0.07m/s 注射座前进速度0.06m/s 注射座后移速度0.08m/s 2.液压执行元件载荷力和载荷转矩计算 2.1各液压缸的载荷力计算 ⑴合模缸的载荷力 合模缸在模具闭合过程中是轻载,其外载荷主要是动模及其连动部件的起动惯

泄压口的设计必要性及要求

气体灭火系统防护区应采用泄压口 2006年3月2日发布的GB50370-2005《气体灭火系统设计规范》中,从设计要求条款和防护区的泄压口面积计算公式条款用词来看,无论防护区门窗密封性好与差和防护区门安装的是否为外开弹簧门或弹性闭门器,如采用气体灭火系统,则防护区内都必须安装泄压口。泄压口不是一个开口,而是一种泄压装置。此装置平时常闭,当达到或接近防护区允许压强值时自动开启泄压,低于设定压力值时自动关闭,以避免灭火药剂流失,影响正常灭火效果。 近几年来,采用泄压口的多为一些重点工程和项目,对防护区内温度和湿度的精度要求很高,因此对防护区的密封性要求也很高。所以GB50370-2005《气体灭火系统设计规范》国家标准中规定,采用气体灭火系统的防护区内均应设计安装泄压口。修改后的新标准对旧的标准和规范中模棱两可的用词给予了修正。据各消防工程公司和本公司售后服务人员反馈,在各级消防检查中,消防验收和监督部门都均严格按新标准执行,若消防项目中安装了气体灭火系统,首先要检查各防护区是否安装了泄压口(自动泄压装置)。 泄压口面积设计依据与计算 一、防护区内围护结构最高允许压强: 防护区内门、窗上的玻璃允许压强不应低于建筑物的允许压强。目前国内各设计部门防护区内围护结构承受内压的允许压强,无论建筑物是轻型和高层建筑,还是标准建筑及地下建筑,均设定为 1.2KPa,该值的设定是依据GB50370-2005标准中3. 2.6条款,参照美国NFDA12B-1980标准中给出的,若设计部门和用户需提高防护区内围护结构承受的允许压强,应由建筑设计部门试验给出。 二、泄压口面积计算公式: 七氟丙烷和IG-541混合气体灭火系统的防护区的泄压口面积公式应分别依据GB50370-2005标准中3.3.13和3.4.6公式计算。二氧化碳气体灭火系统应依据GB50193-93中3.2.7公式计算该防护区的泄压口面积。

轴承压装机压装力的计算

轴承压装机压装力的计算 摘要介绍了与传统设计不同的轮轴冷压装计算方法,设计员可节省查阅资料时间,应用新型的计算公式,能快速获得准确工艺参数,并量化轮轴设计尺寸。本文的车辆轮轴注油冷压装工艺属国内首例。此方法对机械制造工业价值巨大。 关键词轮轴冷压装轮轴注油冷压装计算公式工艺工装修复技术 一、前言 本文论述的内容,适用于铁路机车车辆、工程机械和机床制造。该技术的特点是:在轮轴冷压装设计中,既节省了查阅设计手册和行业标准所用的大量时间,又能快速获得准确工艺参数和设计量化值。工艺简单、加工方便、能有效避免轮轴配合面被擦伤,与传统的轮轴冷压装工艺设计相比,这是专业技术领域中的新思路。 二、工艺参数计算 在设计轮轴冷压装产品时,如何根据配合直径来求得合理的过盈量及冷压装吨位,这是专业工艺人员极为关注的技术难题。作者通过长期试验论证,运用数学原理推导出了下列理论计算公式,技术难题迎刃而解,现简介如下。 -4-4 δ=7×10D+0.06 (1) δ=7.6×10D+0.09 (2) 12 δ=0.5(δ+δ) (3) δ=δ-0.02 (4) 31243 δ=δ+0.01 (5) δ=δ,δ (6) 5345 P=(3.11D+66)+6 (7) P=4.88D+101 (8) 12 P=P,P (9) 12 δ—粗算轮轴配合过盈量下限值mm;δ—粗算轮轴配合过盈量上限值mm;δ—粗算轮轴配123合过盈量平均值mm;δ—精算轮轴配合过盈量下限值mm;δ—精算轮轴配合过盈量上限值45

