一元二次不等式的应用

一元二次不等式的应用
一元二次不等式的应用

一元二次不等式的应用

延伸拓展---分式型 解不等式:0312>+-x x . 变式:若将不等式改为13

12≥+-x x ,如何解?

★方法归纳小结 分式不等式的解法: 先整理成标准型)0(0)()(<>x g x f 或)0(0)

()(≤≥x g x f ,再化成整式不等式来解。 (一)转化为整式不等式:

0)

()(>x g x f ? 0)()(

0)()(≥x g x f ? 0)

()(≤x g x f ? 延伸拓展---高次不等式的解法

解下列不等式:

(1)(x +1)(1-x )(x -2)>0; (2)0)2()1()1(3

2≥++-x x x x [分析] 通过因式分解,把高次不等式化为一元一次不等式或一元二次不等式的积的问题,然后再依据相关性质解答.

高次不等式的解法一般用穿根法. “自上而下,从右到左,奇穿偶不穿”

1. 06

3222<++--+x x x x ; 2.2731422+-+-x x x x <1; 3.02322>++-x x x

不等式恒成立问题

1.设函数1)(2--=mx mx x f ,(1)若对一切实数0)(,

2.已知函数1)(2++-=a x x x f ,若0)(≥x f 对一切实数x 恒成立,求实数a 的取值范围。

★方法归纳小结 不等式恒成立问题解决方法:

(1)转化为一元二次不等式解集为R 的情况,即

)0(02≠>++a c bx ax 恒成立? ;

)0(02≠<++a c bx ax 恒成立? 。

(2)分离参数,将恒成立问题转化为求最值问题,即

))()((x f k x f k >≥恒成立? ;

))()((x f k x f k <≤恒成立? 。

【当堂检测】

1、不等式11

2>+x 的解集是( ) A. ),1()0,1(+∞- B. )1,0()1,( --∞ C. )1,1(- D. ),1()1,(+∞--∞

2、不等式04

12>--x x 的解集是( ) A. )1,2(- B. ),2(+∞ C. ),2()1,2(+∞- D. ),1()2,(+∞--∞

3、若关于x 的不等式

01>+-x a x 的解集为),4()1,(+∞--∞ ,则实数a = . 4、二次函数2()y ax bx c x R =++∈的部分对应值如下表: x

-3 -2 -1 0 1 2 3 4 y

6 0 -4 -6 -6 -4 0 6 则不等式20ax bx c ++>的解集是___________.

5、a ___________.时,不等式22

(1)(1)10a x a x ----<的解是全体实数。

6、 已知一元二次不等式2(2)2(2)40m x m x -+-+>的解集为R ,求m 的取值范围.

一元二次不等式的应用含答案(1)

课时作业17 一元二次不等式的应用 时间:45分钟 满分:100分 课堂训练 1.不等式(1-|x |)(1+x )>0的解集为( ) A .{x |x <1} B .{x |x <-1} C .{x |-10 , 或? ?? ?? x <0且x ≠-1 1+x 1+x >0 . 即0≤x <1或x <0且x ≠-1.∴x <1且x ≠-1,故选D. 2.如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( ) A .(-2,2) B .(-2,0) C .(-2,1) D .(0,1) 【答案】 D 【解析】 令f (x )=x 2+(m -1)x +m 2-2, 则? ???? f 1<0 f -1<0 ,∴? ???? m 2 +m -2<0m 2 -m <0,∴00在R 上恒成立,则实数a 的取值范围是________.

【答案】 (0,8) 【解析】 不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2 -8a <0,∴0

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D.{x |-1≤x <2} 4.若不等式ax 2 +bx -2>0的解集为? ????? x |-2

5.不等式x(x-a+1)>a的解集是{} x|x<-1或x>a,则( ) A.a≥1 B.a<-1 C.a>-1 D.a∈R 6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{} x|-30的解集是(1,+∞),则关于x的不等式ax+b x-2 >0 的解集是________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

一元二次不等式解法以及应用专题

一元二次不等式 一元二次不等式:含有一个未知数,且未知数的最高次数是2的整式不等式 题型一、解一元二次不等式 1.一元二次不等式的解法(大于取两边,小于取中间) (1)通过对不等式的变形,使不等式右边为0,左边二次项系数为正 (2)对不等式的左边进行因式分解,若不易分解,则计算对应方程的判别式; (3)求出相应一元二次方程的根或根据判别式说明方程有无实数根; (4)画出对应的二次函数的简图 (5)根据图象写出不等式的解集 例1. ; 例2. 2532<--x x 263-2≤+x x 091242>+-x x 01062>-+-x x 02322>--x x 0532>+-x x 题型二、含参数的一元二次不等式及其解法

