超级电容实验分析

超级电容实验分析
超级电容实验分析

五、结果与分析

1、实验过程总结与知识点查阅

○1超级电容器的结构:[1]

超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。

○2超级电容器的分类及原理

分为双电层电容器和赝电容器

双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。

赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。

○3超级电容器的电极材料[2]:

(1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。

( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。

(3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。

○4循环伏安法测试及其原理

循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及其比值、峰电位等可以判断电极反应机理。而在本实验中运用循环伏安法,在得到CV 曲线后首先可以从曲线的对称性分析得到样品的循环性能,之后可以通过曲线围成的面积计算样

品的电容大小。

(1)理想循环伏安图[3]

(2)计算比电容方法

其中,m为活性物质质量,g;v为扫描速度,v/s;

V1,V2为伏安曲线的积分限制,V;i为电流,A。

2、数据分析

用循环伏安法-0.2v到0.45v间扫描,扫描速度分别为:10mv/s,20mv/s,50mv/s,100mv/s,。

将所得数据用origin作图并用Polygon Area功能求闭合积分面积得:

(1)不同扫描速度各扫描三次

○1由上图可以看出,CV图的对称性较差,说明循环性能不是很好,可能制作过程中受

到的干扰因素较多,活性物质与集流体结合效果不是很好,或是由于材料本身的问题,导致循环性能差。同时曲线与矩形形状有较大偏离,电容性能不是很好。

○2由求得积分面积并通过上文已给出的比电容计算公式得:(思考题一)

由计算结果可知比电容值较小,原因是实验过程中的测量误差,尤其是质量测量,但是不影响得出一个结论:比电容值随扫描速度的增大而衰减。原因可能主要跟吸附有关,电解液为KOH水溶液,根据前面介绍的原理,循环过程中发生K+的吸附和脱附,当扫描速度增大时,K+进入活性物质内部进行吸附的量变少,而是在其表面发生了吸附,也就是吸附更多发生在表面,导致比电容减小[4]。而当扫描速度继续增大,比电容减小的幅度变小,因为吸附几乎只发生在表面,扫描速度的影响力减小。

(2)相同扫描速度扫描25次循环(50mv/s)

○1图形分析

将其中的几次循环明显化,其余透明化,正向扫描时0.4V附近和负向扫描时0.3V附近进行放大处理得:

由25次循环的cv图可以看到,当电势在-0.2-0.1V范围内时,cv图具有较好矩形形状,且对称性较好,同理想模型相近,说明在该段电势范围内,电容特性较好。当电势超过这个范围,图形偏离矩形,对称性降低,说明电容特性降低,循环性能下降。同时,正向扫描时0.35-0.42v时电流急剧增大,一直增大到快0.04A,说明可能发生了氧化反应(显示部分的赝电容特性),随着扫描次数的增多,电流增大,但是增大的幅度越来越小。向负向扫描时,在0.3V附近出现了明显的低峰,可能是还原峰,同时随着扫描次数的增大,还原电流增大,cv曲线偏离矩形的程度增大,并且对称性不断降低,说明随着扫描次数的增多,电极在电解液中的浸泡时间增大,电极的电容特性降低。(思考题一)

○2计算每一次循环的比电容

对25次循环的图形进行闭合积分,并计算各比电容值的如下表:

用origin 作图得:

由图可知第一扫描时比电容较小,第二次扫描时电容发生突跃,可能是第一次扫描时没有快速建立双电层,离子吸附较少,电容容量较小。再继续扫描时,比电容仅于微弱趋势增长,后逐渐趋于稳定,说明电极的电容特性整体较好,并没有出现随时间的衰减趋势。也可能测量时间较短,没有很好地测量到衰减过程。随着扫描时间的往后推移,电极的比电容值应该要衰减。原因可能有:电极活性物质得脱落;电极表面发生不可逆化学反应,导致活性物质的晶型及表面特性发生变化;电极表面有沉积物,不易去除等。(思考题2)

3、课后总结

超级电容器是介于传统电容器和二次电池之间的储能器件,兼备了能量密度和功率密度,可以满足各个场合的使用要求。在今后的生产生活必将大有作为,所以有很大的研究价值,但是由于初次真正接触超级电容器,所以对机理及影响因素没有透彻的理解,在分析的时候可能存在很多错误,还需要今后继续学习,加深理解,减少错误。

查阅文献:

[1]邓梅根.电化学电容器-电极材料研究[M].合肥:中国科学技术大学出版社,2009.