mm;δ—轮轴配合过盈量精确值mm;D—轮轴配合直径mm;P—轮轴冷压装吨位下限值kN;1 P—轮轴冷压装吨位上限值kN;P—轮轴冷压装吨位精确值kN。 2 三、计算应用实例 计算图1所示的车辆轮轴采用冷压装工艺时,所需配合过盈量及压装吨位。解:(1)计算过盈量 -4-4 δ=7×10D+0.06=7×10×182+0.06=0.19(mm) 1 -4-4 δ=7.6×10D+0.09 =7.6×10×182+0.09=0.23(mm) 2 δ=0.5(δ+δ)=0.5(0.19+0.23)=0.21(mm) 312 δ=δ-0.02=0.21-0.02=0.19(mm) 43 δ=δ+0.01=0.21+0.01=0.22(mm) 53 δ=δ,δ =0.19~0.22(mm) 45 (2)计算冷压装吨位 P=(3.11D+66+6=(3.11×182+66)+6=683(kN) 1 P=4.88D+101=4.88×182+101=989(kN) 2 P=P,P=683,989(kN) 12 以上计算出来的δ值和P值,即为所求车辆轮轴冷压装时,所需的配合过盈量和冷压装吨位。根据δ值,即可量化出车轴配合座部位的精确尺寸和车轮配合孔部位的精确尺寸。四、轮轴机械加工 轮孔的配合表面是通过镗削加工来实现的,其表面粗糙度可按Ra3.2控制;轴座的配合表面是通过磨削加工来实现的,其表面粗糙度可按Ra1.6控制。为了保证轮轴配合面不被擦伤,轮孔两端应有R3,5mm的过渡圆弧,轴座的压装始端,应有10,13mm圆锥引入段。五、工艺与操作 1.清洁度、过盈量、轴长中心

泄爆口施工方案

东瓯世贸广场项目观光电梯、泄爆口、六层玻璃钢、负一层夹层结构工程 泄 爆 口 施 【 工 方 案 信邦建设工程有限公司 二0一八年七月

目录 一、编制依据............................... - 2 -… 二、泄爆材料进场及检验..................... - 2 - 三、焊接工程............................... - 3 - 四、劳动力安排和施工资源配置............... - 3 - 五、功能应用场所、性能特点................. - 4 - 六、泄爆窗技术参数......................... - 5 -

一、编制依据 - 本工程主要施工方案的编制根据东瓯世贸广场泄爆口工程项目、施工图纸相关专业施工图及设计院相关专业设计师要求编制,充分考虑了生产后的实际条件及装修完成后的使用及美观等要求,并结合相关交叉配合专业的需求及配合要求,主要涉及规范如下: 《建筑工程施工质量验收统一标准》 GB50300-2013 《建筑内部装修设计防火规范》 GB50222—2015 《锅炉房设计规范》 GB50041-2008 《建筑装饰装修工程质量验收规范》 GB50210—2011 《冷弯薄壁型钢结构技术规范》 GB50018—2002 《建筑钢结构焊接技术规程》 GB50661-2011 二、泄爆材料进场及检验 ; 1、120*60热镀锌钢矩通、50*50热镀锌钢方通,3mm铝单板、应符合设计要求。 2、配件:绝缘垫片、焊条、硅酮耐候密封胶等附件应符合设计要求。 3、紧固材料:泄爆螺栓等应符合设计要求。 4、填充防火材料:按设计要求选用。 5、罩面板材:防火板规格、厚度由设计人员或按图纸要求选定。 6、主要机具: 直流电焊机、电动无齿锯、手电钻、螺丝刀、射钉枪、线坠、靠尺等。