| 1.解含参数的不等式时,应对参数进行讨论 (1)以二次项系数是否为0进行讨论,以确定不等式是否为元二次不等式 (2)转化为标准形式(即右边为0,左边二次项的系数为正数)后,再对判别式与0的大小作为分类标准进行讨论; (3)如果判别式大于0,但对应方程的两实根的大小还不能确定,此时,再以两实数根大小为分类标准进行讨论 2.含参数的不等式的解题步骤 (1)将二次项系数转化为正数 (2)判断对应的二次方程是否有根(如果可以直接分解因式,此步可省去) (3)根据根的情况写出相应的解集(若方程有相异实根,要分析两根的大小) 注意 1.当二次项含有参数时,应先讨论二次项系数是否为0这决定了不等式是否为二次不等式 ¥ 2.含参数的一元二次不等式的讨论顺序为:(1)二次项系数;(2)判别式;(3)若有实数根,两实数根的大小顺序 3.对参数的讨论还应注意以下几个方面:(1)对参数分类时,要目标明确,讨论时要不重不漏;(2)最后结果要分类回答,切不可取并集,解集为空集时,也是其中一类,不要随便丢掉 4.并不是所有含有参数的不等式都要进行分类讨论

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

一元二次不等式测试题及答案

一元二次不等式测试题及答案 一、选择题 1.如果不等式ax 2 +bx+c<0(a ≠0)的解集为空集,那么( ) A .a<0,Δ>0 B .a<0,Δ≤0 C .a>0,Δ≤0 D .a>0,Δ≥0 2.不等式(x+2)(1-x)>0的解集是( ) A .{x|x<-2或x>1} B .{x|x<-1或x>2} C .{x|-2<x<1} D .{x|-1<x<2} 3.设f(x)=x 2 +bx+1,且f(-1)=f(3),则f(x)>0的解集是( ) A .),3()1,(+∞?--∞ B .R C .{x|x≠1} D .{x|x=1} 4.不等式(x+5)(3-2x)≥6的解集为( ) A.{x|x ≤-1或x≥ 29} B. {x|-1≤x≤29 } C.{x|x ≥1或x≤-29} D. {x|-2 9 ≤x≤1} 5.设一元二次不等式ax 2 +bx+1>0的解集为{x|-1≤x≤3 1},则ab 的值是( ) A.-6 B.-5 C.6 D.5 6.已知M={x|x2-2x -3>0},x |x2 +ax+b ≤0},若M ∪N =R ,M∩N=(3,]4,则a+b =( ) A.7 B.-1 C.1 D.-7 7.已知集合M ={x| x 2-3x -28≤0}, N={ x 2 -x -6>0},则M ∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7} C .{x|x≤-2或x>3} D .{x|x<-2或x≥3} 8.已知集合M ={x| 3 x 0x 1≥(-) },N ={y|y=3x2 +1,x∈R},则M ∩N =( ) A.? B. {x|x≥1} C.{x|x>1} D.{x| x≥1或x<0} 二.填空题 9、有三个关于x 的方程: ,已知其中至少 有一个方程有实根,则实数a 的取值范围为 10.若二次函数y=ax 2 +bx+c(x ∈R)的部分对应值如下表: x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 则不等式ax 2 +bx+c>0的解集是 。 11.若集合A={x∈R|x2 -4x+3<0},B={x∈R|(x-2)(x-5)<0},则A∩B=_______________________________. 12.关于x 的方程x 2+ax+a 2 -1=0有一正根和一负根,则a 的取值范围是 . 三.解答题: 13、①不等式(a 2 -1)x 2 -(a-1)x-1 <0的解集为R ,求a 的取值范围。②若a 2 -4 17 a+1<0的解集为A ,求使不等式x 2 +ax+1>2x+a 在A a ∈时恒成立的x 的取值范围. 114、①已知不等式02>++c bx ax 的解集为)3,2(,求不等式02 <++a bx cx 的解集。 ②不等式ax 2+bx+c >0的解集为{x|α<x <β},其中0>β>α,求不等式cx 2+bx+a <0的解集。 115、已知A=,B=。 (1)若B A ,求a 的取值范围; (2)若A∩B 是单元素集合,求a 取值范围。

高中数学 必修5 23.一元二次不等式的应用

23.一元二次不等式的应用 教学目标班级:_____ 姓名:____________ 1.掌握运用一元二次不等式解决实际问题的方法. 2.掌握简单的数学建模思想. 教学过程 运用一元二次不等式解决实际问题的一般方法: 1.寻找已知条件,搞清量与量之间的关系. 2.挖掘不等关系,建立一元二次不等式. 3.解不等式,解决问题. 例1:要在长为800m,宽600m的一块长方形地面上进行绿化,其中四周中花卉(花卉带的宽度相同),中间种草坪(如图阴影部分所示),要求草坪的面积不少于总面积的一半,求花卉带宽度x的取值范围. 练1:某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(征税率10个百分点),计划可收购a万担.政策为了鼓励收购公司多收购这种农产品,决定将征税率降低x个百分点,预测收购量可增加x2个百分点. x )0 ( (1)写出降税后税收y(万元)与x的函数关系式; (2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x的取值范围.