[2]袁国辉.电化学电容器[M].化学工业出版社,2006:8-11.

[3]杨杨.超级电容器电极材料用二氧化锰的合成及其电化学性能的研究.吉林大学硕士论文,2013. [4]王福华,茆志友,姚秋实,吴翠,高云芳.活性炭/二氧化锰纳米复合材料的合成及超级电容性能[J].应用化工,2015年5月.

超级电容器行业研究报告:海迪研究(15)

2010年8月17日

超级电容器行业研究简报 一、超级电容器简介 随着新能源领域的技术进步和行业发展,储能技术越来越受到各方重视,成为解决未来新能源产业发展的关键性环节,产业应用前景和市场规模十分巨大。当前,储能技术大致分为物理储能和电化学储能两条路线。而超级电容器则是物理储能中最具商用前景的一种技术装置,是对其他电化学储能技术的良好补充。 从行业需求角度看,电动/混合动力汽车、太阳能、风能等新能源应用都需求高能量密度储能元件,同时也要求免维护、长寿命、兼备能量密度和功率密度、应用范围宽。锂离子电池、镍氢电池、超级电容是目前全球主要发展的先进储能技术。当前,可充电储能元件行业的发展速度已经远高于全球GDP增长速度。超级电容作为电池的补充,其发展速度将快于电池技术。

1.1超级电容器的概念和特性 超级电容器是介于传统电容器和充电电池之间的一种新型储能装置, 主要是双电层超级电容器(还有赝电容型超级电容器)。它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 与传统电容器相比:它具有较大的容量、较高的能量、较宽的工作温度范围和极长的使用寿命;而与蓄电池相比:它又具有较高的比功率,且对环境无污染,因此可以说,超级电容器是一种高效、实用、环保的能量存储装置。 1.2 超级电容器工作原理 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,

负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 二、超级电容器的行业分析 超级电容器产品获得投资关注虽然不久,但由于它具有特殊的优点,已在许多领域中获得了应用,其前景可以认为是非常广阔。2010年上海世博会中稳定运营的36辆超级电容客车更是吸引了众多观光者的眼球。超级电容车一旦展开普及,市场会大的超出想象。 基于中国消费电子近年来的惊人增长表现,预计今后几年内,我国纽扣型超级电容器有望保持30%以上的平均增长率,卷绕型和大型超级电容器则有可能保持50%以上的平均增长率。到2013年,我国超级电容器的整体产业规模有望达到79亿元。 依照美国国家能源局的数据预测,超级电容器在全球市场的容量

电子负载—超级电容测试方法

超级电容测试方法 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 费思负载在测试超级电容时的特点, 精确度:负载就有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。测试方法简单。 完善的接口:RS232,USB,GPIB口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功率及电压适当)、示波器(长存储最好)、万用表(选用,使用费思负载,可不使用本仪器)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容充电测试

负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。充电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 放电方式: 接线方式:请确定电容正负极及确定连接方式。 超级电容放电测试 负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0打开电容测试功能。设定截止电压,电容计算电压的上下限。设定放电电流。按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试,放电时间,放电内阻,放电电量,电容容量。放电曲线。 放电曲线,请链接上位机软件。 以上设置,请参看相关说明书。 配件及配件功能和软件 配件及配件说明: 接线端子:配件每组具有6个端子,分别接负载、电容和电源。 通讯接口:具有RS232接口接电脑,连接软件。 电压采样:具有32路电压测量端子,测量各个分电容的电压曲线。 温度采样:具有8路温度测量端子,测量电容组在充放电循环时的发热及分布。

超级电容的充放电实验曲线测试(含答案)

超级电容器的充放电实验曲线测试 一、实验目的 了解超级电容器结构组成以及工作原理,理解超级电容器等效电路模型,学会绘制超级电容器充放电曲线。 二、超级电容器结构以及工作原理 超级电容器通常包含双电极、电解质、集流体、隔膜四个部件。超级电容器电极由多孔材料在金属薄膜(常用铝)上沉积而成,而活性炭则是常用的多孔材料。充电时,电荷存储于多孔材料和电解质之间的界面上。电解质的选择往往是电容器单体电压和离子导电性之间妥协的结果,追求离子导电性的最大化可能会导致所选择的电解质分解电压低至1V 。隔膜通常是纸,起绝缘作用,可以防止电极之间任何的导电接触。必须能够浸泡在电解质中,并且不影响电解质的离子导电性。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,