液压支架设计

目录 1 引言 (1) 2 立式组合机床液压动力滑台液压系统设计 (2) 2.1 液压系统的设计要求 (2) 2.1.1 液压传动系统的技术要求 (2) 2.1.2 工作环境和工作条件 (2) 2.2 液压系统工况分析,确定主要参数 (2) 2.2.1 分析液压系统工况 (2) 2.2.2 工况分析 (3) 2.2.3 确定液压缸的主要参数 (4) 2.2.4 计算液压缸的输入功率 (5) 2.3 液压传动系统原理图的拟定 (6) 2.3.1 确定液压传动系统的类型 (6) 2.3.2 液压回路的选择 (6) 2.3.3拟定液压传动系统原理图 (7) 2.4 液压元件的选择 (8) 2.4.1 确定液压油泵 (8) 2.4.2 辅件元件的选择 (9) 2.4.3 管件及油箱尺寸 (10) 2.5 液压系统性能验算 (11) 2.5.1 系统压力损失的验算 (11) 2.5.5 系统发热功率Ph (12) 2.5.6 散热面积 (12) 2.6 注意事项 (13) 2.6.1 系统安装前注意事项 (13) 2.6.2 系统安装时注意事项 (13) 3 结论 (14) 致谢 (15) 参考文献 (16)

1 引言 液压传动相对于机械传动来说是一门新技术,液压传动系统由液压泵、阀、执行器及辅助件等液压元件组成。液压传动原理是把液压泵或原动机的机械能转变为液压能,然后通过控制、调节阀和液压执行器,把液压能转变为机械能,以驱动工作机构完成所需求的各种动作。 液压传动技术是机械设备中发展速度最快的技术之一,其发展速度仅次于电子技术,特别是近年来液压与微电子、计算机技术相结合,使液压技术的发展进入了一个新的阶段。从70年代开始,电子学和计算机进入了液压技术领域,并获得了重大的效益。例如在产品设计、制造和测试方面,通过利用计算机辅助设计进行液压系统和元件的设计计算、性能仿真、自动绘图以及数据的采取和处理,可提高液压产品的质量、降低成本并大大提高交货周期。总之,液压技术在与微电子技术紧密结合后,在微计算机或微处理器的控制下,可以进一步拓宽它的应用领域,使得液压传动技术发展成为包括传动、控制、检测在内的一门完整的自动化技术,使它在国民经济的各方面都得到了应用。 本文研究内容是立式组合机床液压动力滑台液压系统设计,该文的设计过程基本上体现了一个典型的液压传动系统的设计思路。液压传动在金属切削机床行业中得到了广泛的应用。如磨床、车床、铣床、钻床以及组合机床等的进给装置多采用液压传动,它可以在较大范围内进行无级调速,有良好的换向性能,并易实现自动工作循环。组合机床是由具有一定功能的通用部件(动力箱、滑台、支承件、运输部件等)和专用部件(夹具、多轴箱)组成的高效率专用机床。 当前,液压技术在实现高压、高速、大功率、高效率、低噪声、经久耐用、高度集成化等各项要求方面都取得了重大进展;在完善比例控制、伺服控制、数字控制等技术上也有许多新成就,采用液压传动的程度现已成为衡量一个国家工业水平的重要标志之一。随着机械制造行业在国民经济中地位的提高,液压技术的应用范围也越来越广泛,对其性能也提出了更高的要求,决定了它在技术方面的革新已迫在眉睫。

WY型滚动轴承压装机毕业设计可编辑

WY型滚动轴承压装机毕业设计 本科毕业设计(论文)通过答辩目录 目录 1? 中文摘要 3? Abstract?3? 第 1 章绪论??3? 1.1 概述 1.2 WY滚动轴承压装机简介 第 2 章设计内容及任务要求 2.1 设计内容及要求 2.2 液压系统的设计流程 第 3 章液压系统的设计计算 3.1 轴承压装机液压缸的设计及计算 3.1.1 分析工况及设计要求,绘制液压系统草图 3.1.2 计算液压缸的外负载 3.1.2.1 压装缸 3.1.2.2 夹紧缸 3.1.2.3 顶起定位缸 3.1.2.4 确定系统的工作压力