练2:汽车在行驶中,由于该惯性,刹车后还会继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事故现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两车型的刹车距离s (m )与车速x (km/h )之间分别有如下关系:201.01.0x x s +=甲,2 005.005.0x x s +=乙.问:甲、乙两车有无超速现象? 作业:某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知该商品每件售价提高1元,销售量就要减少10件.问(1)售价每件定为多少元时,才能使得每天的利润最大? (2)售价每件定为多少元时,才能保证每天的利润不少于300元?

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

一元二次不等式的应用(-)

一元二次不等式的应用(一) 【学习目标】 巩固一元二次方程、一元二次不等式与二次函数的关系,掌握掌握简单的分式不等式和特殊的高次不等式的解法. 【学习重点】 简单的分式不等式和特殊的高次不等式的解法 【学习难点】 正确串根(根轴法的使用). 【课前预习案】 1.解不等式:. 2. 解不等式031 ≥-+x x 3解不等式. 4.解不等式:(x-1)(x+2)(x-3)>0; 【课堂探究案】 探究一:分式不等式的解法 例1.解下列不等式 (1)23 +-x x <0 (2)11 2-+x x ≤1. (3)x x 1-≥2 变式1. (1)22-1<+x x (2)02 6 2≥--+x x x 探究二:一元高次不等式的解法 例2.解下列不等式 073 <+-x x 253 >+-x x

(1)(x+1)(x-3)(x-5)0≥ (2)()()()01313<++-x x x 变式2.解下列不等式 (1)()032<-+x x x (2)()032≥-+x x x 总结:一元高次不等式的解法:“穿针引线法”,具体步骤如下: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积或二次不可分因式之积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过,即“奇穿偶不穿”); ④根据曲线显现出的f(x)值的符号变化规律,写出不等式的解集。 【课后检测案】 1.函数y = 261x x --的定义域是 2.不等式 21+-x x >1的解集是 . 3.解不等式: 112-+x x ≤1. 4.不等式21+-x x >1的解集是 . 3.解不等式 (1)(x +1)(1-x )(x -2)>0; (2)x (x -1) 2(x +1) 3(x +2)≥0. (3)(x -3)(x +2)(x -1) 2(x -4)<0.

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

最新一元二次方程应用题精选(含答案)

1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元? 解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元, 依题意x≤10 ∴(44-x)(20+5x)=1600 展开后化简得:x2-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍) 即每件降价4元 要找准关系式 2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列? 解:设增加x (8+x)(12+x)=96+69 x=3 增加了3行3列 3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价 解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元. 依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500 (30<=x<=70) (2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元. ∴销售单价最高时获总利最多,且多获利26500元.

最新一元二次方程经典测试题(含答案)

更多精品文档 一元二次方程测试题 考试范围: 一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x (x ﹣2)=3x 的解为( ) A .x=5 B .x 1=0,x 2=5 C .x 1=2,x 2=0 D .x 1=0,x 2=﹣5 2.下列方程是一元二次方程的是( ) A .ax 2+bx +c=0 B .3x 2﹣2x=3(x 2﹣2) C .x 3﹣2x ﹣4=0 D .(x ﹣1)2+1=0 3.关于x 的一元二次方程x 2+a 2﹣1=0的一个根是0,则a 的值为( ) A .﹣1 B .1 C .1或﹣1 D .3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17 D .12+12(1+x )+12(1+x )2=17 5.如图,在△ABC 中,∠ABC=90°,AB=8cm ,BC=6cm .动点P ,Q 分别从点A , B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点 C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是( ) A .2秒钟 B .3秒钟 C .4秒钟 D .5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为( ) A .x (x +12)=210 B .x (x ﹣12)=210 C .2x +2(x +12)=210 D .2x +2(x ﹣12)=210 7.一元二次方程x 2+bx ﹣2=0中,若b <0,则这个方程根的情况是( ) A .有两个正根 B .有一正根一负根且正根的绝对值大 C .有两个负根 D .有一正根一负根且负根的绝对值大 8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1 9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根 C .有一正根一负根且正根绝对值大 D .有一正根一负根且负根绝对值大 10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误 的是( ) A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同 C .如果5是方程M 的一个根,那么是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1 11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7 B .11 C .12 D .16 12.设关于x 的方程ax 2+(a +2)x +9a=0,有两个不相等的实数根x 1、x 2,且x 1<1<x 2,那么实数 a 的取值范围是( ) A . B . C . D . 第Ⅱ卷(非选择题) 二.填空题(共8小题,每题3分,共24分) 13.若x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,则代数式x 12﹣3x 1﹣x 2﹣6的值是 . 14.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1?x 2=1,则b a 的值是 . 15.已知2x |m |﹣2+3=9是关于x 的一元二次方程,则m= . 16.已知x 2+6x=﹣1可以配成(x +p )2=q 的形式,则q= . 17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组 的解集是x <﹣1,则所有符合条件的整数m 的个数是 . 18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 .