为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。 三、实验线路图 四、实验步骤 1、充电实验 按照实验线路图连接电路,将开关接到K端,使电源接入电路中,实现超级电容的充电过程,通过串口命令记录电流和电压。 2、放电实验 在超级电容器充电完成后,将开关接到另一端,将电源断开,实现超级电容的放电过程,通过串口命令记录电流和电压。 五、注意事项 1、超级电容器具有固定的极性。在使用前,应确认极性。 2、超级电容器应在标称电压下使用。当电容器电压超过标称电压时,将会导致电解液分解,同时电容器会发热,容量下降,而且内阻增加,寿命缩短,在某些情况下,可导致电容器性能崩溃。 3、超级电容器不可应用于高频率充放电的电路中,高频率的快速充放电会导致电容器内部发热,容量衰减,内阻增加,在某些情况下会导致电容器性能崩溃。 4、外界环境温度对于超级电容器的寿命有着重要的影响。电容器应尽量远离热源。 5、安装超级电容器后,不可强行倾斜或扭动电容器,这样会导致电容器引线松动,导致性能劣化。

用示波器测电容实验报告

用示波器测电容 摘要:电容在交流电路中电压发生了变化,相位也发生了变化,而通过示波器可以清楚的观察到这些变化,本实验利用示波器和电容的交流特性,通过实验得出谐振频率的特殊值进而通过公式计算,得出电容器的电容值大小。 关键词:电容RLC谐振频率阻抗相位差电流峰值 一、引言 电容是电容器的参数之一,对于解决生活及实验中的实际问题,有着很重要的作用,不同电容的电容器因所需不同而被应用在不同的地方,在实验中测电容器的电容,已成为大学物理实验中很重要的一个环节,在此实验中,我们用示波器测量电容的容量,该方法操作简单,且能加深我们对电容和电容性质的理解,巩固我们所学的知识。 二、实验任务利用示波器测量电容器的电容量C。 三、实验仪器 200欧姆电阻一个,10mH电感一个,信号发生器一台, 双踪示波器一台,面包板一个, 电容一个,导线若干。 四、实验原理 测RLC谐振频率 RLC串联电路如图1所示: 所加交流电压U(有效值)的角频率为w,则电路的的复阻抗 为: 复阻抗模为: 复阻抗的幅角: 即该电路电流滞后于总电压的位差值。回路中的电流I(有效值)为 上面三式中Z﹑﹑I均为频率f(或角频率,)的函数,当回路中其他元件参数取确定值的情况下,它们的特性完全取决于频率。 图2(a)(b)(c)分别为RLC串联电路的阻抗,相位差,电流随频率的变化曲线。

其中(b)图-f曲线称为相频特性曲线;(c)图i-f曲线称为幅频特性曲线。由曲线图 可以看出,存在一个特殊的频率特点为 (1)当f<时,<0,电流相位超前于电压,整个电路 呈电容性。 (2)当f>时,>0,电流相位滞后于电压,整个电路 呈电感性。 (3)当时,即或 时,=0,表明电路中电流I和电压 U同相位,整个电路呈纯电阻性。 这就是串联电路谐振现象,此时电路总阻抗的模最小,电流达到极大值,易知只要调节f﹑L﹑C中任意一个量,电路就能达到谐振。 根据LC谐振回路的谐振频率或可求得。 五、实验内容(或步骤) 1.电路连接如图1,其中L=10mH,R=,U=2V。 2.用万用电表测出待测电容。 3.调节信号发生器的频率同时观察两端电压变化,当调至某一频率时,电压最大,测得这个最大值及信号的周期(或频率)。 4.由这个最大值的周期(或频率)计算出电容的值。 六、数据处理和分析 测RLC谐振频率数据记录表 5.9 6.9 7.9 8.910.911.912.913.914.915.916.917.9 f (KHZ) 331362393412434442431421402390381372 (mv)

超级电容行业分析报告

超级电容行业分析报告

超级电容行业分析报告 一、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为5F以下、5F~200F、200F以上,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 年份纽扣型卷绕型和大型总规模同比增长2007 10.2 34.8 45 45% 2008 15.3 52.2 67.5 50% 年份纽扣型卷绕型和大型总规模同比增长 2005 0.4 3.5 3.9 57.2% 2006 0.9 4.8 5.7 46.2% 2007 1.4 7.2 8.6 50% 2008 2.1 11.2 13.3 55% 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电