3.2 确定液压缸的几何参数 3.2.1 压装缸尺寸计算 3.2.1.1 液压缸工作压力的确定 3.2.1.2 液压缸内径 D和活塞杆直径 d 的确定 3.2.1.3 液压缸壁厚和外径的计算 3.2.1.4 液压缸工作行程的确定 3.2.1.5 缸盖厚度的确定 3.2.1.6 最小导向长度的确定 3.2.1.7 缸体长度的确定 3.2.1.8 活塞杆稳定性的验算 3.2.2 定位缸及其主要尺寸的确定 3.2.2.1 液压缸工作压力的确定 3.2.2.2 液压缸内径 D和活塞杆直径 d 的确定 3.2.2.3 液压缸壁厚和外径的计算和选取 3.2.2.4 液压缸工作行程的确定 3.2.2.5 缸盖厚度的确定 3.2.2.6 最小导向长度的确定 3.2.2.7 缸体长度的确定 3.2.2.8 计算液压缸主要零件的强度和刚度 3.2.3 夹紧缸及其主要尺寸的确定 3.2.3.1 液压缸工作压力的确定 优秀论文设计,答辩无忧,值得下载! 本科毕业设计(论文)通过答辩

超高压飞机液压系统的密封问题

润滑与密封000431 润滑与密封 LUBRICATION ENGINEERING 2000 No.4 P.5 超高压飞机液压系统的密封问题 付长安 宋治国 从未来飞机的发展趋势上看,飞机正日益向高速和大型化发展,这就要求必须不断地增大液压系统的传动功率。从减轻飞机结构重量角度出发,提高系统的工作压力是增大系统传动功率的唯一途境。但是高压意味着泄漏,这样对间隙密封提出了更高的要求。一方面由于间隙相同时,超高压系统的泄漏量比常用压力下大几倍甚至几十倍;另一方面由于超高压系统的流量较小,即便是微量的泄漏也会产生很大的影响。因而超高压飞机液压系统的密封问题显得十分重要。 1 超高压系统密封材料的选择 在超高压力下密封材质受到强烈的挤压,易产生塑性流变,升压过程中液体介质会放热。由于超高压升压压差大,瞬时温升高,促使塑性流变加剧,造成密封变形量大,甚至击穿。而超高压力下密封材质的弹性丧失也将使密封性能急剧下降,所以,一般的密封材料是难以承受苛刻的超高压条件的。 当压力在100MPa以下时,塑性材料如橡胶、皮革、氟塑料尚可使用,当压力高于100MPa时,则需采用具有一定韧性的硬质材料,如铝、紫铜、铅等。 2 密封结构的选择 (1)超高压静密封元件 实际使用中尚无定型的超高压静密封元件。由于超高压技术在应用上的多样性,所以在超高压静密封的选用和设计中还要考虑实际的工作条件,诸如高温、酸蚀、易燃等因素。合适选择密封材料和设计密封结构可以取得1000MPa以上的密封效果。例如根据螺纹力强制密封结构的原理,选用淬硬球面钢垫作密封件的结构可密封 1000MPa以上的压力。 (2)超高压动密封元件 超高压动密封主要是指往复或转动密封,它是依靠间隙密封和密封填料来实现的,间隙密封多采用弹性圆筒衬套结构,轴在衬套之中。由于液体介质的粘性流动,在间隙的轴向产生压降,弹性衬套局部地抱紧在轴上。这种结构可达到600~700MPa 的超高压动密封的效果。密封填料结构型式的动密封,一般是采用V形密封填料在螺纹力作用下受压强制密封,当填料采用铍青铜制作时,可达到1000MPa左右的超高压动密封效果。 3 超高压管接头 file:///E|/qk/rhymf/rhym2000/0004/000431.htm(第 1/2 页)2010-3-23 5:46:12

相关文档
最新文档