发育生物学模式生物

发育生物学模式生物
发育生物学模式生物

发育生物学模式生物

摘要:模式生物是生命科学研究的重要材料.目前公认的用于生命科学研究的常见模式生物有噬茵体、大肠杆茵、酵母、线虫、果蝇、斑马鱼、小鼠、拟南芥等.这8种常用模式生物对生命现象的揭密和人类疾病治疗的探索等都所做出了重大贡献.对其在生命科学研究中的历史轨迹、各自优势、技术手段、热点研究、发展前景等系统而又简要的了解.有助于具体而又生动地体察到模式生物在今天生命科学发展中的重要地位和推动生命科学及医学进步的不可替代的巨大潜力。

关键词:模式生物发育生物学生命科学研究

基础问题可以在最简单和最容易获得的系统中得以回答.由于进化的原因,细胞在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育的共同规律是可能的.尤其是当在不同发育特点的生物中发现共同形态形成和变化特征时,发育的普遍原理也就得以建立.因为对这些生物的研究具有帮助我们理解生命世界一般规律的意义,所以称其为“模式生物”.模式生物作为研究材料不仅能回答生命科学研究中最基本的生物学问题,对人类一些疾病的治疗也有借鉴意义.目前,在杂志重要上刊登的有关生命过程和机理的重大发现,大多都是通过模式生物来进行研究的,常见的模式生物有病毒中的噬菌体(Bacteriophage),原核生物中的大肠杆菌(Escherichia coli),真菌中的酿酒酵母(Sacharo.myces cerevisiae),低等无脊椎动物中的秀丽新小杆线虫(Caenorhabditis elegans),昆虫纲的黑腹果蝇(Drosophila melanogaster),鱼纲的斑马鱼(Danio rerio),哺乳纲的小鼠(Mus musculus)以及植物中的拟南芥(Arabidopsis thaliana)等。

模式生物在生命科学研究中有一些共同的优点,例如:有利于回答研究者关注的问题,能够代表生物界的某一大类群;对人体和环境无害,容易获得并易于在实验室内饲养和繁殖;世代短、子代多、遗传背景清楚;容易进行实验操作,特别是具有遗传操作的手段和表型分析的方法等.不同的模式生物由于其各自的遗传生长特点及其在进化过程中的地位,而又具有各自独特的特点。

在生命科学研究中选择哪一种模式生物取决于所探索的生物学问题.研究分子生物学的基本问题,用简单的单细胞生物或病毒通常更方便些.这些生物结构简单并且可以快速大量地生长,通常可以把遗传学和生物化学的研究方法结合起来.而其它问题,如有关发育的问题,通常只能用更复杂的模式生物来解决.例如,噬菌体如T4噬菌体)被证明是一个解决基因和信息传递本质的理想体系;酵母具有高效的适合遗传分析的交配体系,所以酵母成为解释真核细胞本质

的首选系统;线虫和果蝇也提供了很好的遗传系统,用来解决那些在较低等的生物中不能有效解决的问题,如发育和行为;最高等的模式生物小鼠,尽管它不如线虫和果蝇容易研究,但因为是哺乳动物,所以是了解人类生物学和人类疾病最好的模式系统.

1病毒和原核模式生物

1.1噬菌体

噬菌体(Bacteriophage)是感染细菌、真菌、放线菌或螺旋体等微生物的细菌病毒的总称.模式生物中的噬菌体主要是指感染大肠杆菌的噬菌体(T噬菌体和入

噬菌体).

噬菌体作为模式生物的优势:个体微小.噬菌体基因组只有在侵入细胞后才复制,所编码的基因才能表达,一旦离开了宿主细胞,噬菌体既不能生长,也不能复制.噬菌体提供了一个研究基本生命过程的最简单的系统.它们的基因组比较小,复制迅速,使得对要在噬菌体中获得多重突变体的遗传分析来说是可控制的。

噬菌体作为模式生物在生命科学中的应用:1、为了分离病毒复制的关键基因,在条件致死突变的基础上开发了许多筛选技术,例如:通过分离“温度敏感型噬菌体”使得其能在低温下生长,而不能在高温下生长;2、Hershey和Chase(1952)将1r2噬菌体的蛋白质外壳和核酸分别用35S和32P标记,检测蛋白质和核酸在噬菌体增殖过程中的去向,结果检测到母本噬菌体标记的核酸进入到寄主细胞并出现在后代的噬菌体中,从而直接证明了DNA是遗传物质[1],这一杰出的实验成就直接导致了DNA双螺旋结构的发现,并因此奠定了分子遗传学乃至整个分子生物学的基础;3、目前,以噬菌体系统为基础已发展出多种生物学技术,如噬菌体展示技术[2.3],有力的推动了蛋白质组学的研究.噬菌体展示是一种用于筛选和改造功能性多肽或蛋白质的强有力的生物学技术,广泛应用于蛋白组学,以及未知基因的克隆和测序等多个分子生物学领域。

1.2大肠杆菌

大肠杆菌作为模式生物的优势:大肠杆菌(Escherichia coli),是相对简单的单细胞生物,所有DNA、RNA和蛋白质合成的机器都包含在同一细胞器中(细菌没有细胞核),可以相对容易的培养和操作.大肠杆菌通常只有一条染色体,比高等生物的基因组要小得多,并且具有较高的基因密度(大约每1 kb就有一个基因),没有内含子和很少有重复DNA,易于寻找和分析基因.另外,大肠杆菌的生活周期很短,并且单个细胞可以很容易的获得一个遗传上同源的细胞群体(克隆).细菌是单倍体,这意味着即使是隐性突变,也能够表现出突变的表型,同时细菌之间可以方便地进行遗传物质的交换。细菌的这些特征便于对其进行遗传学究.大肠杆菌作为生命科学研究的模式系统,其主要优势是具有遗传交换系统.遗传交换使定位突变、构建含多种突变的菌株、构建用来辨别显性突变和隐性突变及进行顺反式分析的部分双倍体的菌株成为可能.这种遗传交换系统主要通过两种方式构建,第一种方式是大肠杆菌通过性结合交换DNA,大肠杆菌的育性质粒(F因子,F.factor)具备把自身从一个细胞转移到另一个细胞的能力.F 因子介导的结合是一个复制的过程,F+细胞转移一个拷贝的F因子给F—细胞.有时,F因子整合到染色体中,就会引起寄主染色体通过接合向F一细胞转移.含有整合的F因子的菌株叫做Hfr菌株(高频重组菌株,Hfrstrain),这种材料对于进行遗传交换研究非常有用;第二种方式是通过噬菌体介导的转导,噬菌体成熟时有一部分噬菌体的DNA被寄主DNA所取代,当噬菌体感染下一个细胞时,从以前寄主那里获得的染色体DNA片段可以和被感染的寄主染色体发生重组,导致遗传信息从一个细胞转移到另一个细胞.

应用:20世纪70年代初期,在建立DNA重组技术的同时,便开展了对大肠杆菌基因组的研究.目前对大肠杆菌的研究主要集中于揭示其新的功能基因,查明DNA 序列和基因结构的特点,以及基因间的调控关系(即对操纵子学说的补充和扩展)等,这一技术路线也成为其它模式生物特别是人的基因组计划研究的技术路线.

2真核模式生物

2.1酿酒酵母

酿酒酵母作为模式生物的优势:酵母与其它真核生物相比,它们的基因组小

(约12 Mb),基因数目也比较少(约5 885).与大肠杆菌类似,它们可以在实验室里快速繁殖,在理想条件下,每次细胞分裂大约90 min。可以从单个细胞繁殖成克隆群体.酵母作为模式实验系统最重要的优点是,酵母细胞不仅简单,而且具有所有真核生物细胞的主要特征,如含有一个独立的细胞核、多条线性染色体包装成染色质、细胞质包含了全部的细胞器(如线粒体)和具有细胞骨架结构(如肌动纤维蛋白)等.在酵母系统中,单倍体和双倍体细胞的存在促进了酵母的遗传分析.酵母在单倍体和二倍体的状态下均能生长,并能在实验条件下较为方便地控制单倍体和二倍体之间的相互转换,这种转换是通过交配(单倍体到双倍体)和孢子生成(双倍体到单倍体)来实现的,这对其基因功能的研究十分有利.例如,要想知道一个特定的基因是否是细胞生长所必需的,可以在单倍体里敲除这个基因,单倍体细胞只能承受非必需基因的敲除[4]。在酵母中容易对其基因组做精确的人为突变,当把末端与基因组的任何一个特定区域同源的线性DNA引入到酵母细胞中,酵母基因组就会发生非常高的同源重组,导致目标染色体序列被所用的目的染色体片段所取代.如精确地删除整个基因的编码区、改变单个特定的密码子,甚至改变启动子中一个特定的碱基对,这使得研究基因或其调控序列的功能等具体问题变得比较容易.