超级电容测试系统方案

超级电容测试系统方案 超级电容:采用物理、化学或者混合方式实现超大容量双层电容器。主要用来“削 峰填谷”,比如:主电源和备用电源切换时的续电(基站及服务器,网络机房,通讯等行业);快速充放电短时储存环境(比如动车的启动与刹车时充放电时省电,并且减小对启动电源的 要求,地铁车辆,电动车,太阳能发电等);在快充快放环境是替代一些蓄电池和动力电池(电动工具行业,电动大巴等)。 超级电容特点:快充快放、循环寿命长、放电电流大、功率密度较高、安全、稳定及温度特性好、单节电压较低。 电子负载在测试超级电容时的特点, 精确度:电子负载有0.05%的电压回读精确度,保证测试的精确度 集成功能:集成了超级电容的内阻和容量测试功能。 完善的接口:RS232,USB,GPIB 口并且配备相应软件,数据,图像报告,循环测试一键完成。 配件及软件:可监控电容组的每分电容的电压一致性和电压值,同时监控温度, 测试内容:内阻、容量、单节一致性、充放电曲线。 测试仪器:电源(电压高于电容组的最高开路电压,电流适当)、电容器、负载仪(功 率及电压适当)、示波器(长存储最好)、万用表(选用)。 充电方式: 恒流转恒压充电。 接线方式,测试之前请确认电容的正负极。请确认连接电路。 超级电容放电测试 电子负载设置:远端采样打开,电池(电容)恒压功能打开, Shift+0 打开电容测试功能。设定截止电压,电容计算电压的上下限。设定充电电流。 按on/off键,开始测试,屏幕显示测试结果。一键完成测试。 本测量测试:充电时间,充电内阻,充电电量,电容容量。充电曲线,漏电流等测试。 充电曲线,请链接上位机软件。 放电方式 接线方式:请确定电容正负极及确定连接方式。

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

2019超级电容器行业分析报告及技术研究现状

2012超级电容器行业分析报告及技术研究现状 一、电容器、超级电容器行业分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型三者在容量上大致归类为5F以下、5F~200F、200F以上它们由于其特点的不同运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中。而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件。另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。 表1、表2是对三种超级电容器产业规模进行调查而得到的数据整理而成的,分别反映了世界和中国超级电容器产业的情况。从这两个表中我们不难发现三个问题: 1、超级电容器产业的发展非常迅速,无论是钮扣型还是卷绕型或是大型超级电容器,其产业规模都在高速扩展。 2、中国在钮扣型超级电容方面的竞争力不明显,在中国钮扣型市场中,海外产品几乎占据了90%以上的份额,竞争非常激烈。数据表明,近几年国内厂家的市场份额也在逐步扩大。 3、卷绕型和大型方面,中国的技术水平与国际接近,市场份额也比较理想。近几年,中国厂商的销售收人也在呈几何倍数增长。据调查,国产超级电容器已占有中国市场60%~70%的份额。 二、超级电容器技术研究现状

超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 超级电容器因其独特的双层大容量储存结构对原材料及制作工艺提出了极高的要求。电极、电解质和隔膜的组成和质量对超级电容器的性能起着决定性的影响。下面将从原材料,制作工艺等几个方面对超级电容器的技术现状进行分析。 2.1正极材料 目前用作超级电容器电极的材料主要有三类:碳材料、金属氧化物材料和导电聚合物材料。 2.1.1 碳材料 碳是最早被用来制造超级电容器的电极材料。碳电极电容器主要是利用储存在电极与电解液界面的双电层能量,其比表面积是决定电容器容量的重要因素。尽管高比表面的碳材料比表面积越大,容量也越大,但实际利用率并不高,因为多孔碳材料中孔径一般要2nm及 以上的空间才能形成双电层,从而进行有效的能量储存,而制备的碳材料往往存在微孔(孔 径小于2nm)不足的情况。所以这个系列主要是向着提高有效比表面积和可控微孔孔径(孔径 大于2nm)的方向发展。除此之外,碳材料的表面官能团、导电率、表观密度等对电容器性 能也有影响。现在已有许多不同类型的碳材料被证明可用于制作超级电容器的极化电极,如活性炭、活性炭纤维、碳气溶胶、碳纳米管以及某些有机物的裂解碳化产物。 2.1.2 金属氧化物材料 金属氧化物作为超级电容器电极材料的研究是基于法拉第准电容储能原理,即是在氧化物电极表面及体相发生的氧化还原反应而产生的吸附电容。其电容量远大于活性炭材料的双电层电容,但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。金属氧化物作为超级电容器电极材料有着潜在的研究前景。近年来金属氧化物电极材料的研究工作主要围绕以下两个方面进行:(l)制备高比表面积的RuO2活性物质。(2) RuO2与其它金属氧化物复合。