一元二次方程的应用 (含答案)

23.4 一元二次方程的应用 情境切入 学海导航 完全解读 知能点1、列一元二次方程解实际应用题的一般步骤 列方程解实际应用问题历来是初中学生的难点,究其原因是理论指导不充分,必须熟练掌握解应用题的一般步骤才能准确解答各种类型的应用题,具体的步骤一般是:(1)审:审题要弄清已知量和未知量,问题中的等量关系; (2)设:设未知数,有直接和间接两种设法,因题而异; (3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即方程; (4)解:求出所列方程的解; (5)检验:检验方程的解是否正确,是否符合题意;

(6)答:写出答案. 友情提醒:列方程解应用题应该注意的一些问题 (1)要注意各类应用题中常用的等量关系.例如面积问题中有关的面积公式,还要注 意挖掘题目中隐含的等量关系; (2)注意语言与代数表达式的互化.题目中有些条件是通过语言给出的,只有把它转 化成代数式才能为列方程服务;注意从语言叙述中写出等量关系; (3)注意单位问题:一是在设元时必须写清单位,用对单位,例如不要把速度单位写 成路程单位.二是在列方程时,要注意方程两边的单位必须一致. 例1、某种商品原价50元。因销售不畅,3月份降价10%,从4月份开始涨价,5月份的售 价为64.8元,则4、5月份两个月平均涨价率为 . 思维点击:由题意,3月份的售价可以用50×(1—10%)表示,若设4、5月份两个月 平均涨价率为x ,则4月份的售价是50×(1—10%)×(1+x ),5月份的售价是50×(1—10%)×(1+x )(1+x )即50×(1—10%)×(1+x )2 ,由于5月份的售价已知,所以可列出一个方程,进而解决本题。 解:设4、5月份两个月平均涨价率为x ,由题意,得 50×(1—10%)×(1+x )2=64.8。整理,得(1+x )2=1.44. 解得:120.220%, 2.2x x ===-(不合题意,舍去)。 所以4、5月份两个月平均涨价率为20%。 解后反思:列方程解应用题,要注意求得的方程的解必须符合题意。 例2、如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四 个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长. 思维点击:设截去正方形的边长x 厘米之后,关键在于列出底面(图示虚线部分)长和 宽的代数式.结合图示和原有长方形的长和宽,不难得出这一代数式. 解:设截去正方形的边长为x 厘米,根据题意,得

一元二次不等式及其解法练习题

创作编号: BG7531400019813488897SX 创作者: 别如克* 一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (12 6+ (22 21); (3) ; (4)当0a b >>时, 12 log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)22 11 0___ a b a b >>? . 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >, ④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化

8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤. (4)24410x x -+> (5)24415x x -> (6)21340x -> (7)23100x x --> (8)2450x x -+< (9)23710x x -≤ (10)2250x x -+-< (11)23100x x --+> (12)(9)0x x ->

一元二次不等式及其解法例题分类

一对一个性化辅导教案

一元二次不等式及其解法 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如: 250x x -<.一元二次不等式的一般形式:20ax bx c ++>(0)a ≠或20ax bx c ++<(0)a ≠. 设一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x <,则不等式20ax bx c ++>的解集为 {}2 1 x x x x x ><或,不等式2 0ax bx c ++<的解集为{}21x x x x << 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ≠成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=?,它的解按照 0>?,0=?,0的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或 20ax bx c ++<(0)a >的解集.

二次函数 c bx ax y ++=2(0>a )的图象 20(0)ax bx c a ++=>的根 有两相异实 根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集 )0(02>>++a c bx ax {} 2 1 x x x x x ><或???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 要点诠释: (1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线=y c bx ax ++2与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式?: ①0?>时,求出两根12x x 、,且12x x <②0?=时,求根a b x x 221- ==;

相关文档
最新文档