应用:早在1996年就完成了酿酒酵母(以下简称酵母)的基因组测序[5],这是人类第一次获得真核生物基因组的完整核苷酸序列,被称为遗传学研究上的一座里程碑.通过对酵母全基因组序列测定,其基因组大小约为12 Mb,初步确定了5 885个编码蛋白质的基因,140个rRNA基因、275个tRNA基因,第一次揭示了一种真核生物的全部基因的数目和大体上的功能分类.酵母基因组中有将近31%编码蛋白质或者具有开放阅读框,与哺乳动物编码蛋白质的基因有高度的同源[6].酵母作为最简单的真核模式生物,通过对其基因组的深入研究将有助于人们了解高等真核生物基因组的结构和功能.

2.2黑腹果蝇

自1908年Morgan将果蝇作为遗传学研究的实验材料以来,果蝇越来越受到科学家们的关注和青睐,黑腹果蝇(Drosophilamelanogaster)是最普遍应用于遗传学研究的果蝇是奠定经典遗传学基础的重要模式生物之一.

果蝇作为模式生物的优势:果蝇体型幼小,饲养管理简单,生活史短暂,繁殖高效,胚胎发育极快和完全变态。果蝇完成一个世代交替平均只需要2周左右,1只雌果蝇一生能产下300—400个卵,卵经1天即可孵化成幼虫,组成一个庞大的家族,足以作为一个研究样本进行数理统计分析.果蝇由卵发育为成虫大体经过卵、幼虫、蛹和成虫4个阶段,属完全变态发育.在实验室里,果蝇的饲养条件要求不高,凡能培养酵母菌的基质都可作为其养料.其次,果蝇的性状表现极为丰富,突变类型众多,而且具有许多易于诱变分析的遗传特征,如果蝇的复眼性状可分为白眼、朱砂眼、墨黑眼、砖红眼和棒眼等;果蝇的体色可分为黄身、黑檀身和灰身等;果蝇的翅膀可分为长翅、残翅、小翅、卷翅和无横隔脉翅等.果蝇表型性状的遗传分析为数量性状遗传规律的研究及生物多样性的研究提供了丰富的研究素材.另外,果蝇的染色体数日极少,基因组大小约为180 Mb,只包括4对同源染色体,便于分析.最后,虽然果蝇的神经系统相对于人类而言简单得多,但同样表现出许多与人类相似的复杂的行为特征,如觅食求偶、学习记忆、

休息睡眠等.

应用:Morgan以果蝇作为模式生物,提出了遗传学3条基本定律中的基因连锁互换定律和遗传的染色体学说,确立了基因作为遗传单位的基本概念,开启了现代遗传学研究的大门,为基因组学的研究铺平了道路,并因此而获得1933年诺贝尔生理医学奖M organ以果蝇作为模式生物,提出了遗传学3条基本定律中的基

因连锁互换定律和遗传的染色体学说,确立了基因作为遗传单位的基本概念,开启了现代遗传学研究的大门,为基因组学的研究铺平了道路,并因此而获得1933年诺贝尔生理医学奖.Morgan的学生,被誉为“果蝇的突变大师”的Muller,证明x射线能使果蝇的突变率提高150倍,终于使得遗传物质的人工诱变成为可能,而成为1946年诺贝尔生理医学奖获得者.Lewis、Nusslein.Volhard和Wieschaus 3人通过对果蝇的研究揭开了果蝇胚胎如何由一个细胞发育成完美的特化器官,如体节和腿的遗传秘密,树立了动物基因控制早期胚胎发育的模式[12·13],并因此而共同获得1995年诺贝尔生理医学奖.果蝇的绝大部份发育基因也被发现存在于其它动物身上,包括脊椎动物,相对应的基因也有相对应的发育功能,显示在演化上动物发育的基本机制仍然保存,并不因为外表体型演化而变得不可识别而有所改变.经这3位科学家及其它科学家对发育遗传学的研究,敲开了人类发育遗传的大门。

2.3秀丽新小杆线虫

线虫是营自由生活,以大肠杆菌为食,易在实验室培养;它身长l mm,透明的表皮使每个细胞清晰可见,研究时不需染色,即可在显微镜下看到线虫体内的器官如肠道、生殖腺等,若使用高倍相差显微镜,还可看到单一细胞的解析度,因此线虫是研究细胞分裂、分化、死亡等的好材料;它在20℃时,从一个受精卵发育成可以产卵的成虫的生命周期是3.5d,非常适合做遗传学研究;最可贵的是细胞数目少且固定,在发育过程中总共产生l 090个细胞,其中有131个细胞注定要凋亡,每个细胞都可以进行彻底的观察和研究,这与高等生物数十兆的体细胞比较起来,易于研究分析;1998年完成了线虫基因组测序,8x107 bp,分布于6条染色体上,约为人类基因组的3%,约有13 500个基因,40%以上预测的基因产物可以在其它生物体中找到相匹配的蛋白质,为人类等高等生物的基因功能分析乃至生物学研究提供了一个十分理想的技术平台.

自然状态下,线虫绝大部分个体为雌雄同体(hermaphrodite),雌雄同体的成虫4天内就可以产生多达300个自身后代,或与雄性线虫交配,产生多达l 000条杂交后代.成虫大约存活15 d.自然产生的秀丽线虫群体中只有约千分之一为

雄性,但在实验室里可以用热激法来产生雄性个体以用于遗传交配.一方面,不同遗传背景的秀丽线虫可以像果蝇等模式动物一样进行遗传交配,获得具有多种性状的个体,进而进行遗传分析;另一方面,经突变或交配产生的新性状无需再经交配,只需转接继代就可以保持[18].另外,线虫还可以像动物培养细胞一样储存在-80℃冰箱或液氮中,这就为大量保存各种遗传背景的秀丽线虫株系提供了极大的便利.这一优势也是其它模式动物,如果蝇和小鼠等所不具备的.应用:自Brenner提出以线虫作为发育和神经系统研究的模式生物以来,以线虫为模式生物的研究虽然几乎涉及到生命科学的各个领域并取得了重大突破,但到目前为止,线虫研究中最引人注目的成就是基本阐明了程序性细胞死亡(programmedcell death,PCD)或细胞凋亡(apoptosis)的分子机制.其程序性细胞死亡过程可分为凋亡的特异性激活、执行,凋亡细胞的吞噬和降解等阶段.秀丽线虫的凋亡激活过程需要4个与人类蛋白同源的凋亡因子,包括EGL-1BH3.only、

CED一9,Bcl2,CED-4/ADaf-1和CED.3/Caspase,它们的基因突变会使细胞免于凋亡[IsAg].除此之外,是否还有其它未知因子参与凋亡的激活还有待研究.现已发现,细胞程序性死亡在进化上是一个非常保守的过程.从原生动物线到高等动物人等多细胞生物,细胞程序性死亡的相关基因十分保守且调控途径基本相似.因此,研究线虫的细胞程序性死亡能够使我们更好地了解人体细胞凋亡的调控机制.程序性细胞死亡对个体发育、器官发生以及组织的动态稳定十分重要.程序性细胞死亡的失调与大多数人类疾病密切相关,细胞凋亡机制的研究有利于揭示出恶性疾病,如肿瘤、艾滋病的发病机制,进而为许多疾病的治疗开辟新的思路.线虫研究中另一个里程碑式的成就就是RNA干扰(RNAi)现象的发现.1998年,一项非同寻常的发现被公布:双链RNA(dsRNA)引入到线虫中后,抑制了与引入的dsRNA同源的基因的表达.在随后的短短一年中,RNAi现象被广泛地发现于真菌、拟南芥、水螅、涡虫、锥虫、斑马鱼等大多数真核生物中.随着研究的不断深入,RNAi的机制正在被逐步阐明,特别是对RNA干扰的特异性和高效性的影响因素的探讨,必将成为基因功能研究的一把利器,也是基因表达调控、基因治疗的一种重要手段。

线虫,已成为21世纪诺贝尔奖的新宠.由于Brenner等3人以线虫为模式生物,在基因控制器官发育和细胞程序性死亡方面的卓越成就,而获2002年诺贝尔生理学医学奖.由于Fire和Mello在RNA干扰机制方面的卓越研究,而获2006年诺贝尔生理学医学奖.毋庸置疑,从20世纪80年代至今,线虫已成为分子生物学、发育生物学、神经生物学以及细胞凋亡等众多研究领域的最耀眼的明星.

2.4斑马鱼

作为模式生物的优势:斑马鱼(Dan/o reno)属鲤科短担尼鱼属,原产于南亚,是一种常见的热带鱼.斑马鱼体型小生存能力强,物种稳定,成鱼个体长约3~4 cm,雄鱼个体修长,雌鱼个体肥大,便于饲养和性别识别;体外受精,体外发育,斑马鱼胚胎透明,易于观察;受精卵的直径约1 mm,易于进行显微注射和细胞移植等操作;斑马鱼发育快、繁殖能力强、性成熟期短,斑马鱼受精后约40 min,就完成了第一次有丝分裂,24 h后,主要组织原基就基本形成,并且清晰可见,相当人类第28 d的胚胎,3个月可达到性成熟;雌鱼每周可产300余枚卵,一周可产2次,可保证每天获得成千上万的胚胎.