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

独石电容器的结构与性能实验报告

广东工业大学实验报告 学院专业班成绩评定 学号姓名(号)教师签名 题目:独石电容器的结构与性能第周星期一.实验目的 1.掌握电容器的电容量及损耗角的测试方法; 2.掌握不同频率下普通电容器和独石电容器的电容量C 及损耗角正切的变化规律; 3.掌握普通(电解)电容器和独石电容器在结构上的差别,学会分析此差别对 电容器特性的影响; 4.了解两种电容器中介质层和电极层材料在显微组织上的特点,以及介质层与电极层结合状态上的区别,并初步分析这种差别对特性的影响。 二.实验原理 电容器的结构比较简单,由绝缘的介质层及其两面的电极及其引出线所组成。普通电容器的制作过程是:分别制作介质层和电极,再将其组合制作(例如卷绕)而成,而独石电容器是首先制备出介质层,然后在其上印制电极用的导电浆料,再次烧制而成,其特点是介质与电极之间的结合好,从而减少由于两者之间接触不良引起的损耗。 三.实验内容 1.测量普通电容器和独石电容器在不同频率下的电容量和损耗角正切的变化 规律,要求测量四个不同频率下的电容量和损耗角正切,取三点平均值,每次测量前必须将电容器短路放电干净; 2.分析上述两种电容器在结构上的差别,要求分析介质层与电极层的结构,画出结构简图; 3.观察分析两种电容器介质层、电极层乃至介质与电极之间区域材料的显微组织,要求画出组织特征示意图。 四.实验主要仪器设备和材料 TH2810B 型LCR 数字电桥,或TH2618B 型电容测试仪,体视显微 镜, 金相显微镜,浸蚀剂,普通(电解)电容器和独石电容器各若干个。 五.实验方法及步骤 1.测量不同频率下普通(电解)电容器的电容量和损耗角正切,记录数据;

超级电容测试方案

10.备用电源系统测试 10.1测试工具及仪器 (1)数字万用表FLUKE 289 1台; (2)数字示波器Tektronix DPO3034 1台(含电流卡钳A622,高压隔离探头P5210);(3)数字兆欧表HIOKI 345 1台,VC60D 1台; (4)功率分析仪YOKOGAWA WT1600 1台; (5)耐压测试仪 TOS5101 1台; (6)输出可调超级电容充电机 BN-CDJ350V 1台; (7) 24V直流电源一台; (8)变桨距系统控制柜轴一柜; (9)变桨试验台SY_BJ_T_V3.1 1台; (10)调压器9KV A 1台; (11)PRODIGIT 3257电子负载; (12)滑动变阻器 BX8-27-2.5A 2台; 10.2.超级电容单体性能测试 10.2.1单体容量测试 ★测试方法: 采用恒流放电法测90V超级电容模块的总容量,由于90V超级电容模块含36个超级电容单体,将总容量乘以36即可得到超级电容单体的容量。 测试电路如图10.1所示。

图10.1. 容量测试电路图 放电电流I1及放电电压下降的电压U1和U2见下表。分级方法应根据分立标准。 ★测试步骤: (1)如图10.1进行接线,设定充电机充电电压为150V,闭合F1; (2)断开F3,闭合F2,对超级电容模块C充电。C达到额定电压后,保持充电机输出30min,以I2=1A电流充电,每15s记录一次150V超级电容模块端电压;以I2’=2A电流充电,每30s记录一次150V超级电容模块端电压; (3)将示波器电压探头接C的正负极端,将电子负载设置为恒流模式,电流值设置为I1=4A放电。断开F2并闭合F3对超级电容进行放电,每30s记录一次150V超级电容模块端电压。 (4)记录C的正负极之间电压U随时间的变化曲线(如图10.2示意);

Removed_圆柱形电容器实验报告

班级:通信13-4 姓名: 学号: 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

实验一仿真求解圆柱形电容器 一、实验目的 1.学习软件Ansoft maxwell 软件的使用方法; 2.复习电磁学相关的基本理论; 3.通过软件的学习掌握运用Ansoft maxwell 进行电磁场仿真的流程; 4.通过对圆柱形电容器计算仿真实验进一步熟悉Ansoft maxwell 软件的应用。 二、实验内容 1.学会Ansoft maxwell有限元分析步骤; 2.会用Ansoft maxwell后处理器和计算器对仿真结果分析; 3.对圆柱形电容仿真计算结果与理论计算值进行比较。 三、实验步骤 圆柱形电容器模型的描述: 电容器采用铜作为导体材料,内导体半径a=0.6mm,实心,外导体半径b=1mm,壁厚0.2mm,内外导体间以空气填充。设置高为h=1mm。(截面图如图1) 图1 1.建模 打开Ansoft maxwell新建3D工程,建立如上图所示的圆柱体电容器,导体设置为铜; Project >Insert Maxwell 3D Design

File>Save as>Planer 选中两个圆柱体Assign Material > copper(设置材料为铜)(如图1-1) Draw>Region(如图1-2) 图1-1 图1-2 选择求解器类型:Maxwell > Solution Type> Electric> Electrostatic(如图1-3) 图1-3

2.设置激励 外导体设置为3V内导体设置0V(如图2-1) 选中inside Maxwell 3D> Excitations > Assign(计划,分配)>Voltage > 3V 选中outside Maxwell 3D> Excitations > Assign >Voltage > 0V 图2-1 3.设置计算参数(Assign Executive Parameter) Maxwell 3D > Parameters > Assign > Matrix (矩阵)> Voltage1, Voltage2(如图3-1,3-2) 图3-1

超级电容器实验报告

实验报告 题目C,MnO2的电化学电容特性实验姓名许树茂 学号20104016005 所在学院化学与环境学院 年级专业新能源材料与器件创新班 指导教师舒东老师 完成时间2012 年 4 月

1.【实验目的】 1. 了解超级电容器的原理; 2. 了解超级电容器的比电容的测试原理及方法; 3. 了解超级电容器双电层储能机理的特点; 4. 掌握超级电容器电极材料的制备方法; 5. 掌握利用循环伏安法及恒流充放电的测定材料比电容的测试方法。 2. 【实验原理】 超级电容器的原理 超级电容器是由两个电极插入电解质中构成。超级电容与电解电容相比,具有非常高的功率密度和实质的能量密度。尽管超级电容器储存电荷的能力比普通电容器高,但是超级电容与电解电容或者电池的结构非常相似。 图1 超级电容器的结构图 从图中可看出,超级电容器与电解电容或者电池的结构非常相似,主要差别是用到的电极材料不一样。在超级电容器里,电极基于碳材料技术,可提供非常大的表面面积。表面面积大且电荷间隔很小,使超级电容器具有很高的能量密度。大多数超级电容器的容量用法拉(F)标定,通常在1F到5,000F之间。 (1) 双电层超级电容器的工作原理 双电层电容是在电极/溶液界面通过电子或离子的定向排列造成电荷的对峙所产生的。对一个电极/溶液体系,会在电子导电的电极和离子导电的电解质溶液界面上形成双电层。当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。这时对某一电极而言,会在一定距离内(分散层)产生与电极上的

超级电容器展现状及前景分析

超级电容器发展现状及前景分析 一、超级电容器的概念 超级电容器是一种具有超级储电能力,可提供强大的脉冲功率的物理二次电源,它是根据电化学双电层理论研制而成的,所以又称双电层电容器。 超级电容器基本原理为:当向电极充电时,处于理想极化电极状态的电极表面电荷将吸引周围电解质溶液中的异性离子,使这些离子附于电极表面上形成双电荷层,构成双电层电容。由于两电荷层的距离非常小(一般0.5mm以下),再加之采用特殊电极结构,使电极表面积成万倍的增加,从而产生极大的电容量。 超级电容器实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。目前,超级电容器已形成系列产品,实现电容量0.5-1000F(法),工们电压12-400V,最大放电电流400-2000A。 超级电容器的性能特点: ①.具有法拉级的超大电容量; ②.比脉冲功率比蓄电池高近十倍; ③.充放电循环寿命在十万次以上; ④.能在-40℃-70℃的环境温度中正常使用; ⑤.有超强的荷电保持能力,漏电源非常小; ⑥.充电迅速,使用便捷; ⑦.无污染,真正免维护。 二、超级电容器行业市场分析 超级电容器根据制造工艺和外形结构可划分为钮扣型、卷绕型和大型三种类型,三者在容量上大致归类为小于5F、5F~200F、大于200F,它们由于其特点的不同,运用领域也有所差异。 钮扣型产品具备小电流、长时间放电的特点,可用在小功率电子产品及电动玩具产品中;而卷绕型和大型产品则多在需要大电流短时放电,有记忆存储功能的电子产品中做后备电源,适用于带CPU的智能家电、工控和通信领域中的存储备份部件;另外大型超级电容器通过串并联构成电源系统可用在汽车等高能供应装置上。这三种超级电容器在全球和国内的生产规模情况分别见表1和表2 所示。