应用:.斑马鱼在胚胎发育上的绝对优势,使其成为发育学家的最爱,例如利用斑马鱼胚胎透明的特点,构建绿色荧光蛋白(GFP)与内源性靶蛋白的融合蛋白,通过观察融合蛋白的荧光分布情况,可以借以确定目的基因或目的蛋白的功能和表达特点.甚至还可以用来确定基因和基因间的相互作用对整个发育过程的影响.斑马鱼属于高等脊椎动物,它的神经中枢系统、内脏器官、血液以及视觉系统,在分子水平上85%与人相同,尤其是心血管系统,早期发育与人类极为相似.近年来斑马鱼已成为研究动物胚胎发育的优良材料和人类疾病起因的最佳模式生物之一.斑马鱼胚胎和幼鱼对有害物质非常敏感,已被广泛的运用在医药卫生、食品和生活用品的安全性测试方面[27-30],显示出其在科学研究中的巨大潜力,例如复旦大学于2007年培养出可监测环境污染的“转基因斑马鱼”,该转基因斑马鱼能直观、灵敏、特异、方便、快速地显示水环境中雌激素类物质污染,即便水中环境雌激素污染仅达到极微量程度,转基因斑马鱼的肝脏就会发射绿色荧光.这对环境保护和生殖生理以及生殖病理具有重要应用和理论研究价值.2.5小鼠

作为模式生物的优势:它是哺乳动物,因此和人类有极近的亲缘关系.当然,

黑猩猩和其它的灵长类与人类之间有更近的亲缘关系,但是我们不容易用它们进行若干在小鼠中能够进行的实验.在哺乳类实验动物中,由于小鼠体型小,饲养管理方便,易于控制,繁殖速度快,研究最深,有明确的质量控制标准,已拥有大量的近交系、突变系和封闭群,因此小鼠成为公认的最好的模式哺乳动物.应用:小鼠遗传学研究开始于1902年,哈佛大学的Castle在当时孟德尔遗传学研究的影响下对小鼠的毛色进行观察,开始了小鼠遗传学研究.1905年,法国遗传学家LucienClaude Curno通过对黄白相间的杂色鼠进行研究,发现了第一个等位纯合致死基因.由于遗传物质纯合的老鼠种群更有利于遗传学研究,Castle 在1909年培育出了第一个近亲繁殖的小鼠株系——DBA。在这100多年里人们已经建立了近400多个近交系,6 000多个突变品系.这些近交系和突变系小鼠的建立极大推动了以小鼠为模型的科学研究.目前我国已在南京大学建立了“国家遗传丁程小鼠资源库”.该资源库已建立了完善的基因组改造技术平台,建立了遗传工程小鼠品系共300余种,其中142种为自主培育品系,这些小鼠品系中包括糖尿病、肥胖症、白内障、肢体残废、发育缺陷、心血管系统障碍等多种人类疾病的动物模型.小鼠对于生命科学研究的贡献还要得益于小鼠日益丰富的生理生化数据.各种专门用于小鼠的代谢、心血管、呼吸、骨骼、血液、行为等生理功能检测仪器设备和方法在过去几十年中得到的迅速发展,比较医学的研究使得我们可以将小鼠的特定生理生化功能和人类进行比较分析。

2.6拟南芥

拟南芥(Arabidopsis thaliana),又名鼠耳芥、阿拉伯芥、阿拉伯草,属十字花科.

作为模式生物的优势:.拟南芥植株个体小,只需要不大的温室空间,就可种植上万株的实验材料,如此庞大的研究群体,便于筛选低频突变体;世代时间短,约为7周左右,一年内就可收集到8—9个世代的遗传数据,极大的加速了遗传研究的进展;种子产率高,每个植株可产生4×104粒以上的种子。一个月内便可获得大量的遗传杂交后代,这一点对于突变研究尤其重要;天然自花授粉,基因高度纯合,用理化因素处理突变率很高,容易获得各种代谢功能的缺陷型.

应用:.2000年拟南芥基因组测序完成,成为第一个基因组被完整测序的植物,其基因组大约为15 700万碱基对,分布在5条染色体上.拟南芥基因组在植物中算是非常小的,只有棉花的10%、烟草的5%、小麦的l%,从而使得基因库的构建、筛选等过程变得比较快速、简便.

应用:它在发育、代谢、遗传、信号转导、环境适应性等方面都具有开花植物的全部特征,有关拟南芥的所有发现都能应用于其它植物的研究,这使得它成为高等植物中迄今为止的最好模式材料.

3小结

目前,生命科学基础研究主要是以模式生物为对象,尤其是在最近几年,这些模式生物的基因组测序相继完成,在这些基因组信息的基础上,以这些模式生物为研究对象的重大科学发现层出不穷.随着人类全基因组测序工作的完成,对人的研究也已经进入了“后基因组时代”,在后基因组时代,对这些处于生物演化不同阶段的模式生物体的研究是认识人类基因结构与功能所不可缺少的;同时,要想在整个基因组的规模上了解基因组和蛋白质组的功能意义,包括基因组的表达与调控、基因组的多样化和进化规律以及基因及其产物在生物体生长、发育、分化、行为、老化和治病过程中的作用机制,都必须充分加强对不同种类模式生物的综合研究以及发展新的模式生物基于各种模式生物的不同特点,研究者可以

根据研究目的之不同,有机地进行模式生物的选择与组合搭配.目前,我国已启动了家蚕模式生物的研究计划,试图建立另具特色的新模式生物,并以此为契机,推动我国特有模式生物的研究.随着越来越多的研究者的加入,也随着分子生物学的飞速发展,以及越来越多物种的基因组被测序,许多生物都有可能成为很好的模式生物.经典模式生物的数据库不断的完善将会加快对分子生物学的研究进展.我们坚信,有关模式生物的研究必将继续为人类探索生命规律的调控机制做出更大贡献,最终使我们真正了解我们最关心的生物——人类.

主要参考文献:[1】HERSHEY A D.CHASE M.Independent functions of viralprotein and nucleic acid in growth of bacteriophage[J].J t enPhysiol,1952,36:39—56.【2】SIDHU S S。KOIDE S.Phage display for engineering andanalyzing protein interaction interfaces[J].Curr orIin StmeBid,2007,17:481-487.【3】PEll’YA N K,EVANSA T J,nNERANA P C,et a1.Biotechnological exploitation of bacteriophage research【J】.Trends Biotechn01.2006,25(1):7.15.

[41 MEAES H W,ALBERMANN K,BAHR M。et 01.Overview

of the yeast genomelJl.Nature.1997。29(387):7-65.

151 VENTER J C,ADAMS M D,MYERS E W,et以The

sequence of the human genome[J].Science,2001,291:

1305一1308.

【6】杨焕明.基因的分子生物学【M】.北京:科学出版:}t.(YANG

Huan-ming.Molecular Biology of the Gene[il.Beijing:

Science Press),2005.685—7 15.