高阻放电法测电容器的电容_实验报告

普通物理实验设计性实验报告 实验题目:高阻放电法测电容器的电容 班级:物理学2011级(2)班 学号:2011433xxx 姓名:梁勇 指导教师:X X X 凯里学院物理与电子工程学院 2013 年4月

一、实验目的 1、加深电容的理解,学习使用高阻放电法测电容器的电容; 2、测出待测电容器的电容; 3、验证高阻放电法测电容器的电容的可行性。 二、实验仪器 一个MCH-305D-Ⅱ直流稳压电源,一个待测电容(C=2uF),开关,导线若干,一个小量程微安表,四个伏特表(作电阻用),17个电阻箱。 三、实验原理 电容的定义为:电容器所带的电荷量Q 与电容器两极板间的电势差U 的比值。即: Q C U 显然,通过上式我们可以看出对于电容器电容C 的测量的关键在于式中的另外两个物理量——加在电容器两板间的电压U 和电容器所带的电量Q 。至于加在电容器两扳间的电压U ,我们可以直接通过电压表来测量,但是电容器所带的电量Q 就没那么容易去直接测量了,也就是说,要想测量电容器的电容,最大的困难就在于:如何测量电容器所带的电量Q 。那么究竟用什么方法才能测得电容器所带的电量Q 呢? 显然在实验中我们要想测量电容器所带的电量Q ,只有让其放电才有办法将其显示出来,即Q=It ,要测量I ,我们可以选用仪器——电流计来显示,而要测量时间t 我们则可以选用秒表来记录;但是,在电路中,如果电阻太小,则电流太大,导致放电时间太短,这样不便于我们观察和记录,故为了延长放电时间我们必须选择很大的电阻接到电路中来实现延长放电时间。这种方法,我们就叫它高阻放电法。 其原理图如下图(图1 )所示: 原理分析:电容器的电容C=Q/U ,先测定电容器充电结束后的电压U ,再通过对高阻值电阻放电的过程测量放电时的电流I 和时间t 的关系。由于电路中的电压U 会随着电量Q 的减小而减小(由U=Q/C 可知),同时电路中的电流I 也会随着放电过程中电容器两板间的电压U 的减小而减小(由I=U/R 可知)。故电容器在放电过程中的不同时间段内的放电量并不相等,即Q=It 并非一个恒量,也就是说I 随时间t 的变化关系为一曲线。显然,我们要求出电容所带的电量值绝对不能简单地记录一个或几个值和放电的总时间t 然后用它们相乘再求平均值就可以的。要解决这一问题我们必须将放电时间分成无数个时间段,而每一小段时间内又可近似地看成电流I 是恒定的,这样我们就可以求出其电量了,即微元法。解决这一问题的最好办法是图像法,如果我们在实验中认真记录多组I 、t 数据,然后用描点法在I — 图1

太阳能电池对储能装置两种方式充电实验(实验报告)

光伏工程实验报告 实验名称:太阳能电池对储能装置两种方式充电实验学院:材料科学与工程学院 专业:应用物理 指导教师: 报告人:学号:1班级: 实验时间:2015/1/5 实验报告提交时间:2014/12/