发育生物学 期末总结

卵裂(cleavage):受精卵形成后即不断分裂成较小的细胞,这个过程称为卵裂(cleavage) 卵裂球(blastomere):卵裂产生的细胞称为卵裂球 囊胚腔(blastocoel):动物极内部的细胞向表面迁移,形成一空腔,即囊胚腔(blastocoel) 紧密化(compaction):紧密化是哺乳动物与其它类型卵裂之间最关键的区别。8细胞之前,分裂球之间结合比较松散,从8个卵裂球起,卵裂球开始重新排列。8细胞之后突然紧密化,通过细胞连接形成致密的球体。紧密化是哺乳动物发育中第一次分化(滋养层与内细胞团的分离)的外部条件。 桑椹胚:通常动物的胚胎在64细胞以前为实心体,称为桑椹胚 囊胚:在128细胞阶段,细胞团内部空隙扩大,滋养层细胞向桑椹胚中分泌液体,产生充满液体的囊胚腔,此时的胚胎称为囊胚 植入(Implantation):胚泡逐渐埋入子宫内膜的过程,又称着床(imbed)。 母型调控:对于大多数动物而言,早期卵裂是由源自卵母细胞的因子调控的,即母型调控 合子型调控:晚期卵裂是由合子基因组表达产物调控的,即合子型调控。 MPF (促成熟因子,maturation promoting factor)可促进卵母细胞的成熟,在受精后的卵裂过程中,该因子继续发挥作用。MPF受蛋白质磷酸化和去磷酸化修饰调节 原肠形成(gastrulation):原肠作用或原肠形成是指囊胚细胞有规则的移动,使细胞重新排列,用来形成内胚层和中胚层器官的细胞迁入胚胎内部,而要形成外胚层的细胞铺展在胚胎表面。 原肠胚(gastrula):原肠作用期的胚胎叫原肠胚(gastrula)。此时,出现了三种原始胚层(germlayer)的分化,形成外胚层、中胚层和内胚层。 内陷(invagination):由囊胚植物极细胞向内陷入,形成二层细胞: 外面的一层称为外胚层(ectoderm),向内陷入的一层为内胚层(endoderm)。 内胚层围绕的空腔将形成未来的肠腔,称原肠腔(gastrocoele), 原肠腔与外界相通的孔称为原口或胚孔(blastopore)。 内移(ingression):由囊胚的一部分细胞移入内部而形成内胚层。 分层(delamination):囊胚细胞分裂时,单层细胞分裂形成内外两层细胞。 内转(卷)(involution):指正在扩展的外层向内卷折,而从内铺盖原来的外层细胞,再伸展成为内胚层。 外包(epiboly):动物极的细胞分裂快,植物极细胞由于卵黄多分裂较慢,结果动物极细胞逐渐向下包围植物极,形成外胚层,被包围的植物极细胞形成内胚层。 会聚伸展(convergent extension):指细胞间相互插入,使所在组织变窄、变薄,并推动组织向一定方向移动。在胚胎内部进行的形态发生运动,主要是会聚。 表皮细胞(epithelial cells):细胞与细胞间紧密连接成管状或片层状结构,局部或整个结构一起运动。 间质细胞(mesenchymal cells):细胞与细胞间松散相连,每个细胞为一个行动单元。 胚环(germ ring):斑马鱼的原肠作用中胚层形成过程50%外包时,与卵黄交界处的cells内卷,使交界处形成厚实的一圈,叫胚环(germ ring)。 胚盾(embryonic shield):因细胞的内卷和会聚扩展而在胚环的某处形成的加厚区。它为胚胎的背部,从此处内卷的细胞将与其它会聚扩展的下胚层细胞一起沿背部中线形成中胚层;下胚层细胞将生成内胚层和部分中胚层。 两栖类的原肠胚是通过“外包”与“内陷”和“内卷”相结合形成的,囊胚的后期,动物半球的细胞开始沿植物半球表面向下移动,首先在囊胚的边缘带下方细胞内陷出现一个弧形的浅沟。浅沟以上的细胞快速分裂,逐渐聚集并下垂呈唇形,为胚孔背唇。这就是原肠腔的开始。 背唇出现以后,内陷的范围逐渐扩大,形成胚孔侧唇,这时候的胚孔呈新月形。接着,形成了胚孔腹唇,形成了圆形的胚孔。部分卵黄细胞像塞子塞在胚孔中,因此叫做卵黄栓。 原口动物,原肠胚阶段的胚胎具有胚孔。在后来的发育中,胚孔发育成口,节肢动物以前的无脊椎动物类群属于。 后口动物,胚胎时期的原口发育为动物的肛门或封闭,而相对的一侧形成新的开口发育为动物的口。包括:棘皮动物、半索动物(柱头虫)、脊索动物。脊索动物门包括脊椎动物亚门,尾索动物亚门(海鞘)和头索动物亚门(文昌鱼)。鸡胚进入子宫后,继续卵裂形成5-6个细胞厚的胚盘。胚盘细胞从蛋白吸取液体后,与卵黄分裂,形成胚盘下腔。该腔使胚盘中央区透明,叫明区;而边缘区的细胞仍与卵黄接触使其不透明,叫暗区。 鸡胚原条(primitive streak):上胚层后部边缘区的细胞向深层侵入,两侧细胞向中央积聚、加厚,形成原条。它的出现确定了胚胎的A-P轴线。 原沟:原条内会形成一个凹陷,叫原沟,原沟的作用相当于两栖类的胚孔,是上胚层细胞进入囊胚腔的门户。Hensen`s node,或原结:原条的最前端区域,加厚,形成Hensen`s node,或原结,是一个诱导中心,相当于两栖类的胚孔背唇。

发育生物学题库

发育生物学题库FCY打印版 1、发育与发育生物学概念? 答:发育——指一个有机体从其生命开始到成熟的变化过程,是生物有机体的自我构建和自我组织的过程。 发育生物学——是以传统的胚胎学为基础,渗透了分子生物学、遗传学和细胞生物学等学科的原理和方法,研究生物个体发育过程及其调节机制,即研究生物体从精子和卵子的发生、受精、胚胎发育、生长到衰老、死亡的规律的科学。 2、什么是原肠胚? 答:胚胎由囊胚继续发育,由原始的单胚层细胞发展成具有双层或三层胚层结构的胚胎,称为原肠胚。 3、神经板概念、形成过程及作用?(P77) 答:神经板概念——早期胚胎背侧表面的一条增厚的纵行外胚层条带。可发育成神经系统。 形成过程——主要是脊索动物发生初期原肠形成终了后于外胚层背侧正中产生的,呈球拍形,后部狭窄肥厚,以后其主要部分形成中枢神经系统和眼原基。神经外胚层细胞分布于神经板两侧,位于脊索的背方,该区域较平坦,呈平板状,它将发育成神经管。 作用——随着发生的进展,神经板周围的外胚层隆起变为神经褶,不久因两侧的神经褶在背侧正中闭合而变成神经管。 4、初级性别决定的概念?(P132) 答:指生殖腺发育为睾丸或卵巢的选择。胚胎生殖腺的发育命运决定于其染色体组成,Y染色体的存在使生殖腺的体细胞发育为testis而非ovary。 5、什么是胚孔?什么是原条?在胚胎发育中作用?(P64、68) 答:胚孔——两栖类和海胆囊胚表面产生的圆形内陷小口。在原肠期内胚层和中胚层细胞经此口内卷进入胚胎内部。(是动物早期胚胎原肠的开口。原肠形成时,内胚层细胞迁移到胚体内部形成原肠腔,留有与外界相通的孔。)作用:通过胚孔背唇进入胚内的细胞将形成脊索及头部中胚层,其余大部分中胚层细胞经胚孔侧唇进入胚内。原口动物的口起源于胚孔,如大多数无脊椎动物;而后口动物的胚孔则发育为成体的肛门,与胚孔相对的一端另行开口,发育为成体的口。如脊椎动物及棘皮动物等。 原条——在鸟类、爬行类和哺乳类胚胎原肠作用时,胚胎后区加厚,并向头区延伸所形成的细胞条。作用:其出现确定了胚胎前后轴。功能上相当于两栖类的胚孔,引导上胚层细胞的迁移运动,形成中胚层组织和部分内胚层组织。 6、什么是脊索?在胚胎发育中作用? 答:脊索——脊索动物体内的一种条状结构。也存在于脊椎动物胚胎时期,在脊椎动物成体中部分或全部被脊椎所代替。 作用——脊索的出现构成了支撑躯体的主梁,这个主梁使体重有了更好的受力者,体内内脏器官得到有力的支持和保护,运动肌肉获得坚强的支点,在运动时不致由于肌肉的收缩而使躯体缩短或变形。脊索动物身体更灵活,体形有可能向“大型化”发展。 7、精子发生与卵子发生概念及其异同点?

发育生物学

发育生物学 发育生物学(developmentalbiology)是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体从精子和卵的发生、受精、发育、生长直至衰老死亡的过程及其机理。 简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。是生物科学重要的基础分支学科之一,研究内容是和许多其他学科内容相互渗透、错综联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 研究对象

发育生物学复习资料重点总结

绪论 1、发育生物学:是应用现代生物学的技术研究生物发育机制的科学。它主要研究多细胞生物体从生殖细胞的发生、受精、胚胎发育、生长到衰老和死亡,即生物个体发育中生命现象发展的机制。 2、(填空)发育生物学模式动物:果蝇、线虫、非洲爪蟾、斑马鱼、鸡和小鼠。 第一篇发育生物学基本原理 第一章细胞命运的决定 1、细胞分化:从单个的全能细胞受精卵开始产生各种分化类型细胞的发育过程称细胞分化。 2、细胞定型可分为“特化”和“决定”两个阶段:当一个细胞或者组织放在中性环境如培养皿中培养可以自主分化时,可以说这个细胞或组织发育命运已经特化;当一个细胞或组织放在胚胎另一个部位培养可以自主分化时,可以说这个细胞或组织发育命运已经决定。(特化的发育命运是可逆的,决定的发育命运是不可逆的。把已特化细胞或组织移植到胚胎不同部位,会分化成不同组织,把已决定细胞或组织移植到胚胎不同部位,只会分化成同一种组织。) 3、(简答)胚胎细胞发育命运的定型主要有两种作用方式:第一种通过胞质隔离实现,第二种通过胚胎诱导实现。(1)通过胞质隔离指定细胞发育命运是指卵裂时,受精卵内特定的细胞质分离到特定的裂球中,裂球中所含有的特定胞质可以决定它发育成哪一类细胞,而与邻近细胞没有关系。细胞发育命运的这种定型方式称为“自主特化”,细胞发育命运完全由内部细胞质组分决定。这种以细胞自主特化为特点的胚胎发育模式称为“镶嵌型发育”,因为整体胚胎好像是由能自我分化的各部分组合而成,也称自主型发育。(2)通过胚胎诱导指定细胞发育命运是指胚胎发育过程中,相邻细胞或组织之间通过互相作用,决定其中一方或双方细胞的分化方向。相互作用开始前,细胞可能具有不止一种分化潜能,但是和邻近细胞或组织的相互作用逐渐限制它们的发育命运,使之只能朝一定的方向分化。细胞发育命运的这种定型方式成为“有条件特化”或“渐进特化”或“依赖型特化”,因为细胞发育命运取决于与其邻近的细胞或组织。这种以细胞有条件特化为特点的胚胎发育模式称为“调整型发育”,也称有条件发育或依赖型发育。 4、(名词)形态发生决定因子:也称成形素或胞质决定子,其概念的形成源于对细胞谱系的研究。形态发生决定子广泛存在于各种动物卵细胞质中,能够指定细胞朝一定方向分化,形成特定组织结构。 5、胞质定域:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时,分配到特定的裂球中,决定裂球的发育命运,这一现象称为胞质定域。也称为胞质隔离、胞质区域化、胞质重排。 第二章细胞分化的分子机制——转录和转录前的调控 1、根据细胞表型可将细胞分为3类:全能细胞、多潜能细胞和分化细胞。(1)全能细胞:指它能够产生有机体的全部细胞表型,或者说可以产生一个完整的有机体,它的全套基因信息都可以表达。(2)多潜能细胞表现出发育潜能的一定局限性,仅能分化成为特定范围内的细胞。(3)分化细胞是由多潜能细胞通过一系列分裂和分化发育成的特殊细胞表型。 2、(简答)差异基因表达的调控机制主要是在以下几个水平完成:(1)差异基因转录:调节哪些核基因转录成RNA。(2)核RNA的选择性加工:调节哪些核RNA进入细胞质并加工成为mRNA,构成特殊的转录子组。(3)mRNA的选择性翻译:调节哪些mRNA翻译成蛋白质。(4)差别蛋白质加工:选择哪些蛋白质加工成为功能性蛋白质,即基因功能的实施者。不同基因表达的调控可以发生在不同的水平。 3、克隆和嵌合技术的区别画图P59 第三章细胞分化的分子机制——转录后的调控 第四章发育中的信号转导

发育生物学重点

一、绪论 1.1分化:细胞的多样性产生的过程(从单个全能的细胞--受精卵,产生各种类型分化细胞的发育过程。)。 形态发生:由分化而产生多样性的细胞构成组织、器官建立结构的过程。 图式形成:胚胎形成不同组织、器官和构成有序空间结构的过程 1.2大多数动物的发育要经历胚胎期、幼体期、变态发育期和成体期 1.3胚轴:胚胎前段到后端的前-后轴,背侧到腹侧的背-腹轴。对称动物还具有中侧轴或左-右轴 1.4调整型:胚胎为了保证正常发育,可以产生细胞位置的移动和重排(海胆、两栖类和鱼类等动物)。 嵌合型:合子的细胞核含有大量的特殊信息物质-决定子,卵裂过程中被平均分配到子细胞中去控制子细胞的发育命运,子细胞的发育命运由卵裂时获得的合子信息所预定,这一类型发育(青蛙、海鞘、栉水母、环节动物、线虫、软体动物)。 形态发生决定子(成形素、胞质决定子):细胞质中含有的决定细胞分化的特定物质。 二、细胞命运决定 2.11)细胞定型:细胞在分化之前,将发生一些隐蔽的变化,使细胞朝特定方向发展的过程。 2)定型分为特化和决定两个阶段 特化:当细胞或组织放在中性环境如培养皿中可以自主分化时,该细胞或组织已经特化。已特化的细胞或组织的命运是可逆的。 决定:当一个细胞或者组织放在胚胎另一部位可以自主分化时,该细胞或组织已经决定。已决定的细胞或组织的发育命运是不可逆的 3)定型有两种方式: (1)自主特化:细胞命运完全由内部细胞质决定。特点:a.通过胞质隔离实现:卵裂时,受精卵内特定的细胞质分离到特定的卵裂球中,卵裂球中所含的特定细胞质决定它发育成哪一类细胞,而与邻近细胞无关。b.镶嵌型发育:以细胞自主特化为特点的胚胎发育模式(2)有条件特化(渐进特化、依赖型特化):细胞的发育命运完全取决与其相邻的细胞或组织.特点:a通过胚胎诱导实现:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方细胞的分化方向。相互作用之前,细胞具有多种分化潜能,但和邻近细胞或组织相互作用后逐渐限制了它们的发育命运,使之朝某一特定方向分化。b调整型发育:以细胞有条件特化为特点的胚胎发育模式。……… 2.21)胞质定域:形态发生子在卵细胞质中呈一定形式分布,受精后发生运动,被分隔到一定区域,并在卵裂时分配到特定的卵裂球中,决定裂球的发育命运。这一现象称为胞质定域,或胞质隔离、胞质区域化、胞质重排。 2)形态发生决定子(成形素、胞质决定子):细胞质中含有的决定细胞分化的特定物质。作用或性质:(1)激活某些基因转录的物质(2)某些m RNA 3)胚胎诱导:胚胎一部分细胞可以对邻近另一部分细胞施加影响,并决定其分化方向,这种作用称为胚胎诱导。 2.3命运渐进特化实验系列: 1)Roux 缺损实验-蛙(镶嵌型发育缺损实验奠定实验胚胎学) 2)Driesch分离组合实验-海胆 3)Horstadius 分离实验-海胆(既镶嵌型发育, 又调整型发育) 2.4双梯度模型(P48 图1.19) 三、细胞分化的分子机制 3.11)细胞分化的本质:基因的差异性表达。

发育生物学教学大纲(新、选)

《发育生物学》教学大纲 (供生物科学专业四年制本科使用) 一、课程性质、目的和任务 发育生物学被公认为是当今生命科学的前沿分支学科,是研究生物体发育过程及其调控机制的一门学科。发育生物学不同于传统的胚胎学,它是生物化学、分子生物学、细胞生物学、遗传学等学科与胚胎学相互渗透的基础上发展形成的一门新兴的学科,是胚胎学的继承和发扬。发育生物学是生物学各专业的限选课程,是在学习一定的专业基础课的基础上进一步学习的高级专业课程。根据本科教学加强基础、注重素质、整体优化的原则,使学生将所学习的专业基础课和专业课形成一个完整的知识体系。过本课程的学习,应对各种生物体的胚胎发育过程、发育规律、发育生物学的基本研究技术,以及发育生物学的研究进展有一定的了解。 二、课程基本要求 本课程分为掌握、熟悉、了解三种层次要求。掌握的内容要求理解透彻,能在本学科和相关学科的学习工作中熟练、灵活运用其基本理论和基本概念。熟悉的内容要求能熟知其相关内容的概念及有关理论,并能适当应用。了解的内容要求对其中的概念和相关内容有所了解。 通过本课程的学习,使学生掌握生物个体发育中生命过程发展的机制。在学习和掌握发育生物学知识的过程中,要求将所学过的其他相关学科,如分子生物学、细胞生物学、遗传学、生物化学、生理学、免疫学和进化生物学等的知识融会贯通,串联整合形成完整的知识体系,并结合当今的研究进展开拓学生的眼界。 考试内容中掌握的内容约占70%,熟悉、了解的内容约占25%,5%左右的大纲外内容。 本大纲的参考教材是面向21世纪教材《发育生物学》第二版(张红卫主编,北京,高等教育出版社,2006年)。 三、课程基本内容及学时分配 发育生物学教学总时数为72学时,其中理论为54学时,实验为18学时,共22章。本课程共分四篇,第一篇从第一到四章,主要内容为发育生物学基本原理,第二篇从第五章到第十一章,主要内容为动物胚胎的早期发育,第三篇从第十二章到第十八章,主要内容为动物胚胎的晚期发育,第四篇从第十九章到第二十二章,主要内容为发育生物学的新研究领域。 绪论(3学时) 【掌握】 1.发育生物学的概念。 2.发育生物学研究的内容与研究范围。 【熟悉】 1.发育生物学的发展与其他学科的关系。 2.发育生物学的展望与应用。 3.发育生物学的模式生物。 【了解】

发育生物学简介

1简介 发育生物学(developmentalbiology)是一门研究生物体从精子和卵子发生、受精、发育、生长到衰老、死亡规律的科学。 发育生物学是生物科学重要的基础分支学科之一,研究内容和许多学科内容相互渗透、相互联系,特别是和遗传学、细胞生物学、分子生物学的关系最为紧密。其应用现代科学技术和方法,从分子水平、亚显微水平和细胞水平来研究分析生物体的过程及其机理。 用分子生物学、细胞生物学的方法研究个体发育机制的学科。是由实验胚胎学发展起来的。实验胚胎学是研究发育中的胚胎各部分间的相互关系及其性质,如何相互影响,发育生物学则是追究这种相互关系的实质是什么,是什么物质(或哪些物质)在起作用,起作用的物质怎样使胚胎细胞向一定方向分化,分化中的细胞如何构成组织或器官,以保证组织和器官的发育,正常发育的胚胎怎样生长、成熟、成为成长的个体,后者在发育到一定阶段后为什么逐步走向衰老,如何在规定的时间和空间的顺序下完成个体的全部发育。 2研究范围 从学科范围讲,发育生物学比实验胚胎学大,后者基本上是研究卵子的受精和受精后的发育,虽然也包括 正在发育的生命 再生及变态等问题,但主要是胚胎期的发育。发育生物学研究的则是有机体的全部生命过程。从雌雄性生殖细胞的发生、形成、直到个体的衰老。