一、实验目的 1. 了解超级电容放电的实验; 2. 了解太阳能组件直接对超级电容充电的实验; 3. 了解太阳能组件加DC-DC模块后对超级电容充电实验; 4. 熟悉恒压和恒定功率计算充电效率的方法; 5. 通过对两组实验结果进行比较,找出实现最佳充电效率的方法。 二、实验原理 1.DC-DC模块 DC-DC为直流电压变换电路,能将直流电压 转换为直流电压,相当于交流电路中的变压器,就 是相当于我们平常使用的电源充电器,最基本的 DC-DC变换电路如图1所示。 图1中,Ui为电源,T为晶体闸流管,uC为 晶闸管驱动脉冲,L为滤波电感,C为电容,D为 续流二极管,RL为负载,uo为负载电压。调节晶 闸管驱动脉冲的占空比,即驱动脉冲高电平持续时 间与脉冲周期的比值,即可调节负载端电压。 DC-DC的作用: 当电源电压与负载电压不匹配时,通过 DC-DC调节负载端电压,使负载能正常工作。本实 验的太阳能组件输出电压可以超过10V,而超级电 容器的额定电压为3V左右,因此需要用到DC-DC 模块进行电压的转换。 通过改变负载端电压,改变了折算到电源端的等效负载电阻,当等效负载电阻与电源内阻相等时,电源能最大限度输出能量。 在本实验中,DC-DC模块用于控制太阳能电池,使其始终以最大限度输出能量,保证以恒定功率输出。 2.超级电容 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形

超级电容器行业基本情况.(DOC)

3.1超级电容器行业基本情况 3.1.1 超级电容器介绍 超级电容器(Supercapacitor,Ultracapacitor),又叫黄金电容、法拉电容,通过极化电解质来储能,属于双层电容的一种。由于其储能的过程并不发生化学反应,因此这种储能过程是可逆的,正因为此超级电容器可以反复充放电数十万次。由于其容量很大,对外表现和电池相同,因此也称作“电容电池”或说“黄金电池”。超级电容器是目前世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 图超级电容器结构原理图 超级电容器的出现,填补了传统电容器和电池间的空白,广泛的应用于数码产品、智能仪表、玩具、电动工具、新能源汽车、新能源发电系统、分布式电网系统、高功率武器、运动控制领域、节能建筑、工业节能减排等各个行业,属于标准的低碳经济核心产品。超级电容器具有如下特点: (1)高功率密度。输出功率密度高达数kW/kg,是如何化学电源所无法比拟的,是一般蓄电池的数十倍。 (2)高能量密度。能量密度可以达到5-20Wh/kg,是传统电容器所无法想象的。 (3)循环寿命长。理论循环寿命为无限次,实际都为50万次以上,远高于蓄电池几百次的循环寿命。 (4)充电时间短。可在数秒内到几分钟内完成充电,远快于蓄电池的充电

时间。 (5)免维护、高可靠性,报废后不产生环境污染。 3.1.2 超级电容器与传统常规储能元器件比较 (1)超级电容器与静电电容器、电池的性能参数比较 图超级电容器与普通电容器及电池参数比较 (2)超级电容与电池相关指标比较 图超级电容与电池参数比较 结合以上数据我们可以看出超级电容器的优势在于能提供较大的比功率,因此适合与瞬态大电流充放电工作环境。 3.1.3 超级电容器运用领域 超级电容器的用途非常广泛,其应用领域涉及消费类电子产品,交通运输、移动通信、工业、能源、电力及军事等领域,并且应用范围还在不断地扩大。

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

超级电容器电极制备实验前言

1超级电容器 1.1电池技术的缺陷 Li电池等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 1.2超级电容器的简介 超级电容器(又称电化学电容器、电双层电容器)是一种能量存储装置,属新一代绿色能源。它主要依靠在电极与电解液界面形成电双层贮存电能,性能介于普通电容器和可充电电池之问,在较宽的温度范围内(—40~60。C)工作,可以在大电流(10~1000A)下充放电。与可充电电池(包括镍氢电池和锂电池)相比,超级电容器具有更高的功率密度和更长的循环寿命。与普通电容器相比,超级电容器的能量密度要高出100倍以上。可见,超级电容器集高能量密度、高功率密度、长寿命等特性于一身,具有工作温度宽、可靠性高、可快速循环充放电或快速充电长时间放电等特点。超级电容器可用于大电流瞬时供给、中电流短时问后备电源、小电流长时间后备电源和低频微波吸收等。 超级电容器是利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。超级电容器有如下特点: (1)电容量大。超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大,则电容量越大。因此,一般双电层电容器容量很容易超过1F,它的出现使普通电容器的容量范围骤然跃升了3-4个数量级,目前单体超级电容器的最大电容量可达5000F。

相关文档
最新文档