它是生物学领域中最具挑战性的学科之一。从上个世纪八九十年代迄今,生物学领域的重大进展都与发育生物学有着密切的关系,或者就是发育生物学的进展。发育生物学成为了近年来世界上生命科学最活跃和最激动人心的研究领域。 发育生物学又是一门应用前景非常广泛的学科,有关生殖细胞发生、受精等过程的研究是动、植物人工繁殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理论基础。有关细胞分化机理、基因表达调控与形态模式形成及生物功能的关系研究,是解决人类面临的许多医学难题(如癌症的防治)以及器官与组织培养等新兴的医学产业工程发展的基础,也是基因工程发展为成熟的实用技术的基础。 3研究对象 从研究对象看,实验胚胎学一般专指动物实验胚胎学。由于历史的原因,尤其是材料的不同,像动物实验胚胎学那样的植物实验胚胎学未曾发展起来。但动植物的发育原理,尤其是从分子生物学的角度考虑,有许多共同之处,所以发育生物学既研究动物的也研究植物的个体发育。 4研究内容 从胚胎学的角度,个体发育从受精开始,因为卵子受精之后才能发育,但发育生物学则应把个体发育追溯 宝宝感官的发育

北京大学申报国家级教学成果奖

北京大学申报国家级教学成果奖 成果总结报告 成果名称:生命科学创新型基础人才的培养 与理科基地建设的实践 成果完成人:许崇任、郝福英、柴真、苏都莫日根、赵进东成果完成单位:北京大学

生命科学创新型基础人才的培养 与理科基地建设的实践 北京大学生命科学学院 许崇任、郝福英、柴真、苏都莫日根、赵进东 1993年8月,经国家教委批准我院作为第一期理科基础科学研究和教学人才培养基地,于1994年正式启动。经过第一期的建设,教育部和国家自然科学基金委于1998年6月在厦门大学召开“国家基础科技人才与培养基金生物学及心理学学科评审会”,我基地被评为“A”类基地。2001年被教育部和国家自然科学基金委评为“优秀生物学基础科研与教学人才培养基地”。2000年实施的第二期理科生物学基础人才培养基地建设以来,在一期建设的基础上,我们大幅度改革了人才培养体系,进一步挖掘学生潜质,鼓励学生发展自己特长。多年来培养了一大批创新型基础研究人才,取得了显著成效。 生命科学学院现有教授41人(其中包括院士3名、长江特聘教授8人、973项目首席科学家2人、杰出青年基金获得者13人、教育部跨世纪人才基金获得者5人,以及博士生导师37人)、副教授23人。具有博士授予权的学科8个,硕士授予权的学科12个,同时是全国首批生物科学一级学科博士学位授予单位。历年来,报考我院的都是各省市考生的佼佼者,获得中学生国际生物奥赛金银牌的选手也绝多数进入我院。我院现有在校本科生636名,硕士和博士研究生399名。因为招收的都是全国高考中顶尖的学生(1994年-2004年共有51位各省市自治区的高考“状元”和22位国际奥林匹克竞赛金牌、8名银牌、2名铜牌获得者),根据我院人才培养的实际情况,我们的全体学生均是基地学生。多年来,我们始终把国家理科基地建设和创建世界一流学科紧密地结合起来,充分发挥基地学科门类齐全、师资力量雄厚的综合优势,在转变办学指导思想和人才培养模式方面,在课程体系、教学内容、教材建设和教学方法与手段等方面进行了全面改革,在

发育生物学期末考试复习资料

发育生物学期末复习资料 一、发育的主要功能:产生细胞的多样性(细胞分化);保证世代的连续(繁殖)。 二、发育的基本阶段:①胚前期:配子发生、成熟、排放的时期—生殖生物学()。②胚胎期:受精、卵裂、囊胚、原肠胚、神经胚、器官发生、新个体(幼虫、幼体,变态)。③胚后期:性成熟前期、性成熟期、衰老期(老年学)、死亡。 三、发育的主要特征和普遍规律: 细胞增殖():伴随发育的整个过程中,不同时期、不同结构增殖速度不同 细胞分化():从受精卵产生各种类型细胞的发育过程称为细胞分化。或者说,细胞的形态、结构和功能上的差异性产生的过程为细胞分化。 图式形成:胚胎细胞形成不同组织、器官和构成有序空间结构的过程。 形态发生():不同表型的细胞构成组织、器官,建立结构的过程。 卵裂:细胞分裂快、没有(或短)细胞生长的间歇期,因而新生细胞的体积比母细胞小。 胚胎在基本的形成之后,其体积会显著增长,原因在于细胞数量增加、细胞体积增加、胞外物质的积累。不同组织器官的生长速度也各异。 :指细胞特性发生了不可逆的改变,发育潜力已经单一化。 :指一组细胞在中性环境下离体培养,它们仍按其正常命运图谱发育。 诱导信号在细胞之间传递的三种方式:扩散性信号分子、跨膜蛋白的直接互作、间隙连接 信号传导特点:传递距离有限;并非所有细胞都能对某种信号发生反应;不同类型细胞可对同一信号发生不同反应, ., 乙酰胆碱使心肌收缩频率下降,但促使唾液腺分泌唾液。 模式生物的主要特征:取材方便;胚胎具有较强的可操作性;可进行遗传学研究 脊椎动物模式生物:两栖类:非洲爪蟾;鱼类:斑马鱼;鸟类:鸡;哺乳动物:小鼠。

1. 非洲爪蟾主要优点:1. 取卵方便,不受季节限制; 2. 卵1.4、胚胎体积大,易于操作; 3. 发育速度快,抗感染力强,易于培养。4、卵母细胞减数分裂。 主要缺点:异源四倍体,突变难。 2. 斑马鱼主要优点:1. 易于饲养,性成熟短,3个月;产卵力强;2.体外受精和发育,胚胎透明,易于观察; 3. 易于遗传操作:如杂交、诱变; 4. 基因组测序已完成;5、胚胎发育机理和基因组研究。 3. 鸡主要优点:1. 体外发育,易于实验;2. 器官(肢、体节)发育的重要模型;3. 基因组测序已完成。 4. 小鼠主要优点:1. 世代周期短2个月;2. 人类疾病的动物模型;3. 基因组测序已完成,遗传背景清楚,实验手段完善。 无脊椎动物模式生物:果蝇;线虫;其他:海胆;海鞘;文昌鱼;水螅;涡虫;拟南芥 1. 黑腹果蝇主要优点:1. 个体小,生命周期短,易于繁殖,产卵力强,操作简便,成本低; 2.染色体巨大,易于基因定位。其胚胎和成体表型特征丰富。胚胎发育图式; 3. 基因组测序已完成,遗传背景清楚,实验手段完善。 2、线虫主要优点:1. 成虫体长1,结构简单,细胞数目少,谱系清楚;2. 性成熟短2.5-3d 易于培养,便于突变筛选,两种成虫;3. 基因组测序已完成。 3、海胆主要优点:1. 最早的发育生物学模式动物;2、早期发育的模型,受精;3、已完成紫海胆基因组的破译、分析工作。 希腊哲学家在公元前第4世纪在对鸡胚和一些无脊椎动物胚胎观察后提出胚胎发育的两种假设:后成论() 与先成论()。 细胞的命运早在卵裂时,由细胞所获得的合子核信息决定——镶嵌型发育 发育生物学五大未解难题(中心问题):①分化难题:相同的基因组怎样产生不同类型的细胞?②形态发生难题:细胞是如何组建自己又如何形成恰当的排序?③生长难题:生物体内的细胞如何知道它何时该长,何时该停?④生殖难题:生殖细胞是如何发出指令形成下一代的?细胞核和细胞质中允许它们完成这一使命的指令又是什么?⑤进化难题:在发育中的变化怎样创造新体型呢?哪些变化能够起到进化的作用? 第一章细胞命运的决定

发育生物学复习重点

文春根发育生物学复习重点 名词解释 1、形态发生决定子:也称形成素或胞质决定子,存在于卵细胞质中的特殊物质,能够制定细胞朝一定方向分化,形成特定组织结构。 2、顶体反应:是指受精前精子在同卵子接触时精子顶体产生的一系列变化。顶体反应释放的水解酶溶解和精子结合的卵黄膜或透明带,并在该位置进行精卵细胞膜的融合。 3、初级神经胚形成:原肠胚的脊索中胚层诱导其上方的外胚层形成神经系统这个关键的诱导作用,传统地被称为初级胚胎诱导。 4、卵裂:从受精卵到囊胚阶段的细胞分裂,是一系列的有丝分裂,在卵裂过程中,细胞质没有增加,受精卵的细胞质被分配到越来越小的卵裂球之中,卵裂过程中,并没有生长的时期,相邻的两次卵裂之间的间隔时间很短,从而使细胞质与细胞核的比率越来越小。 5、ZP3:称为透明带蛋白,它与ZP1、ZP2以网状的骨架结构存在于透明带中,ZP3能结合精子,并引发顶体反应。 6、多线染色体:分裂间期形成的染色体,由于复制多次而没有分离其复制产物, 许多染色线集合在一个染色体中,同时由于染色线折叠形成带与间带很明显区别的结构(2分)。 7、拟常染色体:含有与X染色体共有的DNA序列(1分),这使它能在有丝分 裂期间与X染色体配对(1分)。 8、乌尔夫氏再生:将成体蝾螈晶状体除去后(1分),可以从虹膜背缘再生出 新的晶状体。 9、阈值:变态过程中涉及的主要问题是发育事件的相互协调,协调变态的工具 好象是产生不同的特异影响需要不同数量的激素(2分)。 10、Bohr 效应:多数脊椎动物的血红蛋白显示出与氧的结合随pH的升高而增加 11、原肠作用:胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。 12、精子获能:是指精子获得穿透卵子透明带能力的生理过程,是精子在受精前必须经历的一个重要阶段。 13、胚胎诱导:在有机体的发育过程中,一个区域的组织与另一个区域的组织相互作用,引起后一种组织分化方向上的变化的过程称为胚胎诱导。 14、原条:鸟类和哺乳类原肠胚形成中的结构,由上胚层中预定中胚层和内胚层细胞组成,这些细胞通过原条进入胚胎内部,胚胎形成了三胚层,原条最终消失。 15、组织者:能够诱导外胚层形成神经系统,并能和其他组织形成次级胚胎的胚孔背唇称为组织者。 16、类坏死:指细胞处于活的和死亡之间(1分),有着一整套原生质的临界状态(1分),这种变化是可逆的。 17、转分化:虹膜背缘或神经视网膜上皮分化(1分)为晶状体或类晶状体。(1分) 18、全能细胞:能产生有机体的全部细胞表型,或可以产生一个完整的有机体, (1分)它的全套基因信息都可以表达,如合子或早期的分裂球等。(1分)

发育生物学试验

发育生物学实验 Experiments of Development Biology 【课程编号】 【课程类别】限选课程 【学分数】 3 学分 【适用专业】 生物科学 【学时数】 96 学时 【编写日期】2009年9月15日 一、教学目标 通过本实验教学,使学生能掌握基本的发育生物学实验操作方法、正确使用仪器、准确取得实验数据,学会实验数据处理和科学表达实验结果的方法。在确保基础实验训练的基础上,强化综合性实验技能训练,注重学生创新思维的培养和综合技能训练。使学生对自己所学的解剖学, 生物化学,分子生物学等实验技术充分的实践, 学会用传统生物学方法和现代生物学方法验证动植物发育过程中的生物学现象,学会在科学实验中进行协作和配合;提高学生的科研能力,培养良好的科研素质。 二、教学内容和学时分配 实验一、鸡胚培养和发育过程观察层次基础性 主要内容:学习和掌握鸡胚胎发育所需要的条件,观察鸡胚胎发育的外部形态变化,掌握器官形成的基本规律。明确环境因素对胚胎发育和健康的影响。 教学要求:了解鸡胚发育的大体阶段以及各阶段的形态特征;了解实验室鸡胚胎孵化的基本条件,明确环境对胚胎发育和健康胚胎的重要性。 实验二、鸡胚血管发生的阻断实验层次综合性 主要内容:在上述鸡胚胎发育的外部形态变化观察的基础上,利用血管阻断剂,通过鸡胚操作,观察药物对血管发育的影响。明确环境因素对胚胎血管发育和健康的影响。 教学要求:了解鸡胚血管发育的基本规律和形态特征;掌握实验室鸡胚血管阻断实验的基本方法,明确药物对胚胎血管发育和健康胚胎的重要性。 实验三、小鸡骨骼肌卫星细胞的分离、培养与发育观察层次综合性 主要内容:在上述鸡胚胎发育的外部形态变化观察的基础上,在小鸡出壳后24小时, 分离培养肌肉组织的卫星细胞,观察骨骼肌卫星细胞的增殖分化能力。并对分离得到的鸡骨骼肌卫星细胞表达卫星细胞特异的标志基因Desmin 和 Pax7 进行表达分析。教学要求:了解鸡胚骨骼肌卫星细胞在发育中的作用,掌握鸡胚骨骼肌卫星细胞分离培养的基本方法。 实验四、小鼠胚胎的收集和培养技术层次 基础性 主要内容:学习和掌握小鼠胚胎的生产、培育和收集方法,掌握不同发育时期胚胎的基本特征,掌握器官形成的基本规律。学会小鼠配对,交配检查等基本方法;明确国际实验动物管理的基本规则等。 教学要求:了解鼠胚发育的大体阶段以及各阶段的形态特征;了解小鼠配对,交配检查,胚胎日龄的计算方法;明确国际实验动物管理的基本规则等。 实验五、小鼠胚胎原位杂交技术分析基因的表达与功能层次综合性 层次 综合性 主要内容:在鼠形体(胚轴)发育不同阶段,利用原位杂交或免疫组织化学方法,检测母源性基因(BCD)、缺口基因(TILL)、成对控制基因(FTZ)、体节极性基因(HH,WG)或蛋白的表达。掌握利用原位杂交或免疫组织化学方法研究鼠胚发育的基本组织学方法。 附:利用抗体技术鉴定鸡胚基因的表达与功能

现代生物学进展资料

现代生物学进展资料 近代生物学发展的三个阶段: 一)、描述性生物学阶段: 19世纪30年代,德国植物学家施莱登和动物学家施旺提出细胞学说,指出细胞是一切动植物结构的基本单位,为研究生物的结构、生理、生殖和发育等奠定了基础。1859年,英国生物学家达尔文,出版了《物种起源》一书,科学地阐述了以自然选择学说为中心的生物进化理论,这是人类对生物界认识的伟大成就,给神创论和物种不变论以沉重的打击,在推动现代生物学的发展方面起了巨大作用。 二)、实验生物学阶段。 19世纪中后期,自然科学在物理学的带动下取得了较大的成就。物理和化学的实验方法和研究成果也逐渐引进到生物科学的研究领域。到1900年,随着孟德尔发现的遗传定律被重新提出,生物学迈进到第二阶段—实验生物学阶段。在这个阶段中,生物学家更多地用实验手段和理化技术来考察生命过程,由于生物化学、细胞遗传学等分支学科不断涌现,使生物科学研究逐渐集中到分析生命活动的基本规律上来。 三)、分子生物学阶段: 20世纪30年代以来,生物科学研究的主要目标是生物大分子——蛋白质和核酸上。 1944年,美国生物学家艾弗里用细菌作实验,第一次证明了DNA是遗传物质。 1953年,美国科学家沃森和英国科学家克里克共同提出了DNA分子双螺旋结构模型,这是20世纪生物科学最伟大的成就,标志着生物科学的发展进入了一个新阶段——-分子生物学阶段。 21世纪生命科学的研究进展和发展趋势 20世纪后半叶生命科学各领域所取得的巨大进展,特别是分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。很多科学家认为,在未来的自然科学中,生命科学将要成为带头学科,甚至预言21世纪是生物学世纪,虽然目前对这些论断还有不同看法,但勿庸置疑,在21世纪生命科学将继续蓬勃发展,生命科学对自然科学所起的巨大推动作用,决不亚于19世纪与20世纪上半叶的物理学。假如过去生命科学曾得益于引入物理学、化学和数学等学科的概念、方法与技术而得到长足的发展,那么,未来生命科学将以特有的方式向自然科学的其他学科进行积极的反馈与回报。当21世纪来临的时候,一些有远见的科学家、思想家与政治家将日益严重的诸多人类社会问题,如人口、地球

发育生物学总结大全

1. 原肠:原肠作用中植物极板向内弯曲、内陷,当深及囊胚 腔1/4到1/2时,内陷停止,此时陷入的部分称为原肠。 原肠作用(gastrulation)是胚胎细胞剧烈的、高速有序的运动过程,通过细胞运动实现囊胚细胞的重新组合。原肠形成期间,囊胚细胞彼此之间的位臵发生变动,重新占有新的位臵,并形成由三胚层细胞构成的胚胎结构。 2.原肠作用的细胞迁移的主要方式?答:外包,内陷,内卷,分层,内移,集中延伸。 3.瓶状细胞是怎样形成的?其作用是什么?答:爪蟾胚胎未来背侧即赤道下方向“灰色新月区”发生原肠作用,在“灰色新月区”形成背唇,而凹陷的小孔为胚孔,胚孔处的细胞顶端部位剧烈收缩,而基底部位扩张,变为瓶状。作用:与胚胎外表面相通 4.初级神经胚形成和次级神经胚形成?答:初级神经胚形成:由脊索中胚层诱导上面覆盖的外胚层细胞分裂,内陷并与表皮质脱离形成中空的神经管。 初级神经胚形成的过程可以分为彼此独立但在时空上又相互重叠的5个时期: (1)、神经板(neural plate)形成 (2)、神经底板(neural floor plate)形成 (3)、神经板的整形(shaping) (4)、神经板弯曲成神经沟(neural groove) (5)、神经沟闭合形成神经管(neural tube) 次级神经胚形成:外胚层细胞下陷进入胚胎形成实心细胞索,接着在细胞索中心产生空洞形成中空的神经管。

5.什么叫神经板,神经褶,神经沟?答:神经板:外胚层中线处细胞形状发 生改变,细胞纵向变长加厚,形成神经板。神经褶:神经板形成后不久,边缘加厚,并向上翘起形成神经褶。神经沟:神经褶形成后在神经板中央出现的U型沟。 6.无脑畸形和脊髓裂?与哪些基因有关,如何避免?答:无脑畸形和脊髓裂均为人类胚胎的神经管闭合缺陷症。人的后端神经管区域在27天时如不能合拢,则产生脊髓裂;若前端神经管区域不能合成,则胚儿前脑发育被停止,产生致死的无脑畸形。它们与pax3、sonic hedghog和openbrain等基因有关。约50%神经管缺陷可由孕妇补充叶酸加以避免。 7.突触的形成?答:突触的形成:当神经元的生长锥抵达靶位,将在二者间形成特化的连接,即神经突触。 8.神经嵴细胞的发生部位,特点,分化命运?答:神经嵴细胞:发生部位——神经管闭合处的神经管细胞和神经管相接的外表层细胞,它的间质细胞化而成 具有迁移性。分化命运:因发生的部位和迁移目的地不同而不同,可分化为感员,交感和副交感神经系统的神经元和胶质细胞,肾上腺髓质细胞,表皮中的色素细胞,头骨软骨和结缔组织等 9.中胚层的分区及其发育命运?答:中胚层的分区:一、背面中央的脊索中胚层。形成脊索;二、背部体节中胚层。形成体节和神经管两侧的中胚层细胞,并产生背部结缔组织;三、居间中胚层,形成泌尿系统和生殖管道;四、离脊索较远的侧板中胚层,形成心脏,血管,循环系统的血细胞、体腔衬里、除肌

发育生物学-复习资料-名词整理

1.细胞分化:从单个全能的受精卵产生各种类型细胞的发育过程叫细胞分化。 2.定型:细胞在分化之前,将发生一些隐蔽的变化,使细胞朝特定方向发展,这一过程称为定型。定型分为特化和决定两个时相。 3.特化:当一个细胞或者组织放在中性环境,如培养皿中可以自主分化时,就可以说这个细胞或组织已经特化了。 4.决定:当一个细胞或组织放在胚胎另一个部位可以自主分化时,就可以说这个细胞或组织已经决定了。 已特化的细胞或组织的发育命运是可逆的。相比之下,已决定的细胞或组织的发育命运是不可逆的。 5.胞质隔离:卵裂时,受精卵内特定的细胞质分离到特定的分裂球中,裂球中所含有的特定胞质决定它发育成哪一类细胞,细胞命运的决定与临近的细胞无关。 6.胚胎诱导:胚胎发育过程中,相邻细胞或组织之间通过相互作用,决定其中一方或双方的分化方向,也就是发育命运。 7.镶嵌型发育:以细胞自主特化(细胞发育方向取决于细胞内特定的细胞质)为特点的胚胎发育模式。 8.调整型发育:以细胞有条件特化(细胞的发育方向取决于它与邻近细胞之间的相互作用)为特点的胚胎发育模式。 9.胞质定域:形态发生决定子在卵细胞质中呈一定形式分布,受精时发生运动,被分隔到一定区域,并在卵裂时分配到特定的裂球中,决定裂球的发育命运。这一现象 称为胞质定域。 10.形态发生决定子 性质:1.激活某些基 因转录的物质 2.mRNA 11.受精:是指两性 生殖细胞融合并形 成具备双亲遗传潜 能的新个体的过 程。 13.顶体反应:顶体 反应是指受精前精 子在同卵子接触 时,精子顶体产生 的一系列变化。(顶 体反应释放的水解 酶溶解和精子结合 的卵黄膜或透明 带,并在该位置进 行精卵细胞膜的融 合。) 14.卵裂:受精卵经 过一系列的细胞分 裂将体积极大的卵 子细胞质分割成许 多较小的、有核的 细胞,形成一个多 细胞生物体的过程 称为卵裂。 15.原肠作用:是胚 胎细胞通过剧烈 的、高速有序的运 动,使囊胚细胞的 重新组合,形成由 外胚层、中胚层和 内胚层三个胚层构 成的胚胎结构的过 程。 16.神经嵴:神经嵴 细胞来源于外胚 层,从神经管和表 皮连接处迁移出 来,又被称作第四 胚层。迁移身体不 同部位,产生各种 类型分化细胞,如 感觉、神经元及胶 质细胞、表皮色素 细胞及头部骨骼和 结缔组织等。 17.胚胎诱导: 在有 机体的发育过程 中,一个区域的组 织与另一个区域的 组织相互作用,引 起后一种组织分化 方向上的变化的过 程称为胚胎诱导。 18.诱导者:产生影 响并引起另一种细 胞或组织分化方向 变化的这部分细胞 或组织称为诱导 者。 19.反应组织:接受 影响并改变分化方 向的细胞或组织称 反应组织。 20.组织者:能够诱 导外胚层形成神经 系统,并能和其他 组织形成次级胚胎 的胚孔背唇称为组 织者。 21.初级胚胎诱导: 原肠胚的脊索中胚 层诱导其上方的外 胚层形成神经系统 这个关键的诱导作 用,传统地被称为 初级胚胎诱导。 22.次级诱导:一种 组织与另一种组织 相互作用,特异指 定它的命运称为次 级诱导; 23.三级诱导:次级 诱导的产物作为诱 导者,指定与之发 挥作用组织的命运 叫三级诱导。 如眼发育过程中: 视泡由原肠顶前端 诱导前脑向两侧突 出而成。视泡诱导 其上面的外胚层形 成晶状体,晶状体 和视泡又诱导其上 面的外胚层形成角 膜。 24.胚胎细胞形成不 同组织、器官,构 成有序空间结构的 过程称为图式形 成。 25.在两栖类囊胚中 最靠近背侧的一群 植物半球细胞,对 组织者具有特殊的 诱导能力,称为 Nieuwkoop中心。 26.顶外胚层嵴 (AER):在鸟类和哺 乳类中胚层诱导肢 芽顶端前、后边缘 的外胚层细胞伸 长,形成一个增厚 的特殊结构,称为 顶外胚层嵴。 27.干细胞:一类具 有自我更新和产生 分化后代这两种基 本特性的细胞。 28.胚胎干细胞 (ES):从早期囊胚 细胞分离并在体外 培养和建系的细 胞。 29.胚胎生殖细胞: 从胚胎生殖嵴原始 生殖细胞分离建系 的细胞。 30.成体干细胞:先 在成年组织和器 官,以后在胎儿组 织被证明其存在, 随后个别也在体外 培养和建系成功的 干细胞。 发育生物学:是应 用现代生物学的技 术研究生物发育机 制的科学。 细胞定型;在细胞 化为具有一定的形 态和一定功能之 前,细胞内部已经 发生了一些隐蔽的 变化,使细胞具有 朝特定方向发生的 潜力,这一过程为 细胞定型或指定细 胞定型可分为特化 与决定两个阶段, 区别:已特化细胞 或组织的发育命运 是可逆的,而已决 定细胞或组织的发 育命运是不可逆 的。 镶嵌型发育:如果 在发育早期将一个 特定裂球从整体胚 胎上分离下来,他 就会形成如同其在 整体胚胎中将会形 成的结构一样的组 织,而胚胎其余部 分形成的组织会缺 乏分离裂球所能产 生的结构,两者恰 好相补。这种以细 胞自主特化为特点 的胚胎发育模式称 为镶嵌型发育。如: 栉水母、海鞘、环 节动物、线虫、软 体动物。 调整型发育:对细 胞进行有条件特化 的胚胎来说,如果 在发育早期将一个 分裂球从整体胚胎 上分离下来,剩余 胚胎中某些细胞可 以改变发育命运, 填补分离掉的裂球 所留下的空缺,仍 形成一个正常的胚 胎。这种以细胞有 条件特化为特点的 胚胎发育模式称为 调整型发育。如: 海胆、两栖类、鱼 类。 形态发生决定子: 也称成形素或胞质 决定子,主要是特 异性的蛋白质或 mRNA,可以激活 或抑制某些基因, 决定细胞分化。主 要存在于卵子细胞 质中,包括典型的 镶嵌型与调整型胚

相关文档
最新